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Abstract 

The purpose of this paper is to examine how to use first order Markov chain to build a reliable monitoring system for the profit-loss sharing 

based contracts (PLS) as the mode of financing contracts in Islamic bank with censored continuous-time observations. The paper adopts the 

longitudinal analysis with the first order Markov chain framework. Laplace transform was used with homogenous continuous time assumption, 

from discretized generator matrix, to generate the transition matrix. Various metrics, i.e.: eigenvalue and eigenvector were used to test the first 

order Markov chain assumption. Cox semi parametric model was used also to analyze the momentum and wait ing time effect as non-Markov 
behavior. The result shows that first order Markov chain is powerful as a monitoring tool for Islamic banks. We find that waiting time 

negatively affected present rating downgrade (upgrade) significantly. Likewise, momentum covariate showed negative effect. Finally, the 

result confirms that different origin ratings have different movement behavior. The paper explores the potential of Markov chain framework as 

a risk management tool for Islamic banks. It provides valuable insight and integrative model for banks to manage their borrower accounts. 

This model can be developed to be a powerful early warning system to identify which borrower needs to be monitored intensively. Ultimately, 
this model could potentially increase the efficiency, productivity and competitiveness of Islamic banks in Indonesia.  The analysis used only 

rating data. Further study should be able to give additional information about the determinant factors of rating movement of the borrowers by 

incorporating various factors such as contract-related factors, bank-related factors, borrower-related factors and macroeconomic factors. 

Keywords: profit-loss sharing, Islamic banking, default risk, Markov model, survival rate. 

 

1. Introduction  

Even though murabahah dominates most of banking 

transactions, the portion of profit-loss sharing based (PLS) 

contracts, i.e. mudharabah and musharakah, is rising steadily , 

from 29.07% in December 2005 to 31.29% in December 2006 

(see Fig. 1). It indicates two conditions: bank returns to serve 

the real sector and an increase of the bank’s inherent risk. PLS 

contracts said to be able to promote economic growth, but 

they also have higher risk-return profiles [19]. In the sale-

based contract (murabahah, salam, istishna’) or rent-based 

contract (ijarah), bank could claim the predetermined return 

through margin or fee/rental cost. In contrast, the return 

obtained from PLS contracts  depends on the realization of the 

client's business profits. When the business suffered losses 

and capital is eroded, the bank can also be at risk of losing the 

fund given to the client. Thus, in PLS contract, banks also 

bear the rate of return risk and investment risk, in addition 

bear the default risk, as in murabahah, salam, istishna’ and 

ijarah. Consequently, if the banks cannot maintain the 

competitive return to the depos itors, they will face the 

displaced commercial risk and withdrawal risk [23, 25].  

As the portion of financing in PLS contracts rises, 

financing risk (consist of default risk, the rate of return risk 

and investment risk) will also increase. This increased risk 

should be responded positively by establishing a risk 

management system. Banks should have the reliable 

monitoring system to control risk. To build monitoring 

system, bank may implement a structural model, a scoring 

system or a reduced form model. By implementing the 

structural model or scoring system, banks could monitor the 

clients directly. However, in structural model, banks are 

required to know the market value of asset’s client as well as 

their debts. Similarly, in scoring system, banks had to 

sacrifice time, effort and cost to collect relevant information 

about client and its business.   

For an emerging market like Indonesia, majority clients in 

Islamic banks are personal or micro, small and medium 

enterprise (see Table 1). Their financing is relatively small in 

value, but large in number. This is often called as granularity 

[24]. In consequence, the cost to maintain clients and to gather 

related data is expensive [24]. In addition, the value of their 

assets is not available publicly. Thus, both model (structural 

model and scoring system) are difficult to perform. 

Alternatively, the bank may use the reduced form models. 

With a reduced model, bank may utilize available rating data 

to analyze clients’ default behaviors, especially when the 

clients could be grouped perfectly based on its default 

categories. Rating data could be provided by independent 

rating agency, such as Fitch Rating, PEFINDO, Moody’s, 
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Standard & Poor and ICRA, or by bank’s rating system. 

However, the cost to maintain the rating system is expensive 

for banks. In the future, bank should turn over the appraisal 

and rating tasks to the external parties. So, the bank can focus 

on its core business, innovation in product, expanding to other 

segments, creating new markets, etc. Bank only needs to 

monitor the performance and quality of the client based on the 

rating given externally. 

In this study, we implement the reduced form model, 

especially the JLT model [13]. With this model, we calculate 

the intensity of rating movement and the probability of default 

of the clients. Because the clients’ financing tenor is relatively 

short-term, it causes none of the clients survive throughout the 

observation period. For this reason, we adjust the model by 

adding the ‘right and left’ sensor scheme. In addition, in the 

ratings data, we found that the default rating is not a perfect 

absorbing state, except when the client actually defaulted and 

were excluded from the rating system. Then, we examine 

deeper on the behavior of rating. Stability rating, as an 

indicator of the performance of risk management, is assessed 

using the transition rate and coefficient of variation. This 

study also tests whether the transition probabilities are 

constant or fluctuate over time. The assumption of first-order 

Markov chain is tested by Eigen analysis (Eigenvector and 

Eigenvalue) and metric measures (MSVD and MAGL). When 

the transition probability matrix is in-homogenous, we 

analyze whether the duration and the time covariate 

(momentum and waiting time) significantly affect the 

probability of default of individual clients. 

