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Abstract

Accurate prediction of pressure drops in multi-phase flow systems is essential for optimizing processes in industries such as oil and gas, where
operational efficiency and safety depend on reliable modeling. Traditional models often need help with the complexities of multi-phase flow
dynamics, resulting in high relative errors, particularly under varying flow regimes. In this study, we simulate a comprehensive multiphase flow
experimental data collected from the lab. This study presents innovative methods for accurately modeling pressure drops in multi-phase flow
systems. It also studies the complicated dynamics of multi-phase flows, which are flows with more than one phase at the same time. It does this by
using two different data-driven models, nonlinear ARX and Hammerstein-Wiener, instead of neural networks (NNs), so that the models don’t get
too good at fitting environments with lots of changes and little data. Our research applies system identification approaches to the intricacies of this
domain, providing new insights into choosing the best appropriate modeling strategy for multi-phase flow systems, taking into account their
distinct properties. The experimental results show that the nonlinear Hammerstein-Wiener and ARX models were much better than other methods,
with fitting accuracy rates of 81.12% for the Hammerstein-Wiener model and 86.52% for the ARX model. This study helps the creation of more
advanced control algorithms by providing a reliable way to guess when the pressure drops and showing how to choose a model that fits the
properties of the multi-phase flow. These findings contribute to enhanced pressure management and optimization strategies, setting a foundation
for future studies on real-time flow control and broader industrial applications.

Keywords: Data driven; multi-phase modeling; pressure drop; neural network; nonlinear autoregressive exogenous; Hammerstein
model

1. Introduction

The dynamics of multi-phase systems are more complex than
those of single-phase systems because of the differences in phase
distribution, resulting in unique flow patterns or regimes [1].
Several variables influence the flow patterns and pressure drops
that occur at specific points in the pipe. Those variables include
turbulence, surface tension forces, inertia, pipe diameter, and
volume fluxes. The flow pattern maps and equations exhibit
insufficient accuracy, with a high relative error ranging from 20 to
30 percent [2]. This underscores the necessity for an accurate and
reliable method to identify the flow patterns and pressure drop.
Researchers widely use correlations from laboratory experiments,
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particularly [3], [4], [5], and others. Numerous studies have
examined the issues with these multi-phase flow correlations,
concluding that they are only effective within a specific range of
input parameters.

The process dynamics, system response, and system stabil-
ity, including the step response and poles and zeros, have been
analyzed using a data experiment [6]. Additionally, [7] used
system identification derived from data collected in an Excel
spreadsheet to characterize the dynamic behavior of a system.
This model was created using a number of approaches, such as
OKID-based identification [8,9], Hammerstein-Wiener [10], and
ARX identification [11].

The review of the literature reveals the utilization of machine
learning (ML) algorithms in predicting pressure gradients and
directly estimating pressure outputs. Al-Naser et al. [12] came
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up with a new way to predict flow patterns in horizontal pipes.
It used artificial neural networks (ANNs) and three dimension-
less parameters: the liquid Reynolds number, the gas Reynolds
number, and the pressure drop multiplier. These parameters
made the model more practical for a wider range of situations.
They also employed a preprocessing phase that involved natural
logarithmic normalization of a large dataset, resulting in signifi-
cant improvements in the accuracy of the predictions. A study
by Najafi [13] created a way to use machine learning to make
better predictions about frictional pressure drop for both single-
phase (water) and two-phase (water-air) flows in micro-finned
tubes. This method was much more accurate than traditional
physical models. In a different study, Al-dogail [14] created
dimensionless machine learning models to predict the drop in
pressure in multi-phase flow through horizontal pipes. A wider
range of design and operation situations can utilize these more
accurate models. By incorporating key fluid properties—such as
density, viscosity, and surface tension—the models achieve high
prediction accuracy with minimal inputs.

Artificial neural networks (ANN) are widely used to estimate
pressure drops. As shown in [15], ANN was used to estimate
the pressure drop of the oil-water-air mix moving through both
horizontal and vertical tubes. This technique was used to forecast
the pressure reduction in R407C flow during evaporation within
horizontal smooth tubes [16]. It has been used recently to figure
out the pressure drop in CuO/(ethylene glycol-water) nanofluid
flows in car radiators [17] and in non-azeotropic mixes going
through cryogenic forced boiling [18]. ANN and reinforcement
learning (RL) were also used together to manage the nonlinear
dynamics of a multi-phase system dynamics model based on
experimental data [19].

