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Abstract 

The convolutional neural network is commonly used for classification. However, convolutional networks can also be used for semantic 
segmentation using the fully convolutional network approach. U-Net is one example of a fully convolutional network architecture capable of 
producing accurate segmentation on biomedical images. This paper proposes to use U-Net for Plasmodium segmentation on thin blood smear 
images. The evaluation shows that U-Net can accurately perform Plasmodium segmentation on thin blood smear images, besides this study also 
compares the three loss functions, namely mean-squared error, binary cross-entropy, and Huber loss. The results show that Huber loss has the 
best testing metrics: 0.9297, 0.9715, 0.8957, 0.9096 for F1 score, positive predictive value (PPV), sensitivity (SE), and relative segmentation 
accuracy (RSA), respectively. 
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1. Introduction  

Deep learning is a compelling and versatile method. This 

method has been widely used to solve various problems in 

various fields [1]. Deep convolutional networks are one of deep 

learning architectures designed for the areas of computer vision 

and image processing, convolutional networks first proposed 

by [2] and began to receive attention in the world after Alexnet 

[3] won the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) [4] which is an image classification 

competition using 8 layers of convolutional neural networks 

(CNN) that are trained using graphics processing units (GPU). 

Although CNN is commonly used for classification, 

convolutional networks can also be used for semantic 

segmentation using the fully convolutional network [5] 

approach. U-Net [6] is one example of fully convolutional 

network architecture capable of producing accurate 

segmentation on biomedical images, U-Net is designed 

explicitly for biomedical image segmentation and gets the 

highest intersection over union (IoU) for ISBI cell tracking 

challenge 2015. U-Net is trained using data augmentation 

because the amount of data is very minimal. Due to the 

excellent U-Net performance for biomedical segmentation, this 

paper tries to implement U-Net to segment Malaria parasite or 

Plasmodium on thin blood smears. 

There have been many studies focusing on the segmentation 

of Plasmodium. Gonzalez-Betancourt et al. [7] propose a 

system to determine markers for watershed segmentation based 

on Radon transform and mathematical operators, this study 

uses a morphological filter to reduce noise and ensure the 

preservation of cell edges. Dave et al [8] use adaptive 

thresholding methods and morphology operations such as 

erosion and dilation on thin blood smear images. Rosado et al 

[9] also applied adaptive segmentation and erosion, Somasekar 

et al [10] also applied thresholding and morphology operators 

such as dilation and closing to close segmentation holes. Devi 

et al [11] proposed a Plasmodium segmentation system using a 

controlled watershed marker with a minimum internal marker. 

Oliveira et al. [12] combine artificial intelligence [13] with 

mathematical morphology, the search space for the 

classification operations are reduced using preprocessing by 

removing the background using erosion to train and test the 

classifier model. Nugroho et al [14] proposed multilevel Otsu's 

thresholding combined with closing operator, the model 

proposed by this paper obtained 96.74 ± 0.7075 %, 76.77 ± 

2.1441 %, 99.74 ± 0.1397 %, 97.84 ±1.2514 % and 96.61 ± 

0.8021 % of accuracy, sensitivity, specificity, prediction value 

positive and prediction value negative, respectively. 

From the review that has been done, it can be concluded that 

the method using mathematical morphology is the most 

common approach for Plasmodium segmentation, but these 

methods have a weakness that is the need to determine the 

optimum parameters to produce accurate segmentation, this 

paper proposes different approach by using U-Net for 

Plasmodium segmentation on thin blood smear images. There 

are two contributions of this paper, namely, evaluate the 

performance of U-Net for Plasmodium segmentation on thin 

blood smear images and determining the best loss function for * Corresponding author. Tel.: +6281515611084; . 
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Plasmodium segmentation using U-Net. 

The remainder of this paper is organized as follows, Section 

2 discusses materials and methods which contain detailed 

datasets, U-Net architecture, and evaluation methods, section 3 

is the result and discussion, and section 4 contains conclusions. 