The aim of this paper is to examine how to use first order 

Markov chain to build a reliable monitoring system for the 

profit-loss sharing based contracts (PLS) as the mode of 

financing contracts in Islamic bank with censored continuous-

time observations.  

2. Literature Review 

2.1. Debt Based vs. Profit Loss Sharing Based Contracts 

Naturally, PLS contracts , such as mudharabah and 

musharakah, have higher risk in compared with debt-based 

contracts such as salam, muajjal, istishna’, ijarah and qardhul 

hasan. In mudharabah, Islamic banks release their fund to be 

managed solely by client. Banks are only allowed to obtain 

return based on the client’s actual profit. When the client’s 

business is in loss, banks must bear the loss based on bank’s 

capital contribution. Banks are not permitted to request a 

predetermined return or guarantee for its capital. Banks could 

set some restrictions to secure their interests, but could not 

involve in client’s business. Even in musharakah, Islamic 

banks practically only contribute in capital, not in 

management. Not only it is prohibited by regulation 

(Indonesia law No.21/2008), it also requires banks to provide 

large number of employee that are competent and skillful in 

client’s business. 

In PLS contracts, banks at least face two risks: investment 

risk and capital recovery risk. The client’s realized-profits are 

fluctuation as well as the bank’s return. The fluctuating return 

exposes bank to investment risk. Capital recovery risk aris es 

when client is unable to repay the fund given by the bank. 

Both of these risks arise from two sides. First, the dynamics of 

economic environment may affect the client's financial 

performance as well as their ability to pay back the capital or 

to share profits. Second, moral hazard is very likely to arise 

due to asymmetric information between banks and clients [2]. 

Typically, banks will ask for rahn (collateral) and kafil 

(guarantor) to prevent capital loss. However, kafalah and rahn 

could only be useful in reducing the capital recovery risk that 

is caused by moral hazard effect, and not by business risk. 

Therefore, when client claimed to be experiencing financial 

distress, banks must be able to identify the factor: client’s 

business risk or moral hazard. Moreover, failure in identifying 

client’s default factors may cause the bank to lose its entire 

fund. 

2.2. Financing Portfolio in Indonesian Islamic banking 

There has been an increase in portion of Islamic financing 

based on the PLS from 29.07% on January 2005 to 31.29% on 

December 2006 (see Fig. 1). Despite relatively insignificant, 

this increase showed positive direction toward the true form of 

Islamic banking.  Usually, Islamic banks in its early 

developments favor murabahah as financing mode rather than 

PLS. Quasi-fixed income and debt form of murabahah are 

some contributing factors to this preference. PLS tend to have 

greater risks than murabahah. The lack of available competent 

human resources, the absence of business skills and high 

potentials of moral hazards are the inhibiting factors for 

Islamic banks’ intention to use PLS as their financing mode. 

Mills and Presley [19] stated that PLS contracts are the 

contracts associated with higher risk-return profiles. It is why 

this contract required amanah (trustworthiness) and mutual 

trust between bank and client [7,25]. 

 

 

Fig. 1. Patterns of PLS and NPFs in Indonesian Islamic banking 

 

In general, the default risk of PLS in Indonesia is relatively 

small. Most PLS contracts have rating current (L) (96.00%). 

Meanwhile, the rest have varied ratings, rating special 

mention (DPK) (0.15%), rating substandard (KL) (1.44%), 

rating doubtful (D) (0.78%), and rating loss (M) (1.63%) 

during the period of December 2005 – December 2006. 

However, Fig. 1 indicates that the increase in PLS financing 

portion to the total financing is followed by the increase of 

NPF (non performing financing). 

2.3. Markov Model: Discrete and Continuous Approach 

Following Janssen and Manca [12], a sequence of random 

variables, Jn, n  N, is said to be a Markov chain if for every 

j0, j1, …, jn  J, if P(Jn = jn|J0 = j0, j1 = j1, …, jn-1 = jn-1) = P(Jn 

= jn|jn-1 = jn-1). As a Markov chain, Jn, n  N, is homogeneous 

if the probability of an event is independent on time n and be 
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said inhomogeneous if others. For the homogeneous case, the 

probability of the occurrence that J = i in time n, when in time 

n-1, J = j occurred can be written as: 

𝑃(𝐽𝑛 = 𝑖|𝐽𝑛−1 = 𝑗) = 𝑝𝑖 ,𝑗                            (1) 

Then a transition probability matrix can be defined as : 

𝑷 =

[
 
 
 
 