In a separate study, Shanthi and Pappa aimed to improve
the precision of identifying flow patterns in two phases using
artificial intelligence techniques that rely on the characteristics
extracted from images of the flowing material. They employed
fuzzy logic and support vector machines (SVMs) with principal
component analysis (PCA) to accomplish this goal [20]. In their
study, Xiao et al. [21] created an AI system that uses fuzzy logic,
support vector machines, and principal component analysis to
predict how gases and liquid nanofluids will flow in vertical
mini-channels. In [22], the research employed both experimental
observation and a two-dimensional numerical model to show that
effective management of the water table can achieve targeted soil
moisture distribution, soil pressure, and flux.

Although machine learning techniques, such as artificial neu-
ral networks (ANNs), have shown promise in addressing these
challenges, they often need more generalization across vary-
ing flow regimes, limiting their real-world applicability. To
overcome these limitations, this study introduces a hybrid data-
driven approach that leverages nonlinear ARX and Hammerstein-
Wiener models, offering enhanced adaptability and precision
for pressure drop predictions in multi-phase flow systems. This
approach accurately captures complex system dynamics and pro-
vides a robust foundation for advanced control and optimization
strategies. This work represents an initial endeavor to apply
these data-driven techniques specifically for pressure predic-
tion in multi-phase systems, emphasizing the urgency for more
precise and adaptable models in industrial applications. The
contributions of this study are as follows:

• We conducted a comprehensive experiment to collect multi-
phase flow data in a laboratory environment. We then use
several data-driven techniques to predict the pressure level
in multi-phase flow systems.

• We utilized neural networks, nonlinear Hammerstein-
Wiener, and nonlinear ARX models to determine the most
effective model for predicting the pressure level based on
the experimental data.

• This study shows new ways to model how pressure drops in
multi-phase flow systems accurately.

2. Materials and Methods

In the context of multi-phase flow dynamics, both the flow
pattern and the associated pressure gradient exhibit significant
variability along the pipeline’s length, necessitating its segmenta-
tion into discrete sections for analytical precision [23]. Within
each segment, the flow regime remains uniform and is character-
ized by a relatively stable pressure gradient. Utilizing numerical
methodologies, the pressure gradient in each segment is sys-
tematically computed by applying established multi-phase flow
correlations and mechanistic modeling frameworks.

As detailed in [1], an experimental apparatus comprising a
horizontal flow loop with a diameter of 0.0254 m (1 inch) and
a total length of 9.15 m (30 ft) was employed to examine flow
regime transitions and pressure drop behavior. This flow loop
features a steel reservoir, a PVC pipe segment measuring 0.0254
m (1 inch) in diameter and 8 m (27 ft) in length, complemented
by a 1 m (3 ft) section of plexiglass pipe. The system is fur-
ther equipped with a centrifugal pump integrated with a variable
speed drive (VSD), an air compressor paired with a dryer, dual
liquid flow meters, dual gas flow meters, two pressure gauges, a
differential pressure gauge, and a high-resolution imaging sys-
tem, as schematically illustrated in Fig. 1.

Surface tension was systematically modified by introducing a
surfactant into the water phase, while density was adjusted using
calcium bromide, and viscosity was tailored through the addition
of glycerin. The experimental conditions encompassed a range
of superficial gas velocities spanning from 0 to 18.288 m/s (0–60
ft/s) and superficial liquid velocities varying from 0 to 3.048 m/s
(0–10 ft/s). To evaluate the hysteresis effect, the gas velocity was
incrementally increased from its minimum to maximum values,
followed by a decremental reversal from maximum to minimum,
with the liquid flow rate held constant throughout the tests.

At each stage of the experiment, steady-state conditions were
ascertained based on the stabilization of pressure responses and
flow rates. Data acquisition was conducted with meticulous
attention to ensure sufficient data points for robust analysis. To
enhance the understanding of the integration and functionality
of sensors and actuators within this investigation, as well as to
facilitate precise fluid dynamic measurements, the configuration
of the experimental apparatus is illustrated in Fig. 1.

3. Results and Discussions

Capturing the intricate dynamics of complex systems neces-
sitates a comprehensive approach that transcends superficial
methodologies. This section underscores the critical importance
of accurate modeling in control system design, advocating for a
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Fig. 1. Schematic of the experimental setup.