2. Materials and Methods 

2.1. Dataset 

The dataset used in this study was 30 images of Plasmodium 

in thin blood smears with three channels in PNG format used 

by [14], along with the corresponding ideal segmentation 

images. The images have a size of 200×200 pixels. Dataset will 

be divided into two parts: training and testing with the 

proportion of 21 as training images and nine as testing images. 

An example of Plasmodium images used in this study can be 

seen in Fig. 1. 

 

 
Fig. 1 Example of (a) Original thin blood smear image, (b) Preprocessed by 

[14], (c) Ideal Segmentation 

2.2. Preprocessing and Augmentation 

Plasmodium has a small size and is difficult to distinguish 

from noise such as white blood cells, thus requiring an 

enhancement method designed to improve segmentation 

accuracy. Dataset used in this study has been preprocessed 

before by [14], which has been proven to be optimal for 

conducting Plasmodium segmentation, hence preprocessing 

used in this study only resizes the images to 224×224 pixels 

and convert them to grayscale images using (1). 

 
𝑌 = 0.299 𝑅 +  0.587 𝐺 +  0.114 𝐵 (1) 

The reason why images are resized to 224×224 is that U-Net 

requires some particular input sizes and 224×224 chosen 

because it is the closest to the original image size of 200x200 

pixels. All pixels in the image are normalized to 0-1 to be used 

to train the U-Net model by dividing each pixel by 255. Due to 

the training images are very few, data augmentation needs to 

be done so that the model that has been trained is robust to 

variance [6]. The data augmentation method in this study uses 

a commonly used method that is by rotating, shifting, and 

zooming training images so that the augmented dataset will 

produce far more images than the original data. In this study, 

augmentation was carried out on both the thin blood smear 

images and its corresponding ideal segmentation only on the 

training dataset until it amounts to 500 images, which are 

deemed enough to train the U-Net without getting stuck on the 

local optimum. 

2.3. U-Net 

There are two parts in the U-Net architecture, the contractive 

part, and expansive part, this architecture reminds us of the 

convolutional autoencoder [15] architecture which also has two 

parts, encoder, and decoder, but what distinguishes the U-Net 

architecture from the autoencoder is the U-Net has no fully 

connected layer, so the U-Net is classified as a fully 

convolutional network [16], but with a symmetrical contractive 

and expansive layer 

The contractive part is similar to the convolutional network 

architecture used for classification. By stacking two 3×3 

unpadded convolutional layers followed by the ReLu activation 

function and 2×2 max pooling with 2 strides for downsampling. 

The expansion part has upsampling followed by a 2×2 

convolutional layer or the so-called up-convolutional layer 

which halves the feature layer, up-convolutional is connected 

by two 3×3 convolutional layers and the ReLu activation 

function. Also, the dropout layer is placed between the 

contractive and expansive layer as regularization with a rate of 

0.5 that aims to prevent the model from overfitting. On the last 

layer, there is a 1x1 convolutional layer that is used to map 64 

component feature vectors to the desired output shape. U-Net 

architecture has a total of 23 convolutional layers [6]. U-Net 

architecture can be seen in Fig. 3. 

 

 

Fig. 2 U-Net architecture 

2.4. Training 

In this study, Plasmodium images and their corresponding 

ideal segmentation were used to train the U-Net. This study 

compares several loss functions that are used to train U-Net, 

namely binary cross-entropy, mean-squared error, and Huber 

[17]. Unlike the [6], which uses stochastic gradient descent 
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(SGD), in this paper, Adam [18] with a learning rate of 1e-5 is 

used as an optimizer for all loss functions used with the number 

of epochs equal to 100. Same as [6], the amount of training 

batch used in this study is 1. The training processes were done 

on Google Colaboratory with GPU accelerator and take 

approximately 30 minutes for 100 epochs. 

2.5. Binary cross-entropy 

Binary cross-entropy (BCE) is a loss function that is often 

used to train a neural network model for binary classification. 

