
Communications in Science and Technology 8(2) (2023) 198–207

COMMUNICATIONS IN

SCIENCE AND TECHNOLOGY
Homepage: cst.kipmi.or.id

© 2023 KIPMI

A modified MixColumn-InversMixColumn in AES algorithm suitable for

hardware implementation using FPGA device

Ragiel Hadi Prayitnoa, Latifahb,*, Sunny Arief Sudirob, Sarifuddin Madendaa, Suryadi Harmantoa

aDoctoral Study Program of Information Technology Gunadarma University, Depok 16424, Indonesia
bDepartement of Computer Science, STMIK Jakarta STI&K, Jakarta Selatan 12140, Indonesia

Article history:
Received: 24 August 2023 / Received in revised form: 7 December 2023 / Accepted: 18 December 2023

Abstract

This article described the Advanced Encryption Standard (AES) encryption and decryption process without using lookup tables in the
MixColumns transformation and parallelizing the transformation process implemented in the Field Programmable Gate Array (FPGA) hardware.
Parallelism of the hardware process conducted to the transformation of key schedule, addroundkey, subbyte and shiftrows (subshift) and
mixcolumns in the first 5 rounds of the encryption process. The decryption process was parallelized in subshift transformations, both
transformations were implemented at the same time. This research produced a modified AES encryption and decryption method and algorithm
with the aim of minimizing the resources required for hardware implementation. The method in this article was applied to Xilinx ISE 14.7
software. The experimental results showed that the encryption process required 2,357 slice LUT's, 845 occupied slices and 26 IOB's, while the
decryption process required 2,896 LUT's, 1,323 occupied slices and 26 IOB's resources. The encryption and decryption processes each took an
average of 2.891 nanoseconds and 3.467 nanoseconds for every 128 bits of data. This approach leads us to obtain a component with minimum
resources and enough computational speed.

Keywords: AES; FPGA; mixcolumns; inversemixccolumns; hardware implementation

1. Introduction

Data distributed on the internet can be easily hacked,

modified and duplicated. This is a risk to data confidentiality.

Confidential information becomes significant to be maintained

as part of data security [1]. Data that is converted into digital

form is more vulnerable to be compromised [2]. Hackers

generally attack digital storage and data transmission media

that have the potential to harm certain parties.

One of the security methods that have been existed for

centuries is the cryptographic method. This method is used for

communicating between the military and commercial.

Cryptographic methods are an important part of running the

global economy and are used by millions of people every day

in electronic commerce through the internet. Sensitive

information (bank records, credit card statements, passwords,

or personal communications) must be secured with decryption

so that it cannot be accessed by other people or unauthorized

parties [3], [4].

Cryptographic methods convert plain text messages into

encrypted text messages using an algorithm that is known

between the sender and recipient. It is possible that sensitive

information is stored or transmitted through an insecure

network (such as the Internet) therefore it cannot be read by

anyone except the intended recipient. The encrypted message

can be returned to the original message. Encrypted messages

can only be read by the intended recipient because the recipient

has the same key as the sender. The process of converting plain

text messages into cipher text is called encryption, while the

process of converting cipher texts into plain text messages is

called decryption [5].

The key used in each encryption and decryption process can

be a word or phrase, where the key is part of a cryptographic

method that functions to secure data. The National Institute of

Standards and Technology (NIST) in 2001 adopted the

Advanced Encryption Standard (AES) encryption method as

Federal Information Processing Standards (FIPS) [6], [7].

These methods have been tough tested and proven towards

hacking by providing a high level of security. This is because

the process is quite complicated when performing the AES

encryption-decryption method. The method consists of 10

rounds of the transformation process, where in each round there

are 4 stages of a complex transformation process, namely

SubBytes, ShiftRows, MixColumns and Addroundkey [8].

The application of the encryption-decryption process can be

run both software and hardware [9]. The speed of the

encryption-decryption process is better hardware than

software. It is because software-based applications run at layer

7 OSI (Open Systems Interconnection) or application layer.

The application of encryption-decryption on hardware runs on

OSI layer 1 or physical layer so that hardware-based

applications are more resistant to attacks. The physical layer is

* Corresponding author. Tel.: +62 817-4933-518.

