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Abstract 

This study presents a novel approach to predict surface roughness in the hard turning of AISI 4340 steel using carbide tools, aimed to develop a 
comprehensive predictive map. The hypothesis that surface roughness can be accurately predicted using a linear regression model was tested 
and confirmed. Experimental results showed surface roughness in the range of 1.946 to 5.636 microns. Statistical analysis revealed a normal 
distribution of surface roughness data with linear regression as the best-fit model, significantly determined by feed rate and explaining 98.41% 
of the variance. Machine learning validated this model, achieving high prediction accuracy (R² = 96.91%, MSE = 0.058, RMSE = 0.242). The 
innovative predictive map, created using a full factorial design, demonstrated a strong agreement between predicted and validated values. This 
work highlights the potential of integrating statistical and machine learning techniques for precise surface roughness prediction, recommending 
industrial validation to enhance machining productivity. 
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1. Introduction  

The study deals with an effort to predict the surface 

roughness of machined surface in the hard turning of AISI 4340 

steels using carbide cutting tools. The prediction of surface 

roughness is beneficial to support our industrial partners whose 

business is to produce machine components made of hardened 

steels for agricultural machinery. Providing and supporting the 

related industry by this kind of information and/or technology 

would bring an impact on higher production capacity, thus 

becoming potential to obtain high revenue [1]. 

Experimental study is the most rational way to fulfill the 

objective of study. In engineering study, experiment can be 

arranged in design of experiment (DoE) such as factorial, 

response surface [2], and Taguchi [3]. It is well-known that 

experiment can be costly and time consuming when much data 

is required. As the objective in this study is a map of surface 

roughness, then the wide range and large number of data are 

needed. Therefore, the objective could not be fulfilled only via 

experimental study. In this case, prediction technique sounds 

promising as a way out. 

Today, the main issue related to prediction is solved through 

the utilization of machine learning technique. Prediction is a 

key aspect of machine learning where algorithms use historical 

data to identify patterns and make informed forecast about 

future outcomes. Machine learning models, through training on 

data, can predict trends, behaviors, or values contributing to 

decision-making processes [4–6]. In this study, the training 

data were collected through the experiment on turning of 

hardened AISI 4340 with the hardness number of 50 HRc. The 

experiment was carried out by DoE response surface method in 

which surface roughness was studied as the response 

parameter. 

As the subset of artificial intelligence technique, machine 

learning has been applied not only in engineering process 

research [7,8] but also in life aspects [9,10]. Machine learning 

excels in condition monitoring and predictive maintenance 

studies. Of many characteristics and/or aspects studied, surface 

roughness turns out to be the most concerned parameter [11]. 

Concerned in machine learning but focused on the combination 

of traditional approach and artificial intelligent [12], this study 

explored the impact of cutting parameters on surface roughness 

in the turning of Al 7075 hard ceramic and hybrid composites 

using a PCD tool. The application of response surface 

methodology (RSM) and artificial neural network (ANN) 

validated and predicted system behavior. Moreover in [13], 

experimental investigation in the hard turning of Duplex 2205 

considered cutting speed, feed rate, cutting depth, and nose 

radius. A second-order mathematical model was created with 
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RSM. ANN models, trained and tested, suggested the least 

predicted surface roughness.  

Similar to [13] but enriched with optimization technique, 

Genetic Algorithm (GA) was reported in [14,15]. In [14], the 

study investigated minimizing surface roughness in AISI 4340 

alloy steel components on a CNC machine using parameters 

such as feed rate, rotational speed, and depth of cut. The study 

incorporated the ANN approach to enhance regression 

coefficients (R2) for the GA. Confirmation tests revealed that 

GA and RSM were good in predicting surface roughness 

values. In [15], the study optimized turning process parameters 

through support vector regression (SVR), ANN, and GA 

integration. The study demonstrated artificial intelligence's 

superiority in training data for better predictions besides 

emphasized multi-objective optimization for tool wear and 

surface roughness. The combination technique among machine 

learning SVR algorithm, ANN, and GA offered significant 

industrial applications. 

