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Abstract 

This study investigated the effect of Ground Control Point (GCP) distribution on the accuracy of UAV-based slope mapping and stability 
analysis. Three GCP configurations—top-only, vertical, and diagonal—were tested. Accuracy was evaluated using UAV photogrammetry and 
compared to GPS geodetic data. The vertical GCP setup produced the highest accuracy, reducing total RMSE by 89.6% (from 52.93 mm to 5.50 
mm). The diagonal configuration, while being slightly less accurate (61.26 mm RMSE), improved spatial coverage. Slope stability analysis 
using the finite element method (FEM) confirmed the reliability of the vertical setup for slope assessment. These results demonstrated that 
optimizing GCP layout could significantly improve model precision while reducing fieldwork. This work contributes to efficient and accurate 
slope monitoring with fewer GCPs, making it suitable for large-scale geotechnical applications. Future research will focus on applying these 
configurations to vegetated and more complex terrains and integrating automation for broader and scalable implementation. 
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1. Introduction  

Unmanned aerial vehicle (UAV) photogrammetry has 

transformed geospatial mapping and slope stability studies by 

providing efficient high-resolution terrain analyses, 

particularly for complex and hazardous area. UAVs equipped 

with real-time kinematic (RTK) and post-processing kinematic 

(PPK) GNSS systems deliver precise spatial data that are 

critical for geotechnical assessments [1]. The use of RGB, 

thermal, and LiDAR sensors also enhances 3D mapping in 

disaster-prone environments [2]. 

Accurate digital elevation models (DEMs) and surface 

models (DSMs) are crucial for identifying vulnerable slopes 

and enabling early landslides warning [3]. UAV data, when 

combined with geophysical imaging and finite element method 

(FEM) analysis, can improve embankment stability evaluation  

and supported risk mitigation strategies [4,5].   

However, achieving high accuracy in complex terrains requires 

cautious consideration of ground control points (GCP) 

placement, which greatly influences the root mean square error 

(RMSE) of elevation models [6,7]. 

Strategic GCP placement remains a logistical challenge, 

particularly in accessible slope zones. Reducing the GCP usage 

without compromising its accuracy remains the key research 

goal. In this regard, GPS geodetic methods offer a reliable 

benchmarks and support UAV validation [8–11].  

Accurate soil data from field tests, including cone 

penetration tests (CPT) and boring tests, further support slope 

stability modeling. CPT provide continuous soil resistance 

profiles that correlate with geotechnical parameters such as 

density, shear strength, and internal friction angle without 

disturbing the soil structure [17-19]. Laboratory analyses refine 

the field data and ensure precise cohesion and moisture content 

measurements, which are essential for predicting the slope 

behavior under various conditions [20-22] 

This study explored the feasibility of minimizing GCPs in 

UAV-based slope photogrammetry while maintaining model 

accuracy through validation with GPS geodetic data and FEM 

analysis, supported by soil data from CPT and boring tests. 

Vertical and diagonal GCP configurations were tested against 

geodetic benchmarks to enhance slope modeling with reduced 

field intervention.  

Although existing studies have explored GCP reduction, few 

have integrated GCP optimization with geotechnical validation 

using subsurface data and FEM modeling. Unlike previous 

studies, which mostly assessed spatial accuracy, this research 

introduces a novel validation framework that links sparse GCP 

configurations with slope safety modeling using FEM. This 

integrative approach fills a gap in the literature concerning GCP 
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minimization strategies for complex slope environments and 

offers practical insights for geotechnical risk assessment and 

disaster mitigation. 

2. Materials and Methods 

2.1. Site background 

A topographic survey was performed at Tebing Pandang in 

Benua Riam Village, Aranio District, Banjar Regency, South 

Kalimantan. This area, covering approximately 0.9 hectares, 

features a hilly terrain with steep slopes and sharp elevation 

changes, which renders it particularly vulnerable to slope 

instability. Loose, easily eroded soil, and weathered rock 

increase the risk of landslides, especially during heavy rainfall, 

increasing the pore water pressures. Although the local 

vegetation provides some stabilization, human activities and 

poor drainage exacerbate these risks. The challenging 

topography, soil composition, and high rainfall conditions 

highlight the need for an effective slope management. The 

survey coordinates were recorded at 50M 283279.9614818, 

oriented at 346° North that provided essential data for further 

slope stability assessment and management. 