Table 1. Pipe Specification

Parameter Value Sample Code

Number of samples 1042 N.A.
Pipe diameter (inch) 1.00 Dinch
Pipe diameter (meter) 0.0254 Dmeter
Pipe Length (ft) 30 Linch
Pipe Length (meter) 9.15 Lmeter

departure from traditional linear paradigms to address the inher-
ent nonlinear complexities characteristic of real-world processes.
A significant subset of chemical and industrial processes exhibits
pronounced nonlinearity, necessitating the development of ro-
bust mathematical models for simulation and control purposes.
Such models serve as formalized frameworks that delineate the
intrinsic relationships between a system’s inputs and its outputs.

The construction of process models can be pursued through
two principal methodologies. Physical modeling involves the
derivation of process models grounded in fundamental princi-
ples, encompassing the laws of physics, chemistry, and biology
[24]. In contrast, process identification employs empirical data
obtained through experimental testing to construct dynamic pro-
cess models. Commonly referred to as black-box modeling, this
approach eschews explicit reliance on physical principles, favor-
ing data-driven methodologies. Compared to physical modeling,
process identification offers several notable advantages:

• Cost-efficiency in model development: By leveraging em-
pirical data, process identification avoids the labor-intensive
requirements of deriving models from first principles, mak-
ing it a practical and economical option across diverse ap-
plications.

• High precision within specific operational ranges: Identified
models exhibit exceptional accuracy within the operational
conditions tested, ensuring precise control and predictive
capabilities in defined scenarios.

Table 2. Experimental Parameters

Parameter Value Sample Code

Gas superficial velocity (m/s)
-Min 0 vg
-Max 18.288

Liquid superficial velocity (m/s)
-Min 0 vl
-Max 3.048

Liquid flow rate Liters/min
-Min 0 Ql
-Max 96.5

Liquid Surface Tension (mN/m)
-Min 32.4 σ

- Max 70.5
Liquid density (kg/m3)

- Min 998.15058 ρ

- Max 1506.788153
Liquid viscosity (Pa.s) (x10−3)

- Min 1.000 µ

- Max 3.10035936

• Improved reliability for pressure drop predictions in multi-
phase systems: This research emphasizes enhancing the pre-
cision and reliability of pressure drop forecasts in industrial
flow applications, supporting the design and optimization
of systems critical to operational efficiency.

• Structural simplicity: Identified models are often less com-
plex and easier to implement compared to physically de-
rived counterparts, while still capturing essential system dy-
namics effectively. However, a notable limitation of process
identification lies in its applicability: the derived models are
valid only within the tested operational range, potentially
restricting their generalizability.

System identification is a pivotal scientific methodology em-
ployed to analyze and quantify data from a system, facilitating
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the construction of mathematical models that accurately repre-
sent system behavior. This approach enables researchers and
engineers to uncover the underlying physical and mathemati-
cal principles governing complex systems, empowering them
to make informed predictions and enhance system performance.
System identification finds extensive application across domains
such as control engineering, signal processing, and robotics,
serving as a cornerstone for advancing scientific research and
technological innovation.

Despite its strengths, many conventional identification meth-
ods assume that input data are devoid of noise, which is often not
the case in practical scenarios. Measurement noise, particularly
when present in both input and output data, can compromise
the validity of parameter estimates for identified models. This
limitation is addressed by the errors-in-variables (EIV) model,
which accounts for noise in both input and output variables [25],
thus offering a more robust framework for reliable parameter
estimation in noisy environments.

3.1. Neural Network-Based Model

In recent years, the adoption of neural networks across a di-
verse array of disciplines has expanded at an unprecedented rate,
with model identification emerging as a domain of significant
advancement. Conventional model identification techniques of-
ten depend on mathematical frameworks and assumptions that
may inadequately represent the intricate behaviors of real-world
systems. Neural networks, by contrast, offer a compelling alterna-
tive due to their ability to learn and generalize complex patterns
directly from data. This section explores the development and
application of a neural network-based approach to model iden-
tification, presenting the outcomes of its implementation in a
practical context. Neural networks are particularly well-suited
for approximating nonlinear functions with exceptional accuracy,
as highlighted in [26]. The adjustment of neural network param-
eters enables the modeling of diverse nonlinearities, achieved
through the application of a gradient descent optimization algo-
rithm. This algorithm minimizes an error function that quantifies
the difference between the predicted outputs of the neural net-
work and the actual system outputs, given a set of input data or
input-output data pairs (training data) [26, 27].