The weighted version of BCE can also be used in [6] to train 

neural network models used for semantic segmentation. BCE 

equation can be seen in (2). 

 
𝐵𝐶𝐸(𝑡, 𝑦) = −(𝑡 log(𝑦) + (1 − 𝑡 log (1 − 𝑦)) (2) 

where t is the target and y is the output of the model. In this 

paper, BCE is implemented using the binary_crossentropy 

function from Keras [19]. Weighted BCE was also tested in this 

study, but the performance of weighted BCE to reduce false-

negative is still lower than the unweighted BCE. 

2.6. Mean-squared Error (MSE)  

Mean-squared error (MSE) is commonly used to measure 

the error rate in the curve-fitting model for time-series data, but 

MSE can also be implemented for image processing such as 

[20] which uses MSE as a loss function to train the deep 

convolutional generative adversarial network model. The MSE 

equation can be seen in (3). 

 

𝑀𝑆𝐸(𝒕, 𝒚) =
1

𝑚
∑(𝑡𝑖 − 𝑦𝑖)

2

𝑚

𝑖=1

 (3) 

where t is a vector with dimension m, which is the target and y 

is a vector with dimension m which is the output of the model. 

In this case, t and y are the values of each pixel in the image, 

while m is the dimension of the image. In this study, MSE is 

implemented using the mean_squared_error function found in 

Keras. 

2.7. Huber 

Huber loss [17] is, same as MSE, commonly used for 

regression and curve-fitting problems, but Huber loss is more 

insensitive to outliers compared to MSE so that the resulting 

model will be more robust. This study tries to implement the 

Huber loss as a loss function to train the U-Net model. The 

Huber loss equation can be seen in (4). 

 

𝐻(𝑡, 𝑦) =  {

1

2
(𝑡 − 𝑦)2                 if|𝑡 − 𝑦| ≤ δ,

δ|𝑡 − 𝑦| −
1

2
δ2             otherwise

 (4) 

where 𝛿 is a constant and is set to 0.5 in this study. Huber loss 

is implemented using the huber_loss function on Keras. 

2.8. Experiment 

The purpose of this study is to evaluate the performance of 

U-Net for Plasmodium segmentation on thin blood smears and 

determine the best loss function out of the three different loss 

functions tested in this study. This study applies data 

augmentation to overcome the limitations of data to train the U-

Net. Data augmentation is only done on 21 training data, while 

the remaining 9 data used for testing are not augmented. 

This study uses four performance metrics: F1, Positive 

Predictive Value (PPV), Sensitivity, and Relative 

Segmentation Accuracy (RSA) [21]. Accuracy was not used in 

this study because it was judged not suitable for measuring 

performance for segmentation. In this paper, accuracy is 

substituted by RSA. 

 

 

Fig. 3 Experiment Flow Chart  

3. Results and Discussion 

This section shows the performance of U-Net in segmenting 

Plasmodium on thin blood smears and determining the loss 

function that is most suitable for this task. This section is 

divided into two: training results and testing results. It aims to 

show whether the model being trained experiences overfitting 

or not. 

3.1. Training Result 

Training results are shown to determine the performance of 

the model to segment the training data that has gone through 

the augmentation process. Before discussing the training results 

metrics, the following graph shows the number of epochs with 

each loss function tested. Fig. 4-6 shows the graphs of epoch vs 

loss functions and epoch vs F1 in the training process for MSE, 
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BCE, and Huber, respectively. 

 

 
(a) 

 
(b) 

Fig. 4 (a) MSE vs epoch, (b) Training F1 vs epoch using MSE 

 

 
(a) 

 

 
(b) 

Fig. 5 (a) BCE vs epoch, (b) Training F1 vs epoch using BCE 

 

To clarify the comparison of training results, Table 1 shows 

the comparison of performance metrics for three different loss 

functions. 

