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Abstract

Epilepsy is known as a brain disorder characterigetecurrent seizures. The development of a sy#teiris able to predict seizure before its
coming has several benefits such as allowing g@eghtment or even preventing the seizure. In thisle, we propose a seizure prediction
algorithm based on extracting Shannon entropy fetentroencephalography (EEG) signals. The K-neargghbor (KNN) method is used

to continuously monitor the EEG signals by compgrihe current sliding window with normal and prézees baselines to predict the
upcoming seizure. Both baselines are continuoustlatgal based on the most recent prediction resiulg udistance-based method. Our
proposed algorithm is able to predict correctlyfd®n 55 seizures (76 %), tested using up to 570hB&EG taken from the MIT dataset. With
its simplicity and fast processing time, the pragbalgorithm is suitable to be implemented in endleedsystem or mobile application that
has limited processing resources.

Keywords: seizure prediction, adaptive learning&BShannon entropy, KNN

1. Introduction

Epileptic seizures are the clinical manifestatiériransient
abnormal excessive or synchronous neuronal actixitthe
brain [1]. Epilepsy is one of the most common néagial
disorders that is affecting more than 65 millionople
worldwide [2]. In many cases, epileptic seizure viery
difficult to be predicted because it has compleiichl
features and abrupt interference with daily agtivibeizure
prediction along with warning system is importamtprevent
further injuries of the patienElectroencephalograph(EEG)
which captures signals from human brain has a greintial
to be used to analyze brain activity and condition.

EEG has been used in different application sudh bgain

events). Recently, Wang et al. [8] and Khalid e{@l utilized
largest Lyapunov exponettLE) for seizure prediction. It
should be noted that calculating LLE is time conswn{9].
To be implemented in embedded system or mobile
application, which has limited processing resourtieg
algorithm should be simple and fast to be executed.
Another important point that should be considergdhie
adaptability of the method. EEG is a non-statignsignal
that varies between different people as well agegdrased on
their conditions and mental states. Any proposedhate
based on EEG signal should be able to tackle tniglition.
Several artificial intelligence or machine learniteghniques
have been exploited for EEG signal analysis suchriicial
neural network(ANN) [10], support vector machingSVM)

computer interfacgBCI) for home devices control [3] and [11], and k-nearest neighboKKNN) [8]. These techniques

epilepsy diagnosis [4]. Recently, researchers iigated the
use of EEG for seizure detection and predictior (sview
papers [5,6] for further details). Seizure detectioes to
automatically recognize the seizure while it occusdile
seizure predictor tries to predict the seizure keefits
occurrence. Although several existing methods tereeved
promising results for seizure detection, seizuredjtion is
still an open and challenging problem. F. Mormanhale[7],

should not rely only on pre-training process, bisbahould
have an adaptive learning capability to tackle ataon in the
EEG signals.

In our previous work [12], we presented the effemtiess
of using Shannon entropy for assisting epilepsgmligis. In
this work, we investigate the use of Shannon emtrfny
seizure prediction in cooperation witkknearest neighbor
(KNN) method. Calculating Shannon entropy is exgbm

used EEG synchronization measurement to differentiafaster than calculating LLE, as much as hundredtisgs

between normal and pre-seizure state. However, theihod
was only tested using small number of seizuressdidure
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faster. The remaining parts of this article areittrred as
follows. Section 2 presents the description of fineposed
methods as well as the EEG data used for the empati
Experimental results and discussion are provideSeiction 3.
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Finally, the last section provides conclusion adl agdiscuss to a continuous EEG signals. This sliding windowthgn

the future work.
2. Data and M ethods
2.1.EEG Data

In this study, we used a publicly available EEGadat
provided by a research team from Massachusettguliesof
Technology (MIT) and Boston Children’s Hospital J1All
seizure onsets in this dataset are carefully atswtdy
medical experts. The data is recorded by 23-chanseslp
EEG based on 10-20 international standard acquis#iystem
with 256Hz sampling frequency. Reference [12] pdesgi a
more detailed description about the dataset. lal,tatur
testing data consists of 570 hours continuous E4k&rt from
10 epileptic patients with 55 seizure onsets asnsarized in
Table 1.

Table 1. Summary of the EEG data

Patient number  Length of EEG ~ Number of seizures

1 40 7
2 35 3
3 37 7
4 158 4
5 37 5
6 66 10
7 66 3
8 19 5
9 70 4
10 47 7
Total 570 Hours 55

2.2.Seizure prediction method

Researchers found strong evidence for the existehpee-
seizure state prior to seizure onsets that can dsel dor
seizure prediction [5]. Different states of an EE@nal
(normal, pre-seizure, seizure onset and post-sBizare
illustrated in Fig. 1. One may predict the upcomsezure
onset within pre-defined prediction horizor)(by detecting
the pre-seizure states. In the literature, researalsed
different prediction horizon starting from sevenainutes up
to couple of hours [8]. In this study, we definbé prediction
horizon equal to one hour (60 minutes).
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Fig. 1. EEG signals with different seizure events.

divided into smaller 60 epochs, each has 10 secduadgion.
With sampling frequency equal to 256 Hz, every épbas
2560 samples for each of its EEG channel.
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Fig. 2. Overview of the proposed method.