Furthermore, machine learning with Bayesian linear 

regression was implemented in studying the surface roughness 

in milling process of 6061 aluminum alloy.  It was reported that 

linear regression showed a good predictive performance 

[16,17]; the authors stated that, as a novel approach in 

predicting the surface roughness, machine learning in addition 

to be helpful, useful, and time efficient, was a suitable tool for 

making prediction, reducing the wastage of material and 

minimizing energy usage.  

Bearing the above in mind, this study introduces a novel 

methodology combining statistical analysis and machine 

learning to develop a predictive map of surface roughness in 

the hard turning of AISI 4340 steel using carbide tools. The 

novelty of this research lies in the integration of linear 

regression models and machine learning techniques to 

accurately predict surface roughness outcomes under varied 

cutting conditions.  

2. Materials and Methods 

Hardened AISI 4340 steels with the hardness number of 50 

HRc, cylindrical in geometry with the diameter of 80 mm and 

length of 250 mm was the work piece material in this study. 

During the hard turning experiment, the work piece was rigidly 

mounted in the spindle and supported by the tailstock of a CNC 

lathe machine model CKA6136. The carbide cutting tool coded 

DCMT11T304-F2 TP40 was used as the cutting tool for hard 

turning of the work piece.  

Surface roughness in Ra parameter was the response 

variable in this study. The measurement of surface roughness 

value was carried out by using stylus profilometer equipment 

Mitutoyo Surftest SJ-210. 

The cutting condition for hard turning experiment was 

received from our industrial partner as shown in Table 1. The 

cutting condition was then applied in the DoE Box-Behnken 

design with surface roughness (Ra) as the response variable. 

The measurement of Ra was taken 5 times/pass and observed 

until the cutting tool reached the flank wear at VB of about 200 

microns. Finally, the measurement from the last pass was then 

averaged. 

The data collected from the experiment were then 

statistically analyzed and the experimentation data were taken 

as the training set data for the development of machine learning 

model. As the behavior of experimentation data could be 

categorized under supervised learning, the linear regression 

algorithm was utilized for the model development. 

Table 1. Cutting conditions for hard turning experiment 

Factor Unit Low High 

v Cutting speed m/min 90 120 

f Feed mm/rev 0.10 0.20 

a Depth of cut mm 0.25 0.50 

The application of machine learning linear regression 

technique in this study has been done by Python code line 

program. The algorithm of linear regression technique and the 

overview of the program are presented in Table 2 and Fig. 1, 

respectively. Furthermore, the Python code line program was 

developed by the support of scikit-learn library [4,5,18]. As 

shown in Fig. 1, there were 2 (two) data sets used as the input, 

namely training data sets and testing data sets. Training data 

was the Box-Behnken design with the result of data collected 

from hard turning experiment. Testing data was designed by 

full factorial with 7 (seven) levels to provide much more 

combinations of cutting condition than the training data. The 

testing data sets was aimed for the prediction map of surface 

roughness as the objective of study. 

Table 2. Linear Regression algorithm 

Initializing the 

parameters 

It started with random values for the initial 

values of the predictors’ coefficients 

Defining the linear equation 

Computing the 

predictions 

It used the current values of coefficients to 

make predictions on the training data sets 

Calculating the loss 

It defined a loss function to quantify the 

difference between the predicted values and 

the actual (experiment) values and 

calculated mean squared error (MSE) 

and/or root mean squared error (RMSE) 

Gradient descent 

It updated the coefficients to minimize the 

loss and used gradient descents 

optimization algorithm 

Repeating 

Steps 3 to 5 were repeated until the 

algorithm converged to a set of coefficients 

that minimized the loss 

 

 

Fig. 1. The overview of the Python program 
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3. Results and Discussion 

3.1. Hard turning experiment 

The results of hard turning experiment with DoE Box-

Behnken design are presented in Table 3. It can be seen that the 

values of surface roughness were varied from 1.946 microns 

(Run 9) to 5.636 microns (Run 4). The values, from the lowest 

to the highest, indicated that the range of surface roughness 

resulted from hard turning experiment was in the range of  

roughness grade number N7 to N9 [19]. 