Email: latifah@staff.jak-stik.ac.id

https://doi.org/10.21924/cst.8.2.2023.1257

mailto:latifah@staff.jak-stik.ac.id
https://doi.org/10.21924/cst.8.2.2023.1257

 Prayitno et al. / Communications in Science and Technology 8(2) (2023) 198–207 199

more difficult to hack and is not based on the existing operating

system [10].

Research conducted by Shraddha Soni, Himani Agrawal,

and Monisha Sharma [11] compared the DES algorithm and the

AES algorithm. The results of this research indicates that the

AES Algorithm's time consumption for encryption and

decryption processes is faster (99.871 seconds) than the DES

Algorithm (215.9359 seconds).

Research conducted by Nia Gella Augoestien, and Agfianto

Eko Putra [12] produced an AES encryption and decryption

model on FPGA hardware. This model has a hardware

efficiency of 1.94 Mbps/Slice and a throughput of 308.96Mbps.

This approach has a latency of 83 clocks.

Research conducted by Umer Farooq, and M. Faisal Aslam

[8] compared several techniques used in implementing the AES

algorithm on FPGA devices. The research showed technique

that was proposed can take the advantage of the good available

resources and provided a better trade-off as far as use of

resource and throughput design.

MixColumns transformation is part of encryption process

in AES Algorithm. The Inverse MixColumns transformation is

part of decryption process in AES algorithm. This

transformation can be used to secure data by shuffling the

original data in the state array columns; therefore, new data can

be obtained in each state array column.

MixColumns/InverseMixColumns transforma-tion

consumed more power and logic so that optimization is

important [13]. In traditional AES, MixColumns and Inverse

MixColumns are implemented as separate modules, except for

some implementations which used sharing resource between

MixColumns and Inverse MixColumns to optimize power and

space [14], [15]. The design proposed in previous research is

based on byte, matrix decomposition and minimization of

equations using the generalized sub-expression elimination

[14]. MixColumns and InverseMixColumns operations can

also be performed by ignoring mathematical analysis by using

reference tables L and E, each of which has 256 values [16],

[17].

Another study using FPGA in cryptography technic was

found in [26]. The approach was to implement BCF (Block

Cipher-Four) algorithm in hardware based environment, and

again this approach was to obtain faster computation speed

(2,847 times faster in this research using FPGA DE2) and the

possibility of implementation in embedded system.

The provided studies on FPGA-based AES encryption and

decryption models lack detailed information on the specific

optimization techniques, the trade-offs achieved between

resource utilization and throughput, and the design details of

MixColumns and Inverse MixColumns operations. The

proposed design based on bytes, decomposition matrix, and

minimization equations is mentioned, but without explicit

details. The comparative analysis of mathematical analysis

versus using reference tables for MixColumns and Inverse

MixColumns operations is absent. More comprehensive

exploration of these aspects would enhance the clarity and

applicability of the research findings.

This research proposed the development of a modified AES

algorithm encryption and decryption method thus it can be

more easily and efficiently implemented on hardware using

FPGA with minimal resources. Modifications are made to the

mixcolumns transformation using Galois Field (GF) 28

multiplication and the parallelization process of subbyte and

shiftrows transformations and each transformation with

keyschedule in the first 5 rounds of the encryption process.

2. Materials and Methods

The AES algorithm is an encryption-decryption method in

cryptography [15]. AES, also called Rijndael encryption, is a

block encryption standard adopted by the United States Federal

Government [18,19]. AES is projected to replace the DES

algorithm. After several rounds of filtering, AES is then widely

used [20]. On November 26, 2011, NIST announced a new

encryption standard after five years, and it was implemented in

May 2002. After four years of deposition and testing, AES has

become one of the most popular symmetric encryption

algorithms [19].

The AES algorithm has 3 types of key lengths 128 bits, 192

bits and 256 bits embedded with 128 bits size of packet and the

AES algorithm shows a good compliance. This causes the AES

encryption system to be widely used in many softwares and

hardwares. The key length often used in the AES algorithm is

128 bits. If it is below the key length, 10 calculations will be

repeated in the internal algorithm. Besides the final round, each

round comprises four parts: SubBytes, ShiftRows,

MixColumns, AddRoundKey [19]. Exclusivity occurs between

plain text and key extension blocks [21]. In the AES algorithm,

there are at least five units of measurement that can be utilized,

namely bits, bytes, characters, groups, and status.