3.1.1. Methodology

• Data Collection: to train the neural network for model iden-
tification, a dataset comprising input-output pairs from the
target system was collected. The dataset included five inputs
and single output as well as a diverse range of operating
conditions and disturbances to ensure the neural network’s
robustness.

• Neural Network Architecture A feedforward neural network
structure was selected due to its simplicity and efficiency
in capturing nonlinear connections. The architecture com-
prised an input layer, one or more hidden layers employing
rectified linear unit (ReLU) activation functions, and an
output layer. The determination of the number of neurons
in each layer and the network depth was achieved through
an iterative process of experimentation and optimization.

• Training Procedure: the neural network was trained using
a supervised learning approach. The dataset was randomly

split into training and validation sets to monitor the model’s
performance during training. The training process involved
minimizing a suitable loss function through backpropaga-
tion and gradient descent optimization.

• Results and Discussion: MATLAB is employed to con-
struct and train a feedforward neural network characterized
by a three-layer architecture, comprising 32, 64, and 128
neurons, respectively. Each layer utilizes the hyperbolic
tangent sigmoid transfer function to capture nonlinear re-
lationships effectively. The network is trained using the
scaled conjugate gradient descent algorithm (trainscg), with
the Levenberg-Marquardt algorithm (trainlm) available as
an alternative for enhanced optimization flexibility.

The dataset is systematically partitioned into training, vali-
dation, and testing subsets in proportions of 70%, 15%, and
15%, respectively, ensuring a balanced approach to model
evaluation and generalization. Critical training parame-
ters, including the number of epochs, minimum gradient
threshold, and maximum allowable validation failures, are
precisely defined to optimize the training process.

Upon completion of the training phase, the network is sub-
jected to evaluation using the input dataset, and its perfor-
mance is rigorously assessed. Additional functionalities,
such as visualization of the network architecture, saving the
trained model, and generating a corresponding Simulink
model, are incorporated within the script. These features
are included as commented-out sections, enabling users to
activate them as required, thus providing a versatile and
comprehensive framework for neural network development
and deployment in MATLAB.

Fig. 2. Neural network training performance.

The neural network-based model identification method offers
several advantages over traditional approaches. It can handle
complex, nonlinear relationships without relying on explicit
mathematical formulations, making it suitable for systems with
unknown or highly nonlinear dynamics. Additionally, the ability
of a neural network to learn from data enables the identifica-
tion of intricate patterns that may be challenging to capture
using conventional methods. Despite its advantages, the neural
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Fig. 3. Neural network training plot

Fig. 4. Neural network validation plot

network-based approach poses challenges such as the need for
substantial amounts of training data and the potential for overfit-
ting. Careful attention must be paid to the selection of network
architecture and hyperparameters to ensure robust performance
across various scenarios.

3.2. Nonlinear ARX Model

Nonlinear Auto-Regressive with Exogenous Inputs (ARX)
models extend the capabilities of their linear counterparts to
address the complexities of nonlinear systems. These models
leverage a variety of functional forms, such as wavelet transfor-
mations and sigmoid networks, to effectively capture intricate
nonlinear dynamics. Unlike conventional methods for nonlin-

Fig. 5. Neural network test plot

Fig. 6. Neural network all plot

ear system identification, which often rely on rigidly defined
model structures, nonlinear ARX models offer significant flex-
ibility by supporting a range of adaptable configurations. For
instance, these models can seamlessly integrate a hybrid frame-
work that combines linear and nonlinear memoryless dynamical
components, thereby enhancing their capacity to represent di-
verse system behaviors.