From the aspect of tool wear, those 15 cutting tools used for 

the testing experienced flank wear. The worn area was 

observed mainly at the vicinity or the tool nose region of the 

cutting tool. Fig. 2 and Fig. 3 show the evidence of the worn 

cutting tools used for Runs 4 and 9. The worn area at the tool 

nose radius was due to the cutting condition where feed (f) and 

depth of cut (a) were less and/or about equal to the tool nose 

radius (0.4 mm) of the cutting tool. 

Table 3. The results of turning experiment 

Run 
v f a Ra 

m/min mm/rev mm microns 

1 90 0.10 0.375 2.193 

2 120 0.10 0.375 2.674 

3 90 0.20 0.375 4.986 

4 120 0.20 0.375 5.636 

5 90 0.15 0.250 3.212 

6 120 0.15 0.250 3.532 

7 90 0.15 0.500 3.917 

8 120 0.15 0.500 4.437 

9 105 0.10 0.250 1.946 

10 105 0.20 0.250 4.848 

11 105 0.10 0.500 2.401 

12 105 0.20 0.500 5.323 

13 105 0.15 0.375 3.930 

14 105 0.15 0.375 3.920 

15 105 0.15 0.375 3.580 

 

 

Fig. 2. Flank wear at the tool nose region after turning at v 120 m/min, f 0.20 

mm/rev, and a 0.375 mm (Run 4) 

 

 

Fig. 3. Flank wear at the tool nose region after turning at v 105 m/min, f 0.10 

mm/rev, and a 0.250 mm (Run 9) 

The success of carbide in turning of hardened AISI 4340 

steels in this study is similar with the ones as reported in many 

previous researchers. Carbide cutting tool had been reported 

suitable for cutting of hardened steels up to 58 HRc [20]. In line 

with the result, other researchers also reported the performance 

of carbide, both uncoated and coated, in cutting of hardened 

steel [21–28]. 

3.2. Statistical analysis 

The distribution of data resulted from the experiment was 

firstly checked by assessing the goodness-of-fit. Minitab 

application was utilized for this purpose. As shown in Fig. 4 the 

probability plot of Ra data from Table 3 was plotted with 95% 

of confidential interval. 

 

Fig. 4. Probability plot of surface roughness (Ra) 

 

The plot showed that the Ra data were scattered along the 

diagonal line and inside the corridor. It indicated that the 

distribution of data was good and followed the normal 

distribution. The information in the plot’s legend also explained 

the goodness-of-fit of the data where the Anderson-Darling 

(AD) test 0.206 (the lower the better) suggested a better fit. 

Moreover, the high P-value of 0.840 (closer to 1), meaning that 

there was not enough evidence to reject the hypothesis that the 

data came from a normal distribution. According to the fact of 

probability plot, it can be concluded that the Ra data resulted 

by the experimentation is feasible for model development. 
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Bearing the result from the latter paragraph, the analysis of 

model was continued by response surface regression. Minitab 

application was also utilized for this analysis. Fig. 5 shows the 

surface plot of Ra data. The topography of surface plot was 

wavy but relatively flat and downhill from higher to lower 

values of feed (f). There was no tendency to form parabolic 

surface (quadratic model). Based on the facts, it seems that 

linear model is the best fit model to represent the data. 

In fact, the response surface regression analysis showed that 

linear regression model was the best fit model to represent the 

data. The result of ANOVA under surface regression showed 

that linear model was suggested with the coefficient of 

determination of 98.41%. In case of input parameters, feed (f) 

was affected at most with a significant contribution of 91.37% 

to the response parameter Ra. Feed rate as a significant 

parameter to surface roughness, meanwhile, was in line with 

the results as reported in [12].  