𝑝1,1 𝑝1,2

𝑝2,1 𝑝2 ,2
⋯

𝑝1,𝑛−1 𝑝1,𝑛

𝑝1,𝑛−1 𝑝2,𝑛

⋮ ⋱ ⋮
𝑝𝑚 −1,1 𝑝𝑚 −1,2

𝑝𝑚 ,1 𝑝𝑚,2
⋯

𝑝𝑚−1,𝑛−1 𝑝𝑚 −1,𝑛

𝑝𝑚,𝑛−1 𝑝𝑚 ,𝑛 ]
 
 
 
 

       (2)  

In case the model has an absorbing state, e.g. (default) risk 

case, we can write it as: 

𝑷 =

[
 
 
 
 

𝑝1,1 𝑝1,2

𝑝2,1 𝑝2 ,2
⋯

𝑝1,𝑛−1 𝑝1,𝑛

𝑝1,𝑛−1 𝑝2,𝑛

⋮ ⋱ ⋮
𝑝𝑚 −1,1 𝑝𝑚 −1,2

0 0
⋯

𝑝𝑚−1,𝑛−1 𝑝𝑚 −1,𝑛

0 1 ]
 
 
 
 

       (3)  

Where every element of the P matrix has the following 

characteristics:  

1. pij ≥ 0 for every i, j  I 

2. ∑ 𝑝𝑖𝑗𝑗𝜖𝐼 = 1 for every i, i  I. 

In order to explain the evolution of Markov chain 

perfectly, we need to adjust the original distribution for 

condition J0, i.e. vector p = (p1, …, pm) that fulfill ∑ 𝑝𝑖𝑖𝜖𝐼 = 1, 

where pi ≥ 0  and i  I. So for every i, pi represent the original 

probability on condition i, i.e. pi = P(J0 = i). In this definition, 

it can be shown that the transition probability of order 𝑝𝑖𝑗
(𝑛)

 can 

be defined as: 

𝑝𝑖𝑗

(𝑛)
= 𝑃(𝐽𝑣+𝑛 = 𝑗|𝐽𝑣 = 𝑖)                        (4) 

For n=2, we get the result as: 

𝑝𝑖𝑗
(2) = ∑𝑝

𝑖𝑘
. 𝑝

𝑘𝑗
𝑘

                                  (5) 

2.3.1. Discrete-time approach 

Consider a sample of N objects (i.e. firms, clients, etc.) 

whose transitions between different states are observed at 

discrete times t = 0, 1, …, T (i.e. daily, monthly, quarterly, 

semi-annually, annually, etc.). Let ni(t) be the number of 

objects in state i at date t , nij(t) is the number of objects which  

went from rating i at time t − 1 to rating j at time t, where  

𝑁𝑖(𝑇) = ∑ 𝑛𝑖(𝑡)
𝑇−1
𝑡=0  is the total number of objects recorded at 

the beginnings of the transition periods, and 𝑁𝑖𝑗(𝑇) =

∑ 𝑛𝑖𝑗(𝑡)
𝑇
𝑡=1  is the total number of transitions observed from 

rating i to rating j over the entire period (T). 

The probability of observing a particular path x0,x1,…,xT of 

one object is 𝑝𝑥0,𝑥1
,𝑝𝑥1 ,𝑥2

,… , 𝑝𝑥𝑇−1,𝑥𝑇
. In independent 

condition, we get products of the individual likelihoods and 

hence the complete likelihood function takes the following 

form: 

∏  𝑝
𝑖𝑗

𝑁𝑖𝑗(𝑇)

(𝑖,𝑗)

                                     (6) 

where  𝑝𝑖𝑗
0 = 1. Therefore, the log-likelihood is: 

∏ 𝑁𝑖𝑗
(𝑇). log(𝑝𝑖𝑗 )

(𝑖 ,𝑗)

                               (7) 

Maximizing the formula with restriction ∑ 𝑝𝑖𝑗
𝐾
𝑗=1 = 1 for 

every i using a standard Lagrange multiplier, we can solve the 

formula to obtain: 

𝑝̂𝑖𝑗 =
𝑁𝑖𝑗

(𝑇)

𝑁𝑖
(𝑇)

                                    (8)  

From the last equation above, it can be concluded that any 

rating changes that occurs within the period was not counted. 

The other name of this approach is cohort approach and 

widely used in (banking and financial) industry [11]. 

2.3.2. Continuous-time with time-homogeneous approach 

Originally developed and applied in biology and medicine 

literatures, this model is categorized under the heading of 

survival analysis. Principally, this model is similar with the 

cohort approach that turns in continuous form with Laplace 

transformation (i.e. exponential distribution assumption). 

There are two advantages of this model, i.e. (i) it can count 

any rating change that occurs within the observation period, 

and (ii) it can accommodate (right) censoring and (left) 

truncating in financing contract rating history [11]. 

Meanwhile, the cohort approach ignores both of these issues. 

There are also several other advantages of the continuous time 

method [17], which are: 

1. The framework permits a rigorous formulation and 

testing of ‘rating drift’ assumptions and other type of 

non-Markov behavior (such as seasonal effects). 