2.1. Subbytes

SubBytes transformation is a non-linear and reversible byte

transformation. This leads to AES being strong enough in

attack. SubBytes transformation is performed by substituting

each byte of the matrix with a value stored in the S-box table

for encryption. The decryption and substitution process is

conducted using the Sbox inverse table for each state. S-box is

an algebraic vector Boolean function with 8bit input and output

[22]. The S-box table is formed from a 256-byte table search

[16].

2.2. ShiftRows

The ShiftRows transformation shifts rows 1, 2 and 3 of the

State matrix cyclically to the left at each position 1, 2 and 3.

The offset value depends on the row number. The first line is

unchanged. Cyclic rotation of the rows gives diffusion

properties in the AES algorithm. The ShiftRows transformation

is presented in Figure 1.

Fig. 1. ShiftRows Process

200 Prayitno et al. / Communications in Science and Technology 8(2) (2023) 198–207

2.3. Mixcolumn transformation

MixColumns transformation, the column in state (which is

a word) is performed as a polynomial with the coefficient in GF

28. Word [a3, a2, a1, a0] is performed as a polynomial,

therefore it becomes a3X3+a2X2+a1X1+a0.

The addition of a polynomial is performed because it is

added to polynomial ring. So that, the result remains as big as

a word, the multiplication is performed modulo polynomial

g(x) = X4 + 1 (1)

X4 + 1 is the equation of decimal value 17, where X4

represents the value 24 and 1 represents 20. It is easy to

indicate that

Xi mod (X4 + 1) = Xi mod 4 (2)

Because -1 = 1 in GF 28. Since X4 + 1 is not irreducible

polynomial in K[X] where K = GF 28, then K[X]/g(X)K[X] is

not a field: not all polynomial has inverse. However, the

polynomial

a(x) = 03X3 + 01X2 + 01X + 02 (3)

has inverse

a-1(x) = 0BX3 + 0DX2 + 09X + 0E (4)

Values of equations (3) and (4) are in the form of

hexadecimal numbers. The MixColumns transformation

multiplies (modulo the polynomial g(X)) each column in the

state (performed as a polynomial) by the polynomial a(X). The

MixColumns state transformation can be formulated in terms

of its effect on each column c as follows [6]:

(5)

S0,c, S1,c, S2,c, and S3,c are the original data. S’0,c is data

change in the first row of column c which resulted from

MixColumns/InverseMixColumns transformation process

between MixColumns matrix and original data. Afterward for

S’1,c, S’2,c, and S’3,c are data change in row 2 to row 4 column

c.

MixColumns and InverseMixColumns operations are used

in AES for hardware implementation purposes in constrained

environments. This research is supported by mathematical

analysis of both transformations and leads to efficient serial and

parallel decomposition [15].

Previous research created a high-efficiency architecture to

perform mixed column operations, which is a key function in

the AES method. This research uses prehistoric Vedic

Mathematics methods that can give more effective results in

AES [23].

Low-power FPGA architecture is based on the use of AES

MixColumns/InverseMixColumns transformations. The

implementation uses decomposition techniques, pre-

computation, and parallel power supply to reduce a power

circuit. The circuit consumption is decreased as compared to

previous implementations [13].

Instead of using two different mixed and inverse column

transformation modules, one module can be implemented to

both transformations. This reduces the entire area consumption

of the AES algorithm [24].

Previous researchers used memoryless combinatorial

design for SB/ISR implementation as an alternative to

obtaining higher speed by eliminating memory access delays

while maintaining or increasing the efficiency of use of the

entire component area. This research also explores the use of

sub-pipelining to further increase in the speed and throughput

of suggestion implementation. FPGA architecture applies

optimization in inverter design and isomorphic mapping using

composite field arithmetic to reduce the area requirements of

the components used [25].

2.4. Proposed method

AES encryption-decryption method is tested and proven to

provide a high level of security towards hack [8], [23]. The

weakness of AES encryption is the process is quite complex.

The complexity of the standard AES model caused a challenge

in hardware implementation. The standard AES process in

previous studies was conducted sequentially or sequentially.