 

Fig. 5. The topography of surface plot (Ra vs. v and f) as linear model 

3.3. Machine learning and prediction 

The data resulted from the experiment activity in Table 3 

was used as the training data sets for the Python program and 

as the output, linear regression model resulted with coefficient 

of determination (R2) 96.91%, mean squared error (MSE) 

0.058, and root mean squared error (RMSE) 0.242. The value 

of R2 (closer to 1) indicated that the model was best fit, and it 

was also supported by the smaller values of MSE and RMSE. 

They indicated the reliability of the linear regression model in 

accurately predicting Ra values. 

The visualization of Ra data (Table 3) between experiment 

and predicted Ra is plotted in Fig. 6. Those 15 runs of Box-

Behnken design were used as testing data sets to obtain their 

predicted Ra values. From the plot, the Ra values resulted by 

experiment and linear regression model showed a good 

agreement one to another. This agreement indicated that linear 

regression model was successfully used for predicting Ra 

values for hard turning process of AISI 4340 in this study. The 

similar result to this study was also reported by the previous 

researchers [17] for turning of AISI 304. 

For achieving the objective of study, the cutting conditions 

as given in Table 1 were extended up to 7 levels (Table 4). The 

DoE full factorial was then applied for the cutting conditions as 

shown in Table 4, and 343 combinations of cutting condition 

were available. Those combinations would be the testing data 

sets for creating the Map of Surface Roughness (Ra) Prediction. 

The testing data sets were input into the linear regression 

model. As a results, the prediction values of Ra for all 343 

combinations of cutting conditions were calculated by the 

Python program. All 343 data of predicted Ra were then 

plotted, and the Map of Surface Roughness (Ra) Prediction was 

done as seen in Fig. 7 and the values are detailed in Table 5. 

However, due to the limitation space of manuscript, not all of 

data can be shown in Table 5. 

 

Fig. 6. Ra values: experiment vs. prediction 

Table 4. Cutting conditions for the Map of Ra prediction 

Factor Levels 

1 2 3 4 5 6 7 

v 90 95 100 105 110 115 120 

f 0.10 0.12 0.14 0.15 0.16 0.18 0.20 

a 0.25 0.30 0.35 0.375 0.40 0.45 0.50 

 

Fig. 7 presents the plot of surface roughness (Ra) based on 

the result of prediction carried out randomly among all 343 

cutting conditions resulted by 7 levels DoE full factorial design 

as per Table 4. From the plot, as earlier mentioned, the varieties 

of surface roughness (Ra) values were in the range of N7 to N9 

roughness grade numbers or associated with Ra values between 

1.6 to 6.3 microns [19]. In fact, it was the range of surface 

roughness that averagely achieved in turning operation [29]. 

 

Fig. 7. The Map of surface roughness (Ra) prediction 
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Unlike the predicted Ra randomly plotted in Fig. 7, the 

predicted Ra in Table 5 had been sorted and presented 

continuously from the smallest to largest values of Ra. Rather 

than listing all 343 cutting conditions and associated Ra values, 

there were 8 (eight) cutting conditions associated with the 

predicted Ra values presented in the table (due to limitation of 

the manuscript). All 8 (eight) predicted Ra values in Table 5 

had also been validated by re-hard turning experiment and the 

results were found quite accurate as shown under column 

validated (last column). In general, the validation showed 

agreement to the predicted Ra and vice versa. Although it is 

early to generalize that all validations would show the similar 

agreement, but based on the loss calculation that the linear 

regression model (R2 = 96.91%, MSE = 0.058, and RMSE = 

0.242); it may be safe to conclude that the validation would 

never run far away from the predicted Ra. Yet, 

recommendation to our industrial partner is still to do validation 

whenever taking the cutting condition of invalidated predicted 

Ra for production line. Continuous validation would give 

benefit to productivity. 