2. The dependence on external covariates and changes in 

‘regimes’ due to business cycles can be formulated and 

tested. 

3. The continuous-time formulation hooks up nicely with 

rating-based term structure modeling in which one tries 

to estimate and calibrate yield curves for different rating 

classes. 

4. When estimating homogeneous chains in continuous -

time by estimating the generator of the continuous -time 

Markov chain, we could avoid the ‘embedding problem’ 

for Markov chains. This problem arises because not 

every discrete time Markov chain can be realized as a 

discretized continuous-time chain. 

 

Let   be a N  N generator (or intensity) matrix. 

Following Lando and Skodeberg [17], we defined the N  N 

transition probability matrix P(t) as: 

𝑃(𝑡) = 𝑒𝑥𝑝(𝑡),            𝑡 ≥ 0                        (9) 
Where exp(.) is a matrix exponential operation, and   satisfy 

these conditions: 

λ𝑖𝑗 ≥ 0     𝑓𝑜𝑟 𝑖 ≠ 𝑗 

λ𝑖𝑖 = − ∑λ𝑖𝑗

𝑗≠𝑖

 

The second expression merely states that the diagonal 

elements used are such to ensure that the rows sum up to zero . 

In matrix form,   can be written as: 

𝜦 =

[
 
 
 
 

λ1,1 λ1,2

λ2,1 λ2,2
⋯

λ1,𝑁−1 λ1,𝑁

λ2,𝑁−1 λ2,𝑁

⋮ ⋱ ⋮
λ𝑁−1,1 λ𝑁−1,2

λ𝑁,1 λ𝑁,2
⋯

λ𝑁−1,𝑁−1 λ𝑁−1,𝑁

λ𝑁,𝑁−1 λ𝑁,𝑁 ]
 
 
 
 

       (10) 

In an absorbing state case, all elements in the last row are 

predetermined zero. The diagonal elements can be defined 

immediately after the non-diagonal element is obtained. 

Obtaining estimates of the elements of   by following 

maximum likelihood estimator (MLE):  

λ̂𝑖𝑖 =
𝑁𝑖𝑗

(𝑇)

∫ 𝑌𝑖
(𝑠)𝑑𝑠

𝑇

0

                                (11) 

Where Yi(s) is the number of the objects in rating i at time s 

and Nij(T) is the total number of transitions over the period 
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from rating i to rating j, where i ≠ j. Furthermore, the 

numerator counts the number of observed transitions from 

rating i to rating j over the entire period of observation. The 

denominator has the number of ‘firm-years’ spent in state i. 

The mathematical derivation of Markov process with 

continuous and homogeneous time can be seen in the 

Appendix. 

2.3.3. Continuous-time with time-inhomogeneous approach 

This model uses a non-parametric method and allows for 

non-homogeneity while fully accounting for all rating 

movements within the observation periods. For the transition 

probabilities P(s,t), given that our sample has m transitions 

over period from s to t, we can estimate them with Aalen-

Johansen estimator or product-limit estimator [1]: 

𝑷̂(𝑠, 𝑡) = ∏ (𝐼 + ∆𝑨̂(𝑇𝑖
))

𝑚

𝑖=1

                   (12)  

Where Ti is a jump time in the interval [s,t] and 

∆𝑨(𝑇𝑖
) =

[
 
 
 
 
 
 
 
 
 
 −

∆𝑁1,1
(𝑇𝑖

)

𝑌1(𝑇𝑖
)

∆𝑁1,2
(𝑇𝑖

)

𝑌1(𝑇𝑖
)

∆𝑁2,1
(𝑇𝑖

)

𝑌2 (𝑇𝑖
)

−
∆𝑁2,2

(𝑇𝑖
)

𝑌2(𝑇𝑖
)

⋯

∆𝑁1,𝑝−1
(𝑇𝑖

)

𝑌1 (𝑇𝑖
)

∆𝑁1,𝑝
(𝑇𝑖

)

𝑌1(𝑇𝑖
)

∆𝑁2,𝑝−1
(𝑇𝑖

)

𝑌2 (𝑇𝑖
)

∆𝑁2,𝑝
(𝑇𝑖

)

𝑌2(𝑇𝑖
)

⋮ ⋱ ⋮
∆𝑁𝑝−1,1

(𝑇𝑖
)

𝑌𝑝−1
(𝑇𝑖

)

∆𝑁𝑝−1,2
(𝑇𝑖

)

𝑌𝑝 −1
(𝑇𝑖

)

∆𝑁𝑝,1
(𝑇𝑖

)

𝑌𝑝 (𝑇𝑖
)

∆𝑁𝑝,2
(𝑇𝑖

)

𝑌𝑝(𝑇𝑖
)

⋯

−
∆𝑁𝑝−1,𝑝−1

(𝑇𝑖
)

𝑌𝑝−1
(𝑇𝑖

)

∆𝑁𝑝−𝑖,𝑝
(𝑇𝑖

)

𝑌𝑝−1
(𝑇𝑖

)

∆𝑁𝑝,𝑝−1
(𝑇𝑖

)

𝑌𝑝(𝑇𝑖
)

−
∆𝑁𝑝,𝑝

(𝑇𝑖
)

𝑌𝑝(𝑇𝑖
) ]

 
 
 
 
 
 
 
 
 
 

      (13)  

Where ΔNhj(Ti) denotes the number of transitions observed 

from rating h to rating j at time Ti, and Yk(Ti) is the number of 

firms in rating k  right before time Ti. Therefore, this estimator 

can be seen as a cohort method applied to extremely short 

time intervals. All elements in the last row are predetermined 

zero in absorbing state case. 