2.2. Tools and equipment used 

Specialized equipment was employed to achieve high-

precision geospatial mapping and slope stability analysis. The 

Comnav T300 RTK Geodetic GPS provided accurate 

positioning for GCPs, which is essential for enhancing the 

UAV photogrammetry accuracy in difficult conditions [8]. 

Meanwhile, the DJI Phantom 4 Professional Obsidian UAV 

equipped with GNSS and high-resolution imaging enabled 

efficient data capture and created detailed 3D models for 

stability assessments [1]. For soil profiling, a 2.5-ton CPT 

device provided continuous resistance data to determine the 

soil shear strength, whereas hand boring facilitated the 

laboratory analysis of cohesion, moisture content, and other 

critical parameters in slope stability modeling [4]. This 

integrated approach, as illustrated in Fig. 1, outlines the 

workflow from the benchmark (BM) and GCP setups to the 

UAV data collection and two-dimensional (2D) modeling for a 

comprehensive slope stability analysis. 

2.3. UAV and GPS geodetic data acquisition 

The initial step in data collection involved establishing 

benchmark (BM) points using RTK Geodetic GPS to provide 

elevation references and accurate coordinates (East and South) 

throughout the study area. The Comnav T300 RTK Geodetic 

GPS ensured the precise positioning of the BM points, which 

anchored all subsequent UAV measurements to a consistent 

geospatial framework, which is vital for slope stability analysis 

[8]. Each GCP used in the photogrammetry was also 

established by means of RTK GPS to ensure accurate alignment 

with the BM reference framework. Fig. 2 illustrates the setup 

of the BM and GCPs, which demonstrates the use of a geodetic 

GPS to achieve high-accuracy mapping. 

2.4. UAV data collection and GCP configurations 

The DJI Phantom 4 Professional Obsidian UAV was flown 

at a fixed altitude of 50 m above the ground and captured high-

resolution images necessary for constructing DSMs and DEMs. 

The UAV flight paths were predefined to comprehensively 

cover the study area, thereby ensuring detailed imagery over 

both steep and flat terrain. In this study, the GCPs, as shown in 

Fig. 3, were strategically placed in three unique configurations 

at three points each to assess their impact on model accuracy: 

(1) at the top of the slope, (2) in a straight line down the slope, 

and (3) arranged diagonally on the slope. While previous 

research demonstrated the importance of the GCP distribution 

for model precision [6], these specific configurations were 

developed to enhance the accuracy of the challenging 

topography of the study area. 

Fig. 1. Workflow diagram for UAV-based photogrammetry and slope stability analysis using GCP configurations and FEM 

modeling 



172 Ridha et al. / Communications in Science and Technology 10(1) (2025) 170–178   

 

Fig. 2. Establishing benchmarks (BM) and ground control points (GCP) 

using geodetic GPS for high-precision mapping. 

 

Fig. 3. GCP placement configurations: (a) Top, (b) Straight, and (c) 

Diagonal on slope 

2.5. Photogrammetric processing 

The photogrammetric process started with UAV data to create 

DSMs and DEMs using Agisoft MetaShape. The initial steps 

included feature detection, alignment, and dense point cloud 

generation, followed by 3D model reconstruction and texture 

mapping to enhance the model detail and accuracy [1]. The 

DSM and DEM models were further refined using 

CloudCompare to align and calibrate the point clouds precisely 

[3]. ArcGIS was used to produce topographic maps, which 

provided a comprehensive view of the slope area essential for 

accurate slope analysis [5]. 