The previous research also used tables L and E as a

reference in processing MixColumns transformation, where

each table consists of 256 reference values [16], while this

research used GF 28 multiplication and the parallelization

process of AES algorithm transformation. Parallelization can

increase the speed of the AES encryption-decryption process.

The limitation of processing/calculating numbers is one thing

that must also be concerned, for example related to integer data

and real numbers (floating point) in an FPGA. The algorithm

design must also be efficient so that optimization in hardware

can be achieved, especially increased processing speed,

delayed time, and minimal needed FPGA resources.

Figure 2 shows a flowchart of the modified AES

encryption-decryption process proposed in this dissertation

research. The development was applied in the form of

parallelization between the subbyte and shiftrows

transformation processes. The proposed parallelization model

has advantages in the form of more efficient use of network

resources, faster encryption-decryption process, lower costs,

and provided a high level of security.

The concept of implementing encryption and decryption

integration process is with the VHDL programming language.

The parallelization model between the subbyte and shiftrows

transformation processes can be conducted so that it is expected

that the use of resources can be more efficient, optimize speed

and provide a high level of security. The design of each

transformation uses sequential logic techniques because the

output depends on the previous input and needs storage

element.

The sequence of encryption and decryption processes in the

modified AES algorithm is as followed:

1. Key schedule calculation process

The first process in the AES algorithm is to find a key

schedule that will be used for 10 rounds.

2. XOR process between plaintext and cipher key

The second process is to do XOR between plaintext and

cipher key to generate addroundkey.

3. Transforming Subbytes, Shiftrows, MixColumns, and

Addroundkey

 Prayitno et al. / Communications in Science and Technology 8(2) (2023) 198–207 201

Subbytes transformation is performed by substitution

with the S-Box table that has been stored in memory. The

resulting data is a 4x4 matrix. In the shiftrows

transformation, there is no shift for row 0, for row 1 of

the matrix there is a shift of 1 byte to the left, for row 2

of the matrix there is a shift of 2 bytes to the left, and for

row 3 of the matrix there is a shift of 3 bytes to the left.

The MixColumns transformation performs the

multiplication process (modulo polynomial g(X)) for

each column in the state with the polynomial a(X). In the

addroundkey transformation there is an XOR process

between the state (matrix) and the key schedule. This

process is repeated for 9 rounds.

4. Subbytes, Shiftrows, and addroundkey Transformation

Process

In this process there are only 3 transformation processes,

they are subbytes, shiftrows and addroundkey. This

process occurs in the last loop in the AES algorithm.

After it is complete it will produce a cipher text.

Figure 3 is the concept of implementation of encryption

integration, in which there is a parallelization process to the key

schedule transformation with addroundkey, subbyte and

shiftrows, mixcolumns in the first 5 rounds. For the last 5

rounds there is also parallelization, namely the transformation

of subbytes and shiftrows.

Figure 4 is the concept of implementation of decryption

integration, where the concept is a parallelization process to the

transformation of subbytes and shiftrows. Implementation is

performed by using FPGA tools as a component development

that applies the concept of encryption and decryption. The

result of this design is Intellectual Property (IPCore)

(component description) which for actual implementation still

must go through the development of integrated circuit (IC) in

the form of electronic components for the encryption and

decryption process. The input data in modified integration of

AES encryption algorithm is stated as “textin” and “keyin” with

type std_logic_vector(7 downto 0) or 8 bit data. The output is

stated as a "cipher" with type std_logic_vector(7 downto 0) or

output data 8 bit. The modified AES algorithm integration uses

10 memories consisting of 3 constant memory and 7 memory

as temporary storage of the generated data. Constant memory

is used for MixColumns data of 16 memory cells, rcon of 10

memory cells and sbox of 256 memory cells of type

std_logic_vector(7 downto 0). These 3 constant memories do

not change in value so only 3 constant memories are needed. 7

memory as temporary storage is for the values that keep

changing.