For feature extraction, we employ the Shannon egtthat
measures the distribution of the data in the EEfBads. The
different distribution and complexity in the brasignal may
reveal functionality and condition of brain. Thesetivate us
to do further investigation on using the entropyaatol to
predict the seizure. Let us consider discrete sirgjlannel
EEG data (S):

Sz[suszv--’szsoo] @)
The Shannon entropy (SE) can be calculated asifsl[@3]:

K
SE= _z p, log, p, @)

i=1

wherej is the number of distinct values in the discrettadd)

and p; represents the probability or normalized frequefoy
these distinct values. We calculate the EEG Shaentropy
from the moving windows as well as from the two-gefined
baselines: normal and pre-seizure baseline. The aizthe
baseline is the same as the moving window thatOi€EEG
epochs.

The basic principle of our seizure predictor is panng
entropy value of all epochs in the moving windowhnihe
normal and pre-seizure baselines using the KNN aadkth
Intuitively, this quantifies the degree of simitgriof the
windowed EEG epoch with two baselines. Let us defin
WSE as the entropy value of an epoch in the currentimgov
window with n represents the epoch number artle channel
number. Note that the EEG data has 23 channelstot&h 60
epochs in the moving window as well as in the twsdiines.

Fig. 2 shows an overview of our proposed methodccordingly, NSE' and PSE represent the entropy values

Initially, a sliding window with a length 10 minwgés applied

in the normal and pre-seizure baseline, respegtivEirst, we
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calculate the distance of the current moving windavder
consideration with the normal baseline [9].

N! = abgNSE' ~-WSE) @®)

with n=1, 2, .., 60 ane = 1, 2, ..., 23. In Eq. (3)N{
represents the distance of the current moving winadh the
normal baseline. Taking the summing for all chasnele
obtain the distance for each epoch:

23
N"=>"(NS)
c=1

Only the first three epochs with minimum distanedue are
considered for calculating the final distance value

N=>" min(N")
3

(4)

()

We may consider this denearest neighbo(KNN) with k
equals 3. Accordingly, the distance of the movinigpdew
with the pre-seizure baseline is obtained with sproeedure.

P" = abgPSE ~WSE)

(6)
n=1,2,..,608&=1,2,..,23
23
P =" (R @)
c=1
P=>"min(P") (8)
3

Finally, the prediction ratioR) is the ratio between the two

distancesK andN):

(9)

moving window, while in the case of false negafiF&!), the
pre-seizure baseline is updated. There are sepessible
methods to update the baseline such as total explaut,
random replacement, score-based method and disteases
method [8]. In this study, we use distance-basedatipg
method with 75% replacement. With the baseline sl to
60, that means 45 ‘bad’ epochs in the baselinesepiaced
with the new ones from the current moving windowasegline
epoch is considered as ‘bad’ if it has a big ordiatance from
the moving window in the case of false predictidrhe
distance is calculated using the same formulasr@gqusly
discussed [see Egs. (3)-(8)]. However, it is caseuse the
maximum distance value instead of the minimum dhat
mean instead of using minimum function in the Ef} we
used maximum one.

3. Results and Discussion

Long term 570 hours scalp EEG recording taken ffidm
patients in MIT dataset is used to evaluate thepgsed
seizure prediction algorithm. The normal and piiewse
baselines are initialized randomly from the datacpding the
first seizure event almost for all patients. Exeapfor patient
number #3, the baselines are initialized from thatad
preceding the third seizure events because theafis second
seizure events happen close with the beginninchefBEG
recording. The prediction performance is assesséerins of
sensitivity and specificity as formulated in Eq4.0)-(11)
below. The sensitivity is defined as the numbercofrectly
predicted seizure (TP) over the total seizure e/g8it

TP

Sensitivif = ——
Totalseizurt

(10

The prediction ratioR) is then compared to a pre-definedThe specificity is the estimation of the portiontbé normal

threshold valueT). Based on several experiments, we set t

threshold equal 0.99. If the prediction ratio fdldsver than

this threshold R<T), an alarm is generated as a warning that

there might be an upcoming seizure within the mtéah
horizon {); otherwise it is a normal state.

2.3.Updating the baselines

The user may provide a feedback to the system degpr
the prediction output to improve the performance tioé
system over the time. Four possible outcomes ofs#ieure
prediction are as follows.

e True Positivg(TP): an alarm is generated and seizur

occurs during H

HReriod that is not considered to be false awattimg:

_ falsewaiting p_er'Od] x100%  (11)
normalperiod

Specificiy = (1

The normal period is duration between post-seiamé the
pre-seizure in the upcoming seizure onset (seelffignd the
false waiting period is the number of false alaroitiplied by
the prediction horizonH). In this paper, the post-seizure
period is set to be 20 minutes, while the pre-seias well as
the prediction horizon are set to be 60 minuteso{r).