2.6. Accuracy assessment 

The reliability of the photogrammetric models was 

evaluated through an accuracy assessment using root mean 

square error (RMSE) metrics for both the horizontal (RMSExy) 

and vertical (RMSEz) dimensions. This assessment quantified 

the spatial accuracy of the DSM and DEM across different GCP 

configurations. Furthermore, UAV-derived slope contours 

were compared with geodetic GPS reference measurements to 

evaluate the precision [14]. This comparison helped to 

determine the effect of the GCP distribution on model accuracy 

and establish a benchmark for UAV-based mapping 

effectiveness in geotechnical applications [6]. 

This integrated workflow, which combined RTK GPS, UAV 

photogrammetry, and advanced data processing, ensured that 

the slope stability models were accurate and reliable. By 

aligning the UAV data with geodetic GPS measurements, this 

study highlighted the potential of UAV photogrammetry for 

precise mapping and stability assessment of complex terrains, 

thus supporting disaster risk management and geotechnical 

analysis in vulnerable areas [9]. 

2.7. Soil testing and laboratory analysis 

Field soil testing included CPT and hand boring tests, which 

are essential for collecting soil parameters for finite element 

modeling in slope stability analysis. Following the Indonesian 

National Standard (SNI) 8460-2017, soil testing was performed 

at three locations: the top, middle, and base of the slope. The 

CPT and hand boring tests were performed 2 m apart as 

specified by the standard. Undisturbed soil samples were taken 

at the depths of 2.4-2.8 m at Point S-1 (top), 1.5-2.0 meters at 

Point S-2 (middle), and 1.6-2.0 meters at Point S-3 (base). 

These samples were tested for cohesion, moisture content, 

Atterberg limits, and shear strength to ensure an accurate 

representation of soil conditions in stability modeling. 

2.8. Finite element slope stability analysis 

In this study, the slope stability was assessed using the two-

dimensional (2D) FEM Plaxis software in which the model 

geometry was constructed based on the generated DEM/DSM 

models. The models served as the basis for simulating the slope 

geometry and stratification with soil parameters such as 

cohesion, internal friction angle, and moisture content obtained 

from the CPT and hand-boring tests [4]. A medium-density 

mesh was used with fixed boundaries at the base and vertical 

roller conditions on the lateral sides. Although no field 

deformation data were available for calibration, all models 

shared identical soil inputs, allowing for a valid comparative 

analysis between GCP-derived geometries. The analysis 

calculated the safety factors and identified the potential failure 

zones by leveraging FEM-based modeling methods as 

validated in previous studies [15]. UAV and GPS geodetic data 

were used to verify the slope geometry and assess its stability 

in order to facilitate a detailed slope-failure risk evaluation. 

 

3. Results and Discussions 

3.1. Impact of GCP distribution and accuracy metrics in UAV 

photogrammetry 

Table 1 presents a comparison of the accuracy of UAV 

photogrammetry processed using Agisoft Metashape for three 

different GCP configurations: top-only, straight vertical, and 

diagonal distribution. The metrics analyzed included ground 

sampling distance (GSD), vertical (Z), horizontal (XY), and 

(a) (b) 

(c) 
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total errors. These RMSE values were computed by Agisoft 

Metashape based on deviations between the model and control 

points, and the large difference between configurations 

reinforced the superior accuracy of the vertical GCP setup. 

Table 1. Accuracy metrics (GSD, RMSEz, RMSExy, RMSEtotal) for three 

GCP configurations in UAV photogrammetry processed with Agisoft 

Metashape 

Type 
GSD 

(mm/pixel) 

RMSEz 

(mm) 

RMSE

xy 

(mm) 

RMSE 

total 

(mm) 

3 GCPs Positioned 

at the Top 
16.2 17.29 50.03 52.93 

3 GCPs Positioned 

in a Straight Vertical 

Line from Top to 

Bottom 

16 0.69 5.46 5.50 

3 GCPs Positioned 

Diagonally from 

Top to Bottom 

16 14.24 59.58 61.26 

 

The top-only GCP configuration yielded the highest total 

error (52.93 mm), largely due to insufficient control in lower 

slope areas, highlighting its unsuitability for precise mapping. 

This finding supports prior studies noting the poor performance 

of clustered GCPs at higher elevations [7][16]. 