 

 
(a) 

(b) 

Fig. 6 (a) Huber loss vs epoch, (b) Training F1 vs epoch using Huber loss 

Table 1. Training result comparison 

Loss Function F1 PPV Sensitivity RSA 

MSE 0.9749 0.9934 0.9571 0.9634 

BCE 0.9613 0.9639 0.9588 0.9671 

Huber 0.9558 0.9935 0.9209 0.9270 

 

The model trained using MSE as a loss function can provide 

the highest F1, but BCE has the highest sensitivity and RSA, 

and Huber has the highest PPV.  

Another interesting thing to observe is the RSA values, 

which were originally used to measure the relative accuracy of 

segmentation for welding defect segmentation, are similar to 

sensitivity because RSA measures and compares the number of 

pixels that have a defect or value of 1 between ground truth and 

segmentation results, which is similar to the calculation of 

recall or sensitivity, which measures the ratio between true 

positive relative to the number of a true-positive and false-

negative. 

3.2. Testing Result 

Although the model can have high metrics during the 

training process, the model may not necessarily have the same 

metrics if tested using data that has never been seen before. 

Table 2 shows a comparison of performance metrics from 

models that have been trained using three different loss 

functions. 

The model trained using Huber loss is able to produce the 

highest metrics F1, sensitivity, and RSA value compared to 

MSE and BCE, even though the F1 and RSA metrics during 

training is lower than MSE and BCE, this shows that the 

models trained using MSE and BCE may experience overfitting 

and this does not happen to the model that is trained using 
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Huber loss. The most observable evidence that the model 

trained using MSE and BCE experienced overfitting is the 

difference of the Sensitivity metrics of training and testing that 

is considerably far about 8% and 12% for MSE and BCE 

respectively, while the model trained using Huber loss is differ 

by only 3% on Sensitivity metrics. 

Table 2. Testing result comparison 

Loss Function F1 PPV Sensitivity RSA 

MSE 0.9103 0.9586 0.8722 0.8981 

BCE 0.9077 0.9979 0.8324 0.8341 

Huber 0.9297 0.9715 0.8957 0.9096 

 

 
Fig. 7 Example of testing result  (a) thin blood smear image, (b) grayscle 

image. (c) MSE, (d) BCE, (e) Huber, (f) ideal segmentation 

 

Although BCE has the lowest testing F1 value among the 

three loss functions, BCE has the highest PPV of 99%. This is 

interesting because for other applications such as localization, 

a model that has high PPV values can be used as an ROI 

proposal method, which afterward can be linked to the 

classifier for type classification for Plasmodium or other 

objects. That is because a high PPV value means it has a low 

false-positive rate, so it is suitable as an ROI proposal scheme 

for classification. 

The testing results cannot be compared directly with [14] 

because this paper has a different evaluation scheme and 

different images size due to the resizing, but it can be said that 

the U-Net may be able to surpass the sensitivity and F1 values 

of [14]. 

4. Conclusion 

U-Net can accurately perform Plasmodium segmentation on 

thin blood smear images, besides this study also compares the 

three different loss functions to train the network, namely 

mean-squared error, binary cross-entropy, and Huber loss. The 

results show that Huber loss has the best overall testing metrics: 

0.9297, 0.9715, 0.8957, 0.9096 for F1, PPV, Sensitivity, and 

RSA, respectively. There are several suggestions for further 

research, which are doing further preprocessing such as 

different colorspace, doing contrast stretching, noise filtering, 

or combining the results of U-Net segmentation with 

morphology operators so that segmentation results are more 

accurate than just using the raw output from U-Net. This study 

has also tried to implement other loss functions such as Dice 

loss [22], Jaccard distance [23], focal loss [24], and 

Wasserstein distance [25] but U-Net trained using those loss 

functions cannot successfully learn Plasmodium segmentation 

on the thin blood smear images, as the loss keeps decreasing, 

but the metrics do not show any improvement due to the lack 

of datasets, so further study with more datasets for training 

should be considering to implement those loss functions. 
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