The first memory as temporary storage is declared as mem2

with type std_logic_vector(7 downto 0) on ram 1 of 16 memory

cells used to store input data from textin. The second memory

as temporary storage is declared as mem3 with type

std_logic_vector(7 downto 0) is 16 memory cells used for store

input data from keyin. The third memory as temporary storage

is declared as mem4 with type std_logic_vector(7 downto 0) is

16 memory cells which is used for store the result of the

addroundkey transformation before starting the loop. The

fourth memory as temporary storage is declared as mem5 with

type std_logic_vector(7 downto 0) is 16 memory cells which is

used for store the result of parallelization of subbytes and

shitrows. The fifth memory as temporary storage is declared as

mem6 with type std_logic_vector(7 downto 0) is 16 memory

cells used for store the MixColumns results. The sixth memory

as temporary storage is declared as mem2p with type

Fig. 2. Flowchart of Encryption (A) and Decryption (B) Processes

202 Prayitno et al. / Communications in Science and Technology 8(2) (2023) 198–207

std_logic_vector(7 downto 0) of 160 memory cells which is

used to store the key schedule results. The seventh memory as

temporary storage is declared as mem7 with type

std_logic_vector(7 downto 0) of 16 memory cells which is used

to store the results of the addroundkey transformation and the

encryption results that will be delivered to the "cipher".

Fig. 3. Encryption integration concept

 Prayitno et al. / Communications in Science and Technology 8(2) (2023) 198–207 203

Fig. 4. Decryption integration concept

3. Results and Discussion

This research carried out only 1 type of message (a total of

128 bits of binary data) because each message was carried out

per 128 bits. If the message exceeds 128 bits of data (example:

129 bits) then the data will be considered as 256 bits of data

and the process will be repeated twice. If it exceeds 256 bits of

data (example: 257 bits of data) then it is considered 284 data

and the process is repeated 3 times and so on. Focusing for the

one message in experiment was to be sure that the value for

each cycle in hardware implementation was correctly obtained.

In this research, the encryption and decryption method of

AES algorithm with FPGA-based hardware was conducted in

sequential logic. The implementation was performed by using

Xilinx ISE software and VHDL programming language and

simulated with ISim Simulator. The transformations that

existed in AES algorithm are being implemented based on the

evaluation results and it is simulated with the ISim Simulator

to ensure the implementation results are in line with the

evaluation results that have been conducted. The result of the

implementation of each transformation is integrated by using

VHDL programming language according to AES algorithm to

produce encryption and decryption.

Figure 5 show that the implementation results have latency

of 33 clocks after the last data is stored for reading the output.

Figure 6 shows a summary of encryption resources, which

the implementation needs 2,357 slice LUT's and 26 bonded

IOBs. Figure 6 also shows timing summary, where the

encryption component needs a computation time of 2.891ns

and a maximum frequency of 345.853 MHz.

Fig. 5. Encryption simulation results on ISim simulator

204 Prayitno et al. / Communications in Science and Technology 8(2) (2023) 198–207

Fig. 6. Summary of encryption resources on Xilinx and. Encryption timing summary

Figure 7 shows that the implementation results have a
latency of 33 clocks after the last data is stored for reading the
output. Figure 8 shows timing summary, the decryption
component needs a computation time of 3.467ns and a
maximum frequency of 288.403 MHz. Figure 8 also show a
summary of decryption, where the implementation needs 2,896
slice LUT’s and 26 bonded IOBs.The concept of testing
encryption and decryption with VHDL programming language
on the Nexys A7-100T FPGA hardware has been conducted.
The test is conducted by utilizing the 7-Segment that is
contained in the Nexys A7-100T FPGA as the output of the
encryption and decryption results. The concept of testing
encryption is shown in Figure 9(A) and decryption is shown in
Figure 9(B).

The message data that is used in the encryption test is

"01020304050607080000000000000000". The key used is

"bismillah lancar". Table 1 shows the results of resources that

are performed with different devices. Minimizing "Occupied

Slice" and "Slice LUT’s" in FPGA design is crucial for efficient

resource utilization. A smaller footprint of occupied slices and

fewer Look-Up Tables (LUTs) signifies a more resource-

optimized design. Achieving reduced "Latency" leads to faster

system response times, enhancing overall performance. Lower

"Timing (ns)" values indicate quicker completion of operations

or clock cycles on the FPGA.

The experiment was performed as the same device as the

previous researcher to compare the resources that were used.