3. Data and Methodology 

3.1. Data 

The data sample used in this study covered 17,184 PLS 

contracts in Indonesian Islamic banking industry with in 

monthly period, January 2004 – September 2005. Rating data 

is gathered from two types of Islamic banks, i.e. Islamic 

commercial bank and Islamic banking unit. Indonesia still has 

Islamic banking unit because, based on “Law No. 21/2002”, 

Indonesia still employs dual banking system that allows 

conventional banks to open Islamic banking service (office 

channeling) or also called Islamic bank unit. Rating system 

adopted in Indonesia consists of 5 rating, i.e. L (current), DPK 

(special mention), KL (substandard), D (doubtful) and M 

(loss). These rating are measured from any quantitative 

measure as well as qualitative information. 

3.2. Models and Methods 

3.2.1. Estimating the transition probability matrix 

This paper shows how to use Markov model framework in 

order to explain the risk profile of the clients  and their 

behavior over time. From the database, we confirm that data 

do not fully satisfied survival data conditions because there 

were many clients that entered bank’s rating system after 

observation period was started (left censoring) or left the 

system before the period is ended (rating withdrawal or right 

censoring). Additional class of rating is used to accommodate 

the left/right censoring, i.e. NR (not rated) [8,11,17,18]. Out 

of 17.184 clients, nearly all of them have at least one “NR” 

case. 

Bangia et al. [8] explained that, theoretically, the transition 

matrix could be estimated for any desired transition horizon. 

The shorter the measurement interval, the fewer rating 

changes are omitted. Based on this consideration, quarterly 

time horizon is used in this research. One additional reason is 

that quarterly data is considered adequate (i.e. not too long nor 

too short) for adopting various changes of risk management 

policy by both the regulator and the bank’s management .  

With t defined as quarterly, we get seven cohort transition 

matrixes for January 2004 – September 2005 monthly period 

using equation 8. Non-weighted average approach was used to 

obtain the transition probability matrix for the next quarter: 

𝑷̂𝑖𝑗
(𝛥𝑡 = 1 𝑞𝑢𝑎𝑟𝑡𝑒𝑟) =

∑ 𝑷̂𝑖𝑗
(𝑡)𝑇

𝑡=1

𝑇
                  (14) 

Where Pij(t) is the transition probability matrix for the t 

quarter. 

After estimating P, we should discard the NR class rating 

from the matrix since it is meaningless in the context of 

industry and risk management. For the hazard model, Lando 

and Skodeberg [17] suggest modification in the generator 

matrix to omit NR with estimation under censor mechanism. 

Kavvathas [18] explained the mechanism for adjusting the 

generator matrix in detail. He uses denominator correction 

that was suggested by Klabfleisch and Prentice [14] and used 

by Moody’s, i.e. with appropriate rescaling so that sum of raw 

in P is one (i.e. ∑ 𝑝𝑖𝑗 = 1𝑗≠𝑁𝑅 ). Kavvathas [18] explained that 

Moody’s estimator uses life table estimator of constrained 

probability of default in relevant interval correction as basis 

for sensor mechanism. This sensor is related with the 

withdrawn rating (NR) during the relevant period of time. One 

can estimate the constrained probability of default of pj within 

the interval Ij, where mj is the number of censored 

observation, dj is the number of default and nj is the number of 

observation at risk within one time before tj, as: 𝑝̂𝑗 =

𝑑𝑗 [𝑛𝑗 −
𝑚𝑗

2
]⁄ . Correction in this denominator is an attempt to 

capture the reality that the individual firm at risk might not be 

at risk during the entire interval. 

 Jarrow et al. [13] provided an adjustment alternative to 

the transition probability matrix (not the generator matrix) to 

eliminate “NR”, which is done by rescaling the number of line 

in the transition probability to return to one, i.e. ∑ 𝑝𝑖𝑗 =𝑗≠𝑁𝑅

1. Jarrow et al. [13] explained that eliminating the portion of 

NR from the sample is by redefining the transition probability 

from i rating to j rating (except NR) as: 

 

𝑝̂𝑖𝑗 =
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑜𝑓 𝑡ℎ𝑒  𝑓𝑖𝑟𝑚𝑠 𝑡ℎ𝑎𝑡  𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑  𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒  𝑖 𝑡𝑜 𝑗

𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑜𝑓 𝑡ℎ𝑒  𝑓𝑖𝑟𝑚𝑠 𝑡ℎ𝑎𝑡  𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑  𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒  𝑖 𝑡𝑜 𝑎𝑛𝑦 𝑠𝑡𝑎𝑡𝑒  𝑗 (𝑒𝑥𝑐𝑒𝑝𝑡  𝑁𝑅)
. 