Table 5. Detail values of the Map of surface roughness prediction 

No Grade 
Cutting Condition Ra (microns) 

v 

(m/min) 

f 

(mm/re) 

a 

(mm) 

Predicted Validated 

1 

N7 

Finish 

90 0.1 0.25 1.637 1.697 

2 95 0.1 0.25 2.250 2.340 

3 90 0.1 0.3 2.862 2.782 

… … … … … … 

100 100 0.14 0.375 3.182 3.292 

101 

N8 

Semi 

finish 

90 0.14 0.375 3.206 3.336 

… … … … … … 

341 120 0.2 0.45 5.797 4.899 

342 115 0.2 0.5 5.843 5.182 

343 120 0.2 0.5 5.934 5.764 

4. Conclusion 

The study on hard turning of AISI 4340 steel with the 

hardness number of 50 HRc using carbide tools revealed 

surface roughness (Ra) ranging from 1.946 to 5.636 microns, 

corresponding to N7 to N9 roughness grades. The surface 

roughness data followed a normal distribution, and linear 

regression emerged as the best-fit model, significantly 

determined by feed rate. Machine learning further validated the 

linear regression model, achieving high prediction accuracy 

with predictions matching typical turning operations' surface 

roughness values. A predictive map of surface roughness was 

successfully created and showing a strong agreement between 

predicted and validated values. The study highlights the 

potential and effectiveness of machine learning linear 

regression technique in predicting surface roughness values in 

hard turning processes. The predictive map of surface 

roughness is beneficial to support industry whose business is in 

producing machine components made of hardened steels. 

Acknowledgements 

Part of this study received a financial support under the 

international research collaboration scheme from Universitas 

Sumatera Utara with grant No. 4167/UN5.1.R/PPM. Thanks  

all students and laboratory members for a good cooperation and 

for creating a nice teaching learning environment. 

References 

1. B. Wibowo, N.A. Masrurah, Y.U. Kasanah, F. Trapsilawati, Subagyo, 

and M.A. Ilhami, towards a taxonomy of micro and small manufacturing 

enterprises, Commun. Sci. Technol. 4 (2019) 74–80.  

2. D.C. Montgomery, Design and Analysis of Experiments, 10th Ed., Wiley, 

2019. 

3. T. Mori, and S.-C. Tsai, Taguchi Methods, ASME, 2011. 

4. A.C. Müller, and S. Guido, Introduction to Machine Learning with 

Python and Scikit-Learn, O’Reilly, 2016. 

5. A.C. Müller and S. Guido, Introduction to Machine Learning with Python 

A Guide for Data Scientists, O’Reilly, 2016. 

6. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical 

Learning, 2nd. Ed., Springer, 2009. 

7. M. Soori, B. Arezoo, and R. Dastres, Machine learning and artificial 

intelligence in CNC machine tools, A review, Sustain. Manuf. Serv. Econ. 

2 (2023) 100009. 

8. P. Srikanth, P.S. Teja, B.L. Prasad, and V.P. Kalyan, A comprehensive 

review of machine learning techniques in computer numerical controlled 

machines, Int. J. Sci. Res. Arch. 9 (2023) 627-637. 

9. T.G. Pratama, R. Hartanto, and N.A. Setiawan, Machine learning 

algorithm for improving performance on 3 AQ-screening classification, 

Commun. Sci. Technol. 4 (2019) 44–49. 

10. M.A. Putra, N.A. Setiawan, and S. Wibirama, Wart treatment method 

selection using AdaBoost with random forests as a weak learner, 

Commun. Sci. Technol. 3 (2018) 52–56.  

11. K. Ullrich, et al., AI-based optimisation of total machining performance: 

A review, CIRP J. Manuf. Sci. Technol. 50 (2024) 40–54. 

12. R. Kumar, and S. Chauhan, Study on surface roughness measurement for 

turning of Al 7075/10/SiCp and Al 7075 hybrid composites by using 

response surface methodology (RSM) and artificial neural networking 

(ANN), Meas. 65 (2015) 166–180. 