In contrast, the vertical configuration produced the lowest 

total error (5.50 mm), representing an 89.6% reduction 

compared to the top-only configuration. This aligns with Seo et 

al. [16], who stressed the effectiveness of vertical GCP 

distribution in reducing elevation and total error. Nevertheless, 

its limited horizontal spread could constrain performance in 

more complex terrains. 

The diagonal setup, though exhibiting a higher total error 

(61.26 mm), offered a broader spatial coverage, effectively 

capturing both vertical and horizontal features. This trade-off 

between spatial coverage and precision reflects the findings by 

Martínez-Carricondo et al. [7] and Seo et al. [16] that  

emphasized the value of diagonal GCP placement in 

representing terrain variability. 

3.2. Multiscale 3D distance analysis of GCP configurations 

The Multiscale Model to Model Cloud Comparison (M3C2) 

distance analysis was employed to quantify elevation 

discrepancies between UAV-derived point clouds and GPS 

geodetic benchmarks for three different GCP configurations. In 

the top-only GCP setup (Fig. 4), significant overestimations in 

elevation were observed, particularly in the lower slope 

regions. This is indicated by the dominant red and yellow tones, 

reflecting deviations exceeding +3 meters. These errors 

highlight the limitations of clustered GCP placement in 

capturing full slope variability, in line with prior studies by Seo 

et al. [16] and Gindraux et al. [17]. 

The vertical GCP configuration (Fig. 5) demonstrated 

improved elevation accuracy, as evidenced by widespread 

green and blue zones. These colors indicate smaller elevation 

differences, generally within ±2.5 meters, especially in the 

lower portions of the slope. Although minor horizontal 

discrepancies remained, the vertical arrangement significantly 

reduced vertical errors, supporting the conclusions of Seo et al. 

[16] on the benefits of vertically aligned GCPs. 

In the diagonal GCP configuration (Fig. 6), the slope surface 

exhibited a more consistent pattern of green and grey tones. 

These corresponded to a narrow band of elevation differences 

centered around zero, suggesting a closer match between UAV 

and GPS models across both horizontal and vertical axes. The 

broader spatial coverage and balanced alignment offered by the 

diagonal setup reinforce the findings of Martínez-Carricondo et 

al. [7], who advocated for diagonal GCP layouts in complex 

terrain to enhance DEM reliability. 

 

 

Fig. 4. M3C2 distance analysis for top-only GCP configuration 

. 

 

Fig. 5. M3C2 distance analysis for vertical GCP configuration 

 

 

Fig. 6. M3C2 Distance analysis for diagonal GCP configuration 

3.3. Cross-sectional analysis of slope profiles based on GCP 

configurations 

Fig. 7(a) illustrates a top view of the studied slope with 
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cross-sectional lines to visualize the accuracy of the GCP 

placements. Meanwhile, Fig. 7(b–d) present the slope profiles 

generated using ArcGIS, comparing different GCP 

configurations (GPS geodetic data, top-only GCPs, straight-

line GCPs, and diagonal GCPs) against the GPS baseline. 

Fig. 7. Cross-sectional analysis of slope: (a) cross-section positions, (b) 

cross-section 1, (b) cross-section 2, and (d) cross-section 3 

 

In Fig. 7(b) (Section 1), the top-only GCPs showed 

significant deviations, whereas the straight-line GCPs 

improved the accuracy, and the diagonal GCPs aligned best 

with the GPS baseline. Fig. 7(c) (Section 2) and Fig. 7(d) 

(Section 3) show the similar patterns where the diagonal GCPs 

consistently offered superior accuracy compared to the top-

only configuration. 

These results emphasized the importance of well-distributed 

GCPs for accurate slope modeling, particularly in complex 

terrain. The diagonal GCP arrangement provided the best 

spatial coverage and aligned closely with the GPS data. These 

findings align with those of previous studies by Carvajal-

Ramírez et al. [18], Martínez-Carricondo et al. [7], and Seo et 

al. [16], thereby highlighting the role of strategic GCP 

placement in improving the accuracy of UAV photogrammetry. 