 

Bangia et al. [8] explained that there are three methods to 

eliminate NR. The first method treats transitions to NR as 

unfavorable information regarding the change in credit quality 

of the client. Probability of transiting to NR is distributed 

among downgraded and defaulted states in proportion to their 

values by allocating NR values to all cells to the right of 

diagonal. The second method treats transitions to NR status as 

favorable.  The probability transitions to NR are distributed 

among all states, except default, in proportion to their values. 
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This is achieved by allocating the probability of transiting to 

NR to all but not to the default column. The third method, 

which has emerged as an industry standard, treats transitions 

to NR status as non-information. The probability of transitions 

to NR is distributed among all states in proportion to their 

values. This is achieved by gradually eliminating firms whose 

ratings are withdrawn. We also use this method, which 

appears sensible and allows for easy comparisons to other 

studies [11,13,17]. 

There are at least 3 approaches to solve the exponential 

matrix for equation 9: 

1. 𝑒𝑥𝑝(𝚲𝑡) = ∑ 𝚲𝑛 𝑡

𝑛!

∞
𝑛=0                                                   (15a)  

2. 𝑒𝑥𝑝(𝚲𝑡) = lim
𝑛→∞

(𝑰 + 𝚲
𝑡

𝑛
)
𝑛

                                  (15b)  

3. 𝑒𝑥𝑝(𝚲𝑡) ≈ (𝑰 − 𝚲
𝑡

𝑛
)

−𝑛

= [(𝑰 − 𝚲
𝑡

𝑛
)

−1
]
𝑛

             (15c)  

This research uses the first approach, which was also used 

by Jarrow et al. [13], Bangia et al. [8], Kavvathas [18], Lando 

and Skodeberg [17], Jafry and Schuermann [11], and others. 

By using the decomposition approach, we can obtain the 

transition probability matrix for next year from the quarterly 

basis. The probability of default from this matrix can be used 

as input for calculating additional minimum capital 

requirement as required by Basel II. For example pij (t) is the 

probability of transition from the initial state of i to the new 

state of j on the discrete time of t, where as 𝑡 = 1,2, … , 𝑇 . 

Then the probability of pij during the period of [0, 𝑇] can be 

defined as: 

𝑷𝑖𝑗
(T) = ∏ 𝑷𝑖𝑗

(t)
𝑇

𝑡=1
                        (16) 

3.2.2. Testing the non-Markov properties 

Using notation by Jafry and Schuermann [11], if P is time 

homogenous, while  is a diagonal matrix with eigenvalue P, 

and S is matrix with related eigenvector, thus P can be stated 

in form of eigenvalue decomposition as follows:  

𝐏 = 𝐒𝚲𝐒−1 and 𝐱(k) = 𝐱(0)𝐒𝚲k𝐒−1                 (17) 

Where x(k) is the k time state vector in the future. For cases in 

which the number of row in the transition probability matrix 

equals to one, in the long run it is neutrally stable. This 

implies that at least one eigenvalue have a value of one and 

the rest have values decaying in the rate of increase in k-th 

power [11]. Steady state equilibrium is reached if 𝐏k = 𝐏k+1 

requirement is satisfied [26]. 

Bangia et al. [8] explained further that transition 

probability matrix follows first order Markov chain process if 

both following conditions are satisfied. The first condition is 

that the eigenvalues of transition matrices for increasing time 

horizons needs to decay exponentially. While the second 

condition is that the set of eigenvectors for each transition 

matrix needs to be identical for all transition horizons. 

Arvanitis et al. [6] offered another solution for testing the 

first order Markov assumption using a certain measurement 

(metric), which is ΔMAGL. This metric is used to test the basic 

assumption that the eigenvector of transition matrices are 

constant all the time. The procedure is as follows: (1) 

calculate the monthly generator matrix (t) and (2) calculate 

the metric value: 

∆𝑀𝐴𝐺𝐿
[𝚲(𝑡), 𝚲′(𝑡)] =

‖𝚲(𝑡)𝚲′(𝑡) − 𝚲′(𝑡)𝚲(𝑡)‖

‖𝚲(𝑡)‖ × ‖𝚲′(𝑡)‖
     (18)  

Where 𝚲(𝑡) is the generator matrix calculated monthly and 

quarterly, while 𝚲′(𝑡) is the quarterly unweighted average 

generator matrix estimated during the period of January 2005-

December 2006. 

The value of the metric, which falls between zero and two, 

equals zero if 𝚲(𝑡) and 𝚲′(𝑡) have equal eigenvectors 

(without considering the eigenvalues) and increases along 

with the difference between both eigenvectors increases [11]. 