The method used in this research produces latency of 33 clocks

on Spartan 6 devices. The latency in this research is lower than

the method [12] (83 clocks). The parallelization process that is

produced in latency savings so that the latency obtained was

slower than the method in [12]. The slice used in this research

was 1936 slice on Spartan 6 device.
The occupied slice in this research was still higher than the

method in [8] (159 slice). This is due to the technique in
designing FPGA-based circuits, method in [8] uses FSM
technique while this research uses a sequential logic technique
to make the number of occupied slices produced is larger. Slice
LUT's used in this research were 3586 slice on Spartan 6
devices. The use of GF28 in this research resulted in a slice LUT
which was lower than the method in [8] (9276 slice).

Fig. 7. Decryption simulation results on ISim simulator

 Prayitno et al. / Communications in Science and Technology 8(2) (2023) 198–207 205

Fig. 8. Summary of decryption resources on Xilinx and Decryption timing summary

Fig. 9. Concept of testing encryption (A) and decryption (B)

206 Prayitno et al. / Communications in Science and Technology 8(2) (2023) 198–207

Table 1. Performance Comparison

Performance Method in [12] Method in [8] This work

Device Spartan 6 Spartan 6 Spartan 6 Artix 7

Occupied Slice 159 N/A 1936 845
Slice LUT’s N/A 9276 3586 2357

Latensi 83 N/A 33 33

Timing (ns) 4,922 1,127 5,920 2,891

4. Conclusion

The modified AES encryption and decryption algorithm has

been successfully implemented into a hardware component in

the form of IPCore. Implementation trials were conducted on

the Nexys A7-100T FPGA hardware with 7-Segment facilities

as the output display. The FPGA resources used in the

encryption process are 2,357 slice LUT's, 845 occupied slices,

26 bonded IOBs and a latency of 33 clocks with a computation

time of 2.891 nanoseconds for 128 bits of data. The resources

needed for the decryption process are 2,896 slice LUT's, 1,323

occupied slices, 26 bonded IOBs and a latency of 33 clocks

with a computation time of 3,467 nanoseconds for 128 bits of

data. The implementation is suitable for resource-constrained

environments such as embedded systems. The impact extends

to secure systems, enabling applications like encrypted

communication channels and secure data storage. Additionally,

the versatility of fpga hardware allows for adaptability in

implementing cryptographic algorithms, contributing to both

practical applications and educational advancements in the

field.

Acknowledgements

.This work is supported by Research Program

Kemendikbudristek Indonesia in Hibah Penelitian Disertasi

Contract Number: 064/SP2H/LT/DRPM/2021 dated 18 March

2021 and Yayasan Pendidikan Gunadarma Jakarta Indonesia,

Contract Number: 05A.26/LP/UG/IV/2021, 5 April 2021

References

1. TM. Kumar, K.S. Reddy, S. Rinaldi, B.D. Parameshachari and K.

Arunachalam, A Low Area High Speed FPGA Implementation of AES

Architecture for Cryptography Application, ELEC, 10(16) (2021).

2. A. Muslim Djamalilleil, M. Salim, Y. Alwi and H. Herman, Modified

Transposition Cipher Algorithm for Images Encryption, The 2nd east

Indonesia conference on computer and information technology (Eiconcit

Makassar, South Sulawesi, (2018) 1-4.

3. Mu. Annalakshmi and A. Padmapriya, Zigzag Ciphers: A Novel

Transposition Method, IJCA Proceedings on International Conference on

Computing and information Technology 2013 IC2IT(2), (2013) 8-12.

4. C.A. Murugan, P. Karthigaikumar and S.S. Priya, FPGA Implementation

Of Hardware Architecture With AES Encryptor Using Sub-Pipelined S-

Box Techniques For Compact Applications, AUTOMATIKA, 61(4)

(2020) 682–693.

5. P. Poonia and P. Kantha, Comparative Study of Various Substitution and

Transposition Encryption Techniques, Int. J. Comput. Appl., 145(10)

(2016) 24-27.

6. E. Barker, Guideline for Using Cryptographic Standards in the Federal

Government:Cryptographic Mechanisms, NIST Special Publication 800-

175B Revision 1, (2020).

7. I.C. Guzmán, R.D. Nieto and Á. Bernal, FPGA implementation of the

AES-128 algorithm in non-feedback modes of operation, Dyna, 83(198)

(2016) 37-43.

8. U. Farooq, and M. Faisal Aslam, Comparative analysis of different AES

implementation techniques for efficient resource usage and better

performance of an FPGA, J. King Saud Univ., 29(3) (2017) 295-302.