In this case, ArcGIS played a crucial role in visualizing these 

differences in geospatial applications. 

3.4. Soil data and subsurface layering 

CPT data from three slope points (Fig. 8) revealed moderate 

variations in cone resistance (qc) and friction ratio (FR) along 

depth. CPT 1 displayed lower qc values near the surface (0–0.6 

m), while CPT 3 showed slightly elevated resistance at 2.2–4 

m depth, suggesting heterogeneity in near-surface materials. 

All locations identified a hard soil layer between 9.8 and 10.6 

m, indicating the relatively uniform base stratigraphy. Overall, 

FR profiles aligned across sites, except at CPT 1 (0–1.8 m) and 

CPT 3 (1.8–4.0 m) where deviations indicated localized 

transitions in soil behavior. 

 

 

Fig. 8. Cone penetration test (CPT) results: cone resistance (qc) and 

friction ratio (FR) profiles for CPT 1, CPT 2, and CPT 3 

 

Soil classification based on the Robertson chart (Fig. 9a) 

showed zones 3–6, ranging from cohesive clay to silty sand. 

This gradation indicated increasing drainage and decreasing 

plasticity from deeper to shallower layers. Subsurface 

stratigraphy (Fig. 9b) confirmed layered compositions: clay 

(Layer 3), silty clay (Layer 4), clay silt (Layer 5), and sandy silt 

(Layer 6). These layers informed FEM modeling by 

representing the vertical heterogeneity critical to slope response 

under loading. 

Laboratory tests (Table 2) further supported this 

stratification. BH3 exhibited the highest unit weight and 

stiffness with a modulus of elasticity (Eu) of 2178 kN/m², 

suggesting denser and more competent soils. In contrast, BH1 

showed the highest moisture content (20.89%) and lowest 

strength, consistent with more plastic, compressible materials. 

Variations in cohesion (44.18–51.44 kN/m²) and internal 
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friction angle (18.47°–19.38°) provided essential inputs for 

FEM stability assessments. This combination of CPT profiling 

and borehole analysis enabled a robust geotechnical 

understanding of the slope, vital for accurate numerical 

modeling. 

 
Fig. 9. (a) Soil classification at locations 1, 2, and 3 using CPT data and (b) 

soil stratigraphy prediction based on CPT data 

The laboratory results further showed subsurface variability. 

Silt dominated the grain size distribution, while clay content 

varied modestly among boreholes. BH2 showed the highest 

plasticity index (19.63%), suggesting greater deformability, 

whereas BH3 exhibited the highest shear strength and stiffness, 

with the cohesion of 51.44 kN/m², unconfined compressive 

strength of 108.88 kN/m², and modulus of elasticity reaching 

2178 kN/m². These contrasts confirm the heterogeneity of the 

slope’s mechanical properties, a critical factor for accurate 

modeling in slope stability analysis. 

3.5. FEM modeling for slope stability 

Previous studies [27-29] revealed that the use of CPT data 

for estimating soil properties requires region-specific empirical 

correlations, particularly when the laboratory-based results are 

not readily available. Niazi [19] highlighted that the methods 

outlined in his manual were designed specifically for Indiana's 

geology where extensive CPT research has been performed to 

ensure the reliability of the results. Zhou et al. [20] developed 

regional correlations in New Zealand and demonstrated a need 

to adapt CPT-based estimations for local soil types by 

comparing CPT data with Standard Penetration Test (SPT), 

Dilatometer Test (DMT), and shear wave velocity (Vs) 

measurements. Similarly, Tamošiūnas et al. [21] presented 

correlations for Young’s modulus and other moduli in 

Lithuania, emphasizing the need for region-specific equations 

to ensure accurate results in varying soil conditions. Therefore, 

for greater accuracy, the current study sought to establish 

localized empirical correlations between the CPT data and the 

laboratory-based soil properties for the study area, as 

summarized in Table 3. 