Rather than the generator matrix (t), Jafry and Schuermann 

[11] chose to use transition probability matrix, P(t), to define 

metric ∆𝑀𝐴𝐺𝐿(𝐏, 𝐏). They also proposed a metric based on 

the average of singular values in the mobility matrix, which is: 

𝑀𝑆𝑉𝐷
[𝐏] ≅

∑ √𝜆𝑛
(𝐏′𝐏)𝑁

𝑛=1

𝑁
                        (19) 

In defining the MSVD metric, Jafry dan Schuermann [11] 

used the square root of average eigenvalue from [𝐏′𝐏] rather 

than the largest eigenvalue. Since the total values for each row 

in the transition probability matrix equals to one (single 

stochastic process), the largest eigenvalue usually is one. Thus 

using the square root of the largest eigenvalue became less 

useful on many conditions. 

4. Results and Discussion 

4.1. Rating Migration: Discrete vs. Continuous Time 

After eliminating NR, we obtained quarterly cohort 

matrices over period of January 2005 – September 2006 as 

shown in Table 1. All diagonal elements show probability to 

stay on its initial rating i. Value in diagonal elements refers to 

the stability level of transition probability matrix [10,21]. Two 

most stable ratings are the extreme rating on opposite side, 

which is L (96.95%) and M (34.87%). While the three middle 

ratings, which are DPK (14.79%), KL (8.30%) and D 

(4.55%), have greater tendency to move out from its initial 

rating. Migration to the right shows a rating downgrade, 

which means the default risk becomes greater than before. On 

the other hand, migration to the left shows a rating upgrade 

and an improvement of the client rating’s quality. Nearly all 

rating tends move to the left, towards L (upgrade). Table 1 

shows that worse ratings have a higher probability to migrate 

to the right (downgrade). Furthermore, Trueck and Rachev 

[22] suggested various measures for comparing transition 

matrices from a Value-at-Risk perspective regarding matrix 

stability issue and direction of rating movement. 

Table 1 presents the weakness of cohort approach. In 

cohort, the probability of transition from DPK to M is equal to 

zero. Upward movements from rating M or D to DPK also 

have similar case. Cohort approach is incapable to capture 

issues of gradual movement that might transpire between 

discrete time points [17]. 

Table 1. Transition matrix with cohort approach 

  

Destination Rating (j, t+1) 
Sum 

L DPK KL D M 

O
r
ig

in
a

l 

R
a

ti
n

g
 (

i,
 t

) L 0.96947 0.00129 0.01029 0.00756 0.01140 1.00000 

DPK 0.54063 0.14792 0.17813 0.00833 0.00000 1.00000 

KL 0.85527 0.00124 0.08299 0.03113 0.02937 1.00000 

D 0.78048 0.00000 0.00245 0.04552 0.17154 1.00000 

M 0.63862 0.00000 0.00961 0.00308 0.34869 1.00000 

 

In contrast with the cohort approach, the hazard rate model 
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calculates various rating transition between discrete time 

points. The model is able to capture probabilities of gradual 

movement. Estimation result of the generator matrix that 

shows the average rate of migration (i.e. instantaneous 

transition rate) during the observation period is shown in 

Table 2. The sum of each row is zero to satisfy the conditions 

of Laplace transformation with exponentially distribution 

assumption in transition activity [3,13]. Using Ross [20] 

method, we can obtain transition probability matrix for the 

next quarter as shown in Table 3. 

Table 2 shows that all non-diagonal elements of the 

generator matrix have positive value. Positive sign showed 

rating movement process, while negative sign on diagonal 

elements were used to absorb the entire rating movement 

occurrences. Diagonal elements equal to zero indicates that no 

clients experienced rating transition. In other words, at the end 

of the next quarter, all clients remained at their current rating. 

Basically, a generator matrix tries to capture rating transition 

in discrete time with shorter interval than cohort. So, if cohort 

model was estimated on similar interval time period with 

generator matrix, both should have indifferent degree of 

capability in capturing gradual movements. These gradual 

migrations would be captured when continuing matrix 

generator. Laplace transformation is used to avoid 

‘embedding problem’ of Markov chains. This problem arises 

because not every discrete time Markov chain can be realized 

as a discretized continuous-time chain [17]. 