9. P. Vijayakumar, P.L. Kishore, K.V.D. Reddy, S. Reddy, R. Rajashree and

A. Durai, FPGA Implementation of High Speed AES Based

Authentication Algorithm, JAT, 12(7) (2020) 112-126.

10. L. Zhao and D. Lie, Is Hardware More Secure Than Software?, IEEE

Security & Privacy, 18(5) (2020) 8-17.

11. S. Soni, Himani Agrawal, dan Dr. (Mrs.) Monisha Sharma, Analysis and

Comparison between AES and DES Cryptographic Algorithm, IJEIT,

2(6) (2012) 17-20.

12. N. G. Augoestien and A. E. Putra, Purwarupa perangkat keras untuk

eksekusi algoritma aes berbasis fpga (Hardware Prototype for AES

Algorithm Based on FPGA), IJEIS, 5(2) (2015) 211–220.

13. M. Sleem, Yousra Alakabani, Ali Rashed and Attif Ibraheem, Low Power

Implementation of AES Mix Columns/ Inverse Mix Column on FPGA,

Adv. Mat. Res., Trans Tech Publications, Ltd, 677 (2013) 311-316..

14. S. Ghaznavi, Catherine Geboty and Reoven Elbaz, Efficient technique for

the FPGA implementation of the AES Mix columns Transformation,

International conference on Reconfigurable Computing and FPGAs,

(2009) pp.219-224.

15. V. Fischer, Milos Drutarovsky and Pawel Chodowiec, InvMixcolumn

Decomposition and Multilevel Resource Sharing in AES Implementation,

in IEEE Trans. On VLSI Systems, 13(8) (2005) 989-992.

16. A. Berent, Advanced Encryption Standard by Example, Document

available at URL https://www.adamberent.com/wp-

content/uploads/2019/02/AESbyExample.pdf Accessed: May 2021.

17. H. Zodpe and A. Sapkal, An efficient AES implementation using FPGA

with enhanced security features, J. King Saud Univ., 32(2) (2020). 115-

122.

18. Q. Zhang, Qunding, Digital Image Encryption Based On Advanced

Encryption Standard (AES) Algorithm, 2015 Fifth International

Conference on Instrumentation and Measurement, Computer,

Communication and Control, (2015) 1218-1221.

19. Y. J. Liand and W. L. Wu, Improved Integral Attacks on Rijndael C,

 J. Inf. Sci. Eng., 27(6) (2011) 2031- 2045.

20. Y. W. Zhu,H. Q. Zhang, Y. B. Bao, Study of the AES Realization Method

on the Reconfigurable Hardware C, 2013 International Conference on

Computer Sciences and Applications, (2013) 72-76.

21. J. Toldinas, V. Stuikys, R. Damasevicius, G. Ziberkas and M. Banionis,

Energy Efficiency Comparion with Cipher Strength of AES and Rijndael

Cryptographic Algorithms in Moble Devices, J. Elektonika IR

Elektrotechnika, 108(2) (2011) 11-14.

22. F. Wegener, L.D. Meyer and A. Moradi, Spin Me Right Round Rotational

Symmetry for FPGA-Specific AES: Extended Version, J. Cryptol., 33

(2020) 1114-1155.

23. M. Kumar, Senthil and DR. S. Rajalakshmi, High Efficient Modified

MixColumns in Advanced Encryption Standard using Vedic Multiplier,

 Prayitno et al. / Communications in Science and Technology 8(2) (2023) 198–207 207

International Conference on Current Trends in Engineering and

Technology (ICCTET), (2014) 462-466.

24. N.E. Abraham and Tibin Thomas, FPGA Implementation of Mix and

Inverse Mix Column for AES Algorithm, IJSRD, 1(9) (2013) 2321-0613.

25. C. Nalini, P.V. Anandmohan, D.V. Poornaiah and V.D. Kulkami,

Compact Designs of SubBytes and MixColumn for AES, IEEE

International Advance Conputing Conference, (2009) 1241-1247.

26. Y. Kurniawan & M. A. Rizqulloh, Block cipher four implementation on

field programmable gate array, Commun.Sci. Technol, 5(2) (2020) 53-

64.