Table 2. Soil properties from BH1, BH2, and BH3 for slope stability analysis 

Properties   BH 1 BH 2 BH 3 

Depth (m) 
1.60-

2.00 

2.20-

2.60 

2.20-

2.60 

water content (%) 20.89 18.13 17.36 

Specific gravity   2.668 2.672 2.68 

Unit weight () kN/m3 16.81 16.87 17.01 

Gravel (%) 3.13 2.41 3.66 

Coarse sand (%) 6.28 5.74 6.85 

Medium sand (%) 4.72 4.05 4.8 

Fine sand (%) 5.39 5.5 5.39 

Silt (%) 67.29 68.29 69.39 

Clay (%) 13.19 14.01 9.91 

Liquid limit (LL) (%) 45.5 46.63 44.6 

Plastic limit (PL) (%) 26.41 27.01 16.18 

Plasticity index (PI) (%) 19.47 19.63 18.41 

Soil classification 

(USCS) 
 ML ML ML 

Cohesion (c) kN/m2 44.18 47.5 51.44 

Internal friction angle () (o) 18.47 19.38 19.02 

Unconfined compressive 

strength (qu) 
kN/m2 80.7 92.7 108.88 

Modulus elasticity (Eu) kN/m2 1464 1710 2178 

Table 3. Empirical Relationship Between Soil Parameters and CPT Results 

Used in FEM analysis 

Parameter Correlation r2 

Unit weight (kN/m3) = 0.0168qc + 16.606 0.99 

Cohesion (kN/m2) c= 10.364ln(qc) + 18.552 0.99 

Internal friction angle (o) = 24.342 FR-0.185 0.98 

Modulus elasticity (kN/m2) E= 59.315qc + 755.84 0.99 

3.6. Slip surface and slope safety factor analysis 

Fig. 10 presents the results of the slope stability analysis 

performed using Plaxis by comparing the slopes with three 

different GCPs positioned in various configurations, as 

previously described. Fig. 10(a), (b), (c), and (d) show the 

slopes with three GCPs placed at the top, placed diagonally 

along the slope, arranged in a straight line along the slope, and 

the GPS geodetic reference, used as the baseline for 

comparison. The color gradient in the figures represents the 

distribution of shear strain; warmer colors (red to yellow) 

indicate the areas of higher strain and potential instability, 

(a

) 

(b) 
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whereas the cooler colors (blue) represent stable regions.  

 

 

Fig. 10. Slope stability analysis with different GCP configurations:  

(a) GPS geodetic baseline, (b) three GCPs at the top, and (c) three 

diagonal GCPs. (d) 3 GCPs in a straight line 

 

The safety factor (SF) for each slope configuration was 

calculated as follows: 1.269 for the top-only GCPs, 1.514 for 

the diagonal GCPs, 1.72 for the straight-line GCPs, and 1.826 

for the GPS geodetic reference. A comparison of the three 

analyzed slope models with the GPS Geodetic reference (SF = 

1.826) revealed differences in slope stability and strain 

distribution based on GCP placement. The first slope with three 

GCPs concentrated at the top achieved an SF of 1.269, 

indicating a moderate stability with limited safety margins. The 

strain was concentrated near the crest and upper sections of the 

slope, suggesting a higher risk of localized instability. This 

configuration was the least stable among the models and 

significantly underperformed the GPS Geodetic reference. 
The second slope with the GCPs placed diagonally from top 

to bottom had a higher SF of 1.514. This configuration 

provided a more balanced strain distribution, resulting in 

improved stability. Although this was better than the top-only 

GCP model, it still differed from the GPS Geodetic reference, 

indicating room for further optimization. The third slope with 

the GCPs aligned vertically along the center of the slope 

achieved the highest SF of 1.72; it indicated that the strain 

distribution became more evenly spread. As the SF approached 

the GPS Geodetic reference of 1.826, the characteristics of the 

slope behavior became more similar, indicating that this model 

yielded results closer to the geodetic data. 

3.7. Contribution to disaster risk management 

This study contributes to disaster risk management by 

improving the efficiency and accuracy of landslide mapping 

and slope-stability analyses. It aims to reduce the number of 

Ground Control Points (GCPs) required for accurate mapping, 

thereby minimizing the time spent in hazardous environments. 