Fig. 3 shows the extracted Shannon entropy valudhea
first EEG channel for patient number #01. For glasient, the
total duration of EEG recording is around 40 howith seven
geizures onsets or events. By observing the patéez note
that there are always increasing entropy values poiseizure

«  True NegativgTN): no alarm and no seizure occuronset. Fig. 4 shows the prediction rati®) (for the same

during H

patient. Once the prediction ratio falls under tfveshold, an

. False Positive(FP): an alarm is generated but ndlarm is generated indicating that there will beegzure onset

seizure occurs during H

in the near future. All seizures are correctly ot for this

. False Negative(FN): no alarm but seizure occurshatient. However, there are also several falseigtieds.

during H.

If the prediction is true, no update is requirethether it is
true positive (TP) or true negative (TN). In cadefalse
positive (FP), the normal baseline is updated udiegcurrent

Overall, the proposed seizure prediction
successfully predicts 42 seizures from a total ®fsgizure
events (76% sensitivity) for all 10 epileptic pate Fig. 5
shows in detail the number of predicted seizured tartal
seizures for each patient. The average specifisityqual to

method
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62%. Table 2 show the comparison with other methdtie experiments were carried out using the same envieon (PC

proposed method achieved better performance than thith Intel i7 CPU @2.67GHz, Windows 7, MATLAB

previous method by Wang et al. that employed largeR2013a). For the embedded system application whih
Lyapunov exponent (LLE) [8]. Their method achievE8 limited processing resource, our algorithm is moremising

sensitivity. It should be noted also that they usechcranial to be used.
EEG that has a better signal quality compared &psEEG.
Scalp EEG is more practically to be used in nortifal
because it is noninvasive.

Table 2. Comparison with pervious methods

Publication Method EEG Data Performance
. -, Largest Intracranial EEG, L
Seizure onsets position L L 10 biects. total Sensitivity: 73%
Wang et a apunov subjects, tota o
r g BN 9 yap ) "~ Specificity: 67%
1 111 1 2013 [8] exponent 2051 hours with Very slow
g g | A | (LLE) 155 seizures.
l
T ‘ Largest MIT scalp EEG, L
I iR I Sensitivity: 91%
6 Khalid et al Lyapunov 10 subjects, total .
11 1111 1 ) Specificity: 89%
2015 [9] exponent 391 hours with 47
4 " L ! . Very slow
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ (LLE) seizures
o 5 10 15 20 S 0 35 40 MIT scalp EEG, Sensitivity: 76%
e @n ) . Shannon 10 subjects, total Specificity: 63%
This work ;
entropy 570 hours with 55 Much faster and
Fig. 3. Entropy values in the first EEG channelgatient #01. seizures simpler
Correctly predicted Seizures Adaptive learning is very important to improve #estem

V' >
o)

Prediction Ratio (R)
N

1=

Fig. 4. Prediction ratio evolution for patient #01. in the EEG signal more clearly.

10- 4. Conclusion and Future Direction

I (ol ssizues

Number of Seizures

FPGA board or mobile devices.

1 2 3 4 5 6 7 8 9 10
Patient Number

performance over the time. In our work (also in)[8&he

: False predictions adaptive learning capability is achieved by updatiie
baseline with a distance based method; it onlyacgd the

‘bad’ samples, while in [9] all samples (whetheisitgood or

bad) are replaced. Always replacing entire samjteshe

" baseline with the most current sliding window ig affective
g for long-term performance improvement because iuldio
5 10 5 2 = EE delete also the good baseline samples. Good bassdimple
Time (in hours) is able to differentiate between normal and pretsei states

B ecicted seizures || An electroencephalography (EEG)-based epileptizusei
prediction has been presented in this article.
method achieved promising results tested using BGlrs
EEG recording taken from Massachusetts
Technology (MIT) scalp EEG dataset. The proposethotk
successfully predicted 42 out of 55 seizures. Wiith
simplicity and fast processing time, the proposedhod can
be easily implemented in any embedded system sscin a

preposed

Institute

prediction accuracy. To tackle the low specificity the

Fig. 5. Correctly predicted seizures for all sutjec proposed method, several smoothing approaches hwill

. investigated. Furthermore, the proposed seizuraligiien
Our proposed method based on calculating Shanngethod should also be integrated with a suitabjgliegtion
entropy is much simpler and faster compared toratfethods  sych as mobile devices to perform more effectivizuse

such as using phase synchronization [7] or larggapunov monijtoring.
exponent (LLE) [8,9]. Although the work in referen¢9]

achieved better performance using LLE (91% seritsifivthis

algorithm is time consuming. It takes more thans8ond to  Acknowledgments
extract feature from a 23-channel EEG epoch wittatiion 10

second (2560 samples), while our method only tdked5 This research work was supported by a researctegiroj
second, that means more than 600 times faster. BQHut is funded by King Abdulaziz City for Scienceda

of

A possible future work includes testing the propbse
method using a larger EEG dataset. More robusturfeat
extraction method will be investigated to improvhe t
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