13. M. Gopal, Prediction of surface roughness in turning of duplex stainless 

steel (DSS) using response surface methodology (RSM) and artificial 

neural network (ANN), Mater. Today. Proc. 47 (2021) 6704–6711. 

14. A.J. Santhosh, et al., Optimization of CNC turning parameters using face 

centred CCD approach in RSM and ANN-genetic algorithm for AISI 4340 

alloy steel, Res. Eng. 11 (2021) 100251. 

15. A.K. Gupta, S.C. Guntuku, R.K. Desu, and A. Balu, Optimisation of 

turning parameters by integrating genetic algorithm with support vector 

regression and artificial neural networks, Int. J. Adv. Manuf. Technol. 

77 (2015) 331-339. 

16. D. Kong, J. Zhu, C. Duan, L. Lu, and D. Chen, Bayesian linear regression 

for surface roughness prediction, Mech. Syst. Signal Process. 142 (2020) 

106770. 

17. V. Dubey, A.K. Sharma, and D.Y. Pimenov, Prediction of Surface 

Roughness Using Machine Learning Approach in MQL Turning of AISI 

304 Steel by Varying Nanoparticle Size in the Cutting Fluid, Lubricants 

10 (2022) 81.  

18. A. Zollanvari, Machine Learning with Python: Theory and 

Implementation, Springer, 2023. 

19. ISO Standard, Geometrical Product Specifications (GPS) - Indication of 

surface texture in technical product documentation, ISO 1302 (2002). 

20. W. Koenig, R. Komanduri, H.K. Toenshoff, and G. Ackershott, 



184 Ginting & Masyithah / Communications in Science and Technology 9(1) (2024) 179–184  

Machining of hard materials, CIRP Annals, 33 (1984) 417-427. 

21. R. Suresh, S. Basavarajappa, V.N. Gaitonde, G.L. Samuel, and J.P. 

Davim, State-of-the-art research in machinability of hardened steels, 

Proc. Inst. Mech. Eng. B J. Eng. Manuf. 227 (2013) 191-209. 

22. W.F. Sales, J. Schoop, L.R.R. da Silva, Á.R. Machado, and I.S. Jawahir, 

A review of surface integrity in machining of hardened steels, J. Manuf. 

Process. 58 (2020) 136-162. 

23. S. Chinchanikar, and S.K. Choudhury, Machining of hardened steel - 

Experimental investigations, performance modeling and cooling 

techniques: A review, Int. J. Mach. Tools Manuf. 89 (2015) 95-109. 

24. A. Sharma, M. Kalsia, A.S. Uppal, A. Babbar, and V. Dhawan, 

Machining of hard and brittle materials: A comprehensive review, Mater. 

Today. Proc. 50 (2021) 1048-1052. 

25. R. Bag, A. Panda, A.K. Sahoo, and R. Kumar, Sustainable high-speed 

hard machining of AISI 4340 steel under dry environment, Arab J. Sci. 

Eng. 48 (2023) 3073-3096. 

26. R. Suresh, S. Basavarajappa, and G.L. Samuel, Some studies on hard 

turning of AISI 4340 steel using multilayer coated carbide tool, Meas. 45 

(2012) 1872-1884. 

27. A. Ginting, C.H.C. Haron, I. Bencheikh, and M. Nouari, Study on 

characteristics of AlTiN and TiCN coating layers deposited on carbide 

cutting tools in hard turning of steel: Experimental, simulation and 

optimisation, Int. J. Mach. Machina. Mater. 23 (2021) 88-112. 

28. A. Ginting, M. Nouari, and I. Bencheikh, Increasing productivity in hard 

turning of steels using CVD-coated carbide, Int. J. Mach. Machina. 

Mater. 22 (2020) 309-330. 

29. S. Kalpakjian, S.R. Schmid, and K.S. Vijay Sekar, Manufacturing 

Engineering & Technology, 7th Ed., Pearson, 2021.

 

  