3.2.1. Nonlinear ARX Model Structure

A nonlinear (ARX) model is composed of model regressors and
an output function. The output function integrates one or more
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mapping objects, each associated with a model output. The
schematic depicted in Fig. 7 outlines the architecture of a non-
linear ARX model. Each mapping object may encompass both
linear and nonlinear functions, which act on the model regressors
to generate the model output along with a fixed offset. This struc-
ture exemplifies the configuration of a single-output nonlinear
ARX model within a simulation framework. This section intro-
duces a novel methodology for nonlinear system identification
utilizing operational data formatted within the ARX framework,
wherein the parameters exhibit nonlinear dependencies on both
input and output variables. Parameters for a given level of input
and output are inferred from corresponding datasets. By itera-
tively performing identification across various input and output
levels, the nonlinear dependencies of the parameters within the
specified range can be systematically determined. In cases where
the model order is unknown, a minimal realization of the locally
identified model is performed, and the parameters are expressed
as polynomial functions of the input and output variables, thereby
constructing the nonlinear ARX model. This approach proves
particularly advantageous for simplifying complex yet stable
nonlinear systems into concise nonlinear ARX representations,
which can subsequently be employed in the design of control sys-
tems [28]. This part outlines the proposed method for detecting

Fig. 7. Nonlinear ARX model structure.

a nonlinear ARX model where the parameters exhibit nonlinear
relationships with both the input and output [28]. The equation
representing the ARX model for the discrete-time linear system
is given as follows:

y[k]+a1y[k−1]+a2y[k−2]+ . . .+any[k−n] =

b1u[k−1]+b2u[k−2]+ . . .+bnu[k−n]+ c (1)

In the given equation, y[k] represents the output and u[k] rep-
resents the input at time k. The coefficients ai and bi (where
i= 1,2,3, . . . ,n) reflect the values assigned to the variables, while
n indicates the system’s order. The values of the parameters of
the model are determined by the output y[ j] and the input u[ j] at
time k, where j is equal to k−n,k−n+1,k−n+2, . . . ,k.

3.2.2. Dependency of ARX Parameters on Output

This subsection provides a comprehensive discussion of the iden-
tification technique for the nonlinear ARX model, with a specific
focus on the output aspect. In this particular instance, the process
of identifying the nonlinear system requires an iterative approach
to determine the parameters in the ARX model. This is done by
using input-output data from various output levels, as shown in
Fig. 8. The ARX model obtained corresponds to the localized

linear system centered around the selected output tier. The pa-
rameters assigned to different output tiers can be represented as
functions that depend on the output. The process of determining
the relevant local linear ARX model is illustrated in Fig. 8. The
parameters are determined through the least squares criterion,
defining the linear ARX model around yo as:

y[k1]+a1y[k1 −1]+ . . .+any[k1 −n] = b1u[k1 −1]
+ . . .+bnu[k1 −n]+ c

y[k2]+a1y[k2 −1]+ . . .+any[k2 −n] = b1u[k2 −1]
+ . . .+bnu[k2 −n]+ c (2)
y[k3]+a1y[k3 −1]+ . . .+any[k3 −n] = b1u[k3 −1]
+ . . .+bnu[k3 −n]+ c

Fig. 8. Identification around the designated output level [29]

As indicated in equation 3, the coefficients of the ARX model
are expressed as functions of the output yo

y[k]+a1(yo)y[k−1]+ . . .+an(yo)y[k−n] =

b1(yo)u[k−1]+ . . .+bn(yo)u[k−n]+ c(yo) (3)

To avoid using output data across multiple levels, the process
of identifying a local ARX model can be carried out by choosing
the output to stay within a specific range centred around a partic-
ular output level. The successful identification of the nonlinear
ARX model is achievable through iterative identification across
the defined output range and combining the obtained models.

3.2.3. ARX Model Parameters Variation with Input and Output

In the preceding section, we explored identifying ARX model
parameters associated with the output. This section presents
parameters influenced by the input variable (u) and the output
variable (y) through an iterative process. This involves detecting
local autoregressive exogenous (ARX) models where the input
and output values fall within a predetermined range. Establishing
an ARX model involves the methodical selection of various input
and output levels, with the parameters affected by both the input
and output variables being determined using equation 4.

y[k]+a1(u,y)y[k−1]+ . . .+an(u,y)y[k−n] =

b1(u,y)u[k−1]+ . . .+bn(u,y)u[k−n]+ c(u,y) (4)
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The synthesis of local ARX models recognized at various
stages of both input and output throughout the designated range
achieves the determination of the nonlinear ARX model.