Despite fewer GCPs, the results showed that the mapping 

accuracy remained close to that of geodetic reference data, 

making the method effective for real-world applications in 

landslide-prone areas. 

The study found that placing GCPs vertically or diagonally 

along the slope more significantly improved the accuracy 

compared to top-only GCP placement. The straight vertical 

GCP configuration yielded the best results in terms of 

minimizing errors and aligning closely with the geodetic data. 

Additionally, a slope stability analysis using the Finite Element 

Method (FEM) showed that the straight-line GCP configuration 

resulted in the most stable slope model with a safety factor 

close to that of the GPS geodetic reference, indicating 

improved landslide prediction. 

This research will enable faster, safer, and more cost-

effective landslide monitoring, particularly in remote and high-

risk areas. Using UAVs with optimized GCP configurations 

enables the disaster response teams to quickly assess landslide 

hazards, improve early warning systems, and implement 

targeted risk mitigation strategies. This study enhances 

landslide risk management by offering practical and efficient 

solutions for monitoring and predicting slope instability. To 

facilitate the understanding of the multi-step procedures 

conducted in this study, Fig.11 presents a summary diagram of 

the full workflow. This visual overview integrates all key stages 

from data acquisition to geotechnical analysis. 

 

 

Fig. 11. Summary of the UAV-based slope mapping and geotechnical 

modeling workflow implemented in this study 

3.8. Limitation and future directions 

The accuracy of UAV-derived Digital Elevation Models 

(DEMs) in view of obstructions in photogrammetric capture 

can be significantly reduced in vegetated areas. Vegetation type 

and density, such as marram grass or forest undergrowth, have 

been shown to increase elevation uncertainty [22,23]. UAV 

models also exhibit lower accuracy compared to Airborne 

Laser Scanning (ALS) in dense vegetation with omission and 

commission errors affecting overall model reliability [24].  

However, in this study, vegetation interference could be 

disregarded as the observed slope was a critical, landslide-

prone area with minimal to no vegetation cover, allowing 

(a) 
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clearer terrain capture and more reliable photogrammetric 

modeling. 

Scalability remains another challenge, particularly in large 

or topographically complex regions. While UAVs enable rapid 

data collection, coverage limitations and processing demand 

increase with site size [25,26]. To address these, future work 

should explore automation strategies such as adaptive UAV 

altitude control [27] and AI-based terrain correction 

frameworks [28,29]. Integration with technologies such as  

GPR or drone swarms can also enhance mapping reliability in 

inaccessible or hazard-prone areas. Additionally, although this 

study focuses on a single bare slope, the findings may inform 

GCP configuration strategies in other steep or hazard-prone 

terrains, particularly in a sparse vegetation or limited 

accessibility. 

4. Conclusion 

This study evaluated the impact of GCP configuration on the 

accuracy of UAV-based slope modeling and stability analysis. 

Quantitative analysis revealed that the vertical GCP 

configuration achieved the lowest total RMSE (5.50 mm), 

compared to 52.93 mm in the top-only setup and 61.26 mm in 

the diagonal arrangement. Despite the diagonal layout offering 

a broader spatial coverage, it introduced slightly higher error. 

The FEM-based slope stability analysis also confirmed this 

result with the vertical configuration achieving a Safety Factor 

(SF) of 1.72, which closely approximated the GPS geodetic 

reference value of 1.826. In contrast, the top-only GCP setup 

yielded the lowest SF of 1.269, indicating the least stability, 

while the diagonal configuration resulted in a moderate SF of 

1.514 with improved but still suboptimal strain distribution. 

The vertical GCP configuration not only enhanced spatial 

accuracy but also yielded slope stability predictions closest to 

geodetic references. Future research should evaluate GCP 

configurations in vegetated and complex terrains where UAV 

accuracy tends to decline. The optimization of GCP density, 

integration with real-time geodetic systems, and use of AI-

based terrain correction or UAV–GPR platforms may enhance 

scalability and precision. Improved FEM models based on 

refined UAV data can further support slope stability analysis 

and disaster risk mitigation. 
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