3.2.4. Results of Nonlinear ARX Model Identification

Following the preprocessing of the data, the dataset is utilized
within MATLAB for system identification. This subsection
presents the results derived from various experimental setups
and discusses the effects of data loss and model fitting on the
estimation process, thereby validating the proposed algorithm.
Fig. 9 illustrates the results obtained using a nonlinear ARX
model with exogenous inputs (nonlinear ARX) applied to time-
domain data with a sampling interval of 1 second. The model
configuration includes one output variable and five input vari-
ables. The regressors are composed of both linear terms and
second-order polynomial terms, capturing the nonlinear depen-
dencies within the data. The output function employs a support
vector machine (SVM) with a Gaussian kernel to enhance the
model’s nonlinear approximation capability. The model achieved
a fit of 78.77% to the estimation data, with a corresponding mean
squared error (MSE) of 0.04504. These metrics highlight the effi-
cacy of the proposed approach and its robustness in handling the
complexities of system identification under the given constraints.

Fig. 10 was estimated using a Nonlinear ARX model of 5
inputs and one output on time domain data of sampling time
1 second. The regressors are linear regressors and polynomial
order two regressors. The output function is a sigmoid network
with 25 units. The fit to estimation data is 86.52%, and the mean
square error is 0.01816.

Fig. 9. Model estimation using NLARX model with support vector machine as
output function

3.3. Nonlinear Hammerstein-Wiener Model

N-L-N models, also referred to as nonlinear block-oriented
models, belong to a distinct category of models. These models
incorporate a Linear (L) subsystem that is situated between two
subsystems of static Nonlinearity (N) [30]. By incorporating
two nonlinear components instead of just one, the modeling
capabilities of H-W models are enhanced, particularly for nonlin-
ear systems that display both actuator and sensor nonlinearities
[31][32]. The recognition of H-W models has garnered signif-
icant interest in recent years, with multiple studies exploring

Fig. 10. Model estimation using NLARX model with the sigmoid network as
output function

various frameworks.

3.3.1. Nonlinear Hammerstein-Wiener Model Structure

The structure of the model is formulated by dividing the system
into blocks. These blocks consist of static nonlinear components
combined with dynamic linear terms to form the complete system.
The H-W model operates in discrete-time. Fig. 11 illustrates
the structural depiction of the H-W model. Specifically, if the
model integrates solely the input nonlinearity f , it is denoted
as a Hammerstein model (see Fig. 12). Likewise, if the model
encompasses nonlinearity h solely at the output, it is termed a
Wiener model.

Fig. 11. Hammerstein-Wiener model structure

Fig. 12. The Hammerstein model

3.3.2. Results of Nonlinear Hammerstein Model Identification

In the context of identifying a Hammerstein model using MAT-
LAB’s System Identification Toolbox, the static nonlinearity
component can be specified as five sigmoid networks (as the
number of the inputs) with 10 units each. This configuration
enables the model to capture intricate and non-linear connections
between the input and output signals. The Levenberg-Marquardt
(LM) searching method, a widely used optimization algorithm, is
employed in the identification process. The LM approach enables
the adjustment of the network’s parameters, leading to enhanced
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accuracy in approximating nonlinearities. The dynamic linear
part is estimated using a transfer function with 3 poles and 4
zeros. The specific architecture and the LM searching method
together enable a robust and efficient identification of the model.
The fitting to estimation is 66.9%, and the mean square error is
0.1116. The representation of the underlying system dynamics
is illustrated in the Fig. 13.

Fig. 13. Model estimation using nonlinear Hammerstein model with a sigmoid
network of 10 units and order four TF

Fig. 14. Model estimation using nonlinear Hammerstein model with sigmoid
network of 15 units and order 3TF

Repeating the same process and increasing the number of
units in the static function to 15 and reducing the order of the
linear dynamic function to 3, the fitting to estimation is increased
to 80.12%, and the mean square error is reduced to 0.03956. See
figure 14.

3.3.3. Identification of SISO Hammerstein Model

In this section, the methodology employed in the preceding anal-
ysis is applied to identify the Hammerstein model. This model
characterizes a discrete-time, single-input, single-output (SISO)
system that is linear and time-invariant. The system’s input is
defined as the ratio of liquid velocity to gas velocity, while the

output corresponds to the observed pressure drop, expressed in
psi.

The Hammerstein model consists of a sequential arrange-
ment of static and dynamic components. Nonlinearities in the
input are captured and transformed into an intermediate variable,
w(t), through the static input block, as formulated in Equation 6.
Once transformed, the unmeasured intermediate variable w(t) is
processed by a linear functional block characterized by the time-
invariant linear transfer function G(q), which is responsible for
converting the linearized input into the output, x(t), as detailed
in Equation 7 and described in [33]. A noise term, v(t), mod-
eled as a stationary, bounded stochastic signal, is incorporated as
expressed in Equation 9.

It is critical to emphasize that the nonlinearity in this frame-
work is confined to the input transformation; the model’s output
remains strictly linear. The degrees of the numerator and de-
nominator polynomials of the linear transfer function G(q) are
denoted by the parameters m and n, respectively. Furthermore,
the index α quantifies the extent of nonlinearity within the sys-
tem.

The nonlinear function, which is parameterized as a polyno-
mial, is formally expressed a:

f (u(t)) = β1u(t)+β2u2(t)+ · · ·+βmum(t) (5)

w(t) = f (α,u) (6)

x(t) =
B(q−1)

A(q−1)
w(t) (7)

G(q) =
B(q)
A(q)

=
b0 +b1q−1 + · · ·+bmqm

1+a1q−1 + · · ·+anq−n (8)

v(t) = H(q)e(t) =
1+ c1q−1 + · · ·+ cnq−l

1+d1q−1 + · · ·+dnq−l

=
C(q)
D(q)

e(t) (9)

Upon applying these equations to the (SISO) Hammerstein
model, the resulting structure is as follows:

y(t) =
B(q)
A(q)

m

∑
k=1

βkuk(t)+
C(q)
B(q)

e(t) (10)

where:

• l denotes the linear component order in the Hammerstein
model.

• q−1 is the delay operator symbolic representation and the
complex variable z−1.

• H(q) represents the linear filter transfer function.

• e(t) is a zero mean value and variance of λ 2 white noise
sequence.

• m signifies the polynomials order.
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• [β1,β2, . . . ,βm,a1,a2, . . . ,an,b0,b1, . . . ,bm,
c1,c2, . . . ,cl ,d1,d2, . . . ,dl ] are the parameters to be esti-
mated.

The process of identifying the Hammerstein model encompasses
of four steps:

1. Testing of the Design

To ensure the identifiability of the parameters, an identifica-
tion test needs to be formulated using appropriate excitation
signals. Ideally, the test should be tailored to yield an identi-
fied model well-suited for control applications. Let the data
that has been obtained as input/output be represented as:

{u(1),y(1),u(2),y(2), . . . ,u(N),y(N)}

where N denotes the sample number.

2. Estimating the Parameters Creating the model parameters
involves utilizing input/output data collected during testing,
accomplished through the minimization of the loss function:

VPE =
N

∑
t=1

ε
2(t) (11)

where

ε(t) = H−1(q)[y(t)−G(q) f (u(t))]

=
D(q)
C(q)

[y(t)− B(q)
A(q)

m

∑
k=1

βkuk(t)] (12)

3. Selecting the order: The values for l and m should be se-
lected to achieve the highest accuracy for control purposes
in the obtained model.

4. Validating of the model: The identified model undergoes
verification to assess its suitability for control; if not deemed
suitable, another identification test is designed. The linear
component upper error bound is utilized for this evaluation.

We determine the Hammerstein model by using actual data
from the system’s experimental tests. The data is entered into
the system identification toolbox in MATLAB. The investiga-
tions involve regulating the air and water velocities to fall within
predetermined ranges. The gas exhibits a velocity range of 0 to
18.288 m/s (0-60 ft/s), while the liquid demonstrates a velocity
range of 0 to 3.048 m/s (0-10 ft/s). We specify the input as the
ratio of the velocities of the liquid and gas. Input signals and a
comparison of pressure values between measured and projected
data are illustrated in Figs. 15 and 16. The parameters of the
linear model are denoted by the equations that follow, in which F
denotes the nonlinear function that involves the unit delay opera-
tor q−1. A satisfactory fitting R= 92.07% is attained between the
measured and predicted signals. However, simulation errors lead
to results that are noisy when there are sudden changes, in con-
trast to the actual measured values. The nonlinearity parameters
are determined by employing a 1 × 1 array of Sigmoid Network
consisting of 200 units in MATLAB, which is then transformed
into a polynomial of order 3. Equation 14 delineates the linear
component of the Hammerstein model. We set the parameters

for output nonlinearity with a unit gain, in line with the Ham-
merstein model’s requirements. The temperature is considered a
disturbance in the system.

w(t) = f (u(t)) (13)

and the output signal is given as:

y(t) =
B(z)
F(z)

w(t)+ e(t)

where, B(z) =−0.0943z−1 + z−2 (14)

F(z) = 1−1.8996z−1 +1.3422z−2 −0.4371z−3

B(z)
F(z) is the transfer function that represents the linear com-

ponent of the Hammerstein model, while w(t) represents the
nonlinear function.

Fig. 15. Output (the upper figure) and input (the lower figure) signals

Fig. 16. Measured (pressure drop) and simulated model output

3.4. Summary

According to [34], the Beggs-Brill correlation [4] was found
to overpredict the two-phase pressure drop in most air-water
datasets. However, the error margin decreased with larger pipe
diameters and in the stratified flow regime. For instance, the high-
pressure data observed by Andrews [35], as shown in Fig.17, fell
within a ±20% error margin.
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Table 3. Summary of Identification Techniques

Identification Technique System Structure % Fitting

Neural Network-Based Model MISO 3 hidden layers with ReLU activation
function

99.4%

Nonlinear ARX model MISO Order 2 polynomial + SVM 78.77%
MISO Order 2 polynomial + 25 units sigmoid

network
86.52%

Nonlinear Hammerstein model MISO Order 4 transfer function + 10 units sig-
moid network

66.9%

MISO Order 3 transfer function + 15 units sig-
moid network

80.12%

Nonlinear Hammerstein SISO model SISO Order 3 transfer function + 200 units
sigmoid network

92.07%

Fig. 17. Comparison of measured and predicted pressure drop for Andrews’
0.0525 m i.d. data [35] using the Beggs–Brill correlations [4]

This section summarizes different identification techniques
employed for system modeling, showcasing their associated
structures and corresponding fitting percentages. The neural
network-based model for multi-input single-out (MISO) systems,
featuring three hidden layers with a Rectified Linear Unit (ReLU)
activation function, exhibits a high fitting percentage of 99.4%.
In the nonlinear ARX category for MISO systems, two distinct
structures are presented: one utilizing an Order 2 polynomial
combined with Support Vector Machines (SVM) using Gaussian
kernel achieving a fitting of 78.77%, and another employing an
Order 2 polynomial with a 25-unit sigmoid network yielding an
86.52% fitting. The nonlinear Hammerstein models for MISO
systems involve various structures, including order 4 transfer
function with a 10-unit sigmoid network (66.9% fitting) and or-
der 3 transfer function with a 15-unit sigmoid network (80.12%
fitting). Lastly, a single input single output (SISO) non-linear
Hammerstein model is specified, featuring an Order 3 transfer
function with a 200-unit sigmoid network and achieving a fitting
percentage of 92 07%. These models are designed for system
identification, with fitting percentages serving as indicators of
their effectiveness in capturing the underlying dynamics of the
respective systems. The selection of a particular model and its
structure is influenced by the unique characteristics and require-
ments of the system under consideration.

4. Conclusion

This study offers a comparative analysis of data-driven ap-
proaches—specifically, Neural Networks, nonlinear ARX, and

Hammerstein-Wiener models—for predicting pressure drops in
multi-phase flow systems. The authors conducted extensive ex-
periments to collect data that informed the development and
comparison of these models. While Neural Networks (NNs) are
effective at capturing complex nonlinearities, they are highly
susceptible to overfitting, especially in scenarios with limited or
highly variable data, as is often the case in multi-phase flow sys-
tems. To mitigate this risk, the study focuses on non-linear ARX
and Hammerstein-Wiener models, which demonstrated robust
predictive capabilities and greater generalizability, providing a
more reliable solution for prediction of pressure drops. By lever-
aging experimental data in data-driven modeling, our approach
effectively addresses the inherent nonlinearities and variability
in multi-phase flow systems, enhancing predictive capabilities
and offering a robust solution for dynamic pressure manage-
ment. The findings of this research not only demonstrate the
potential of advanced machine learning models in industrial ap-
plications, but also underscore the importance of model selection
tailored to specific system characteristics. Future studies should
focus on expanding these models with larger and more diverse
datasets and applying them to real-time flow control systems.
The insights gained here set a foundation for the development
of next-generation control algorithms, ultimately contributing to
safer, more efficient multi-phase flow system operations.
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