Table 2. Instantaneous transition matrix 

  

Destination Rating (j, t+1)  
Sum NR L DPK KL D M 

O
ri

g
in

a
l 

R
a

ti
n

g
 (

i,
 t

) 

NR -0.20764 0.19921 0.00008 0.00273 0.00201 0.00361 0.00000 

L 0.26102 -0.31018 0.00267 0.02563 0.00706 0.01380 0.00000 
DPK 0.14286 1.59341 -2.02198 0.24176 0.03297 0.01099 0.00000 

KL 0.29639 1.72089 0.00451 -2.12772 0.05973 0.04621 0.00000 

D 0.24153 1.35699 0.00318 0.06992 -1.87182 0.20021 0.00000 

M 0.35807 1.02861 0.00000 0.06437 0.02816 -1.47921 0.00000 

 

Table 2 provides information regarding client’s rating 

movement behaviors. If at present there are 1,000 clients with 

rating L, then at the end of the next quarter there will be (i) as 

many as 261 clients with financing contract that will be 

finished; and (ii) 50 clients with downgraded rating, which 

consist of 3 clients to DPK; 26 clients to KL; 7 clients to D; 

and 14 clients to M. Moreover, if at present there are 1,000 

clients with rating M, then: (i) 358 clients would be excluded 

from banking rating system due to finished financing contract 

or terminated due to default; and (ii) 1,121 clients would 

experience rating upgrade, in which 1,029 would be upgraded 

to L where some clients upgraded more than once in the 

period); 64 clients upgraded to KL and 28 clients upgraded to  

D.  

Table 2 should be interpreted differently from Table 1, in 

which Table 1 refers to the probability of client to remain in 

their current rating, the probability to move upward 

(downward) or to exit the rating system. On the other hand, 

Table 2 refers to the level of client group based on their rating 

category. However, both tables refer to the same general 

behavior of all clients at their present rating group. 

Table 3 shows the behavior of clients’ rating transition in 

Indonesian Islamic banking. It also shows that Indonesian 

Islamic banking tends to become better in financing contract 

quality. The probability of upward migration to rating L is 

greater than 66.15% for all other ratings. Even clients from 

rating D and M have tendency for upgrade to L than staying in 

their initial rating. In the hazard model, with monthly interval, 

the generator matrix is capable of capturing gradual 

movements during quarterly interval. For example, if client A 

in January 2005 has rating KL, in February 2005 it upgrades 

to rating DPK, and in March 2005 falls again into worst rating 

M. The cohort model would only capture movement of client 

A from KL to M so the transition probability from DPK to M 

is zero (i.e. omitted). But in the hazard model, two movements 

can be counted in the model so there would always be non-

zero probability in transition from DPK to M. Thus, the 

hazard model is preferred to cohort model to assess the 

financing risk [11, 17, 18]. 

Table 3. Transition matrix with time continuous approach 

  

Destination Rating (j, t+1) 
Sum 

L DPK KL D M 

O
r
ig

in
a

l 
R

a
ti

n
g

 (
i,

 t
) L 0.97443 0.00125 0.01181 0.00392 0.00859 1.00000 

DPK 0.77688 0.16076 0.04412 0.00921 0.00902 1.00000 

KL 0.80790 0.00153 0.16102 0.01305 0.01649 1.00000 

D 0.72948 0.00129 0.01999 0.19675 0.05249 1.00000 

M 0.66148 0.00065 0.02052 0.00945 0.30789 1.00000 

 

Bangia et al. [8] found that probability transition matrices 

exhibit higher default risk and higher migration volatility for 

rating with lower quality. Table 3 show that default likelihood 

increases exponentially with decreasing rating. Unlike Bangia 

et al. [8], however, no such monotonistic property is found in 

Table 3. On the contrary, Table 3 shows properties of matrix 

instability in which the probability of staying at initial rating 

is lower than 31.00% for all rating (except L). Further, Figure 

2 shows the coefficient of variation that is used to measure 

instability of each matrix elements. Moreover, volatility of 

movements between rating DPK, KL and D is relatively 

higher than rating L and M. 

Based on information shown in Table 3, Islamic banking 

in Indonesia should give special attention and tighter 

supervisory mechanism toward clients who downgraded from 

rating L. Even though their potential to recover to rating L is 

substantial (more than 66.15%), there are 33.85% probability 

to move to rating DPK, KL and D. This probability is 

significant considering the amount of capital that must be set 

aside as reserve due to increasing NPF.  

Moreover, these clients who have difficulties to return to 

rating L may be the clients with huge and significant exposure 

in the bank’s financing portfolio. If Islamic banking is  willing 

to correct and improve their current supervisory mechanism, 

there may be possibility that in the next 5 to 10 years, the 

structure of this transition probability matrix would be 

improved.  

Fig. 2 also indicates that the supervisory mechanism in 

Indonesian Islamic banks is still responsive and not proactive. 

Early warning systems are still incapable to correctly predict 

which clients in the rating L that will experience rating 

downgrade in the next quarter. The coefficient of variation for 

rating DPK, KL and D indicates that: (i) the current rating 

assessment for bank’s clients, especially clients in rating 

DPK, KL and D, is imprecise or (ii) Islamic banks assigned 

them to rating L prematurely. Either way, this shows that risk 

mitigation system in Indonesian Islamic banking have not 

functioned properly. 
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Fig. 2. Coefficient of variation 

4.2. Non-Markov Behavior Analysis 

4.2.1. Eigenvalue and eigenvector analysis 

Eigenvalue and eigenvector were analyzed in order to test 

the homogenous time assumption. If the eigenvalue of the 

transition matrix were exponentially decreasing while the 

eigenvector were constant along the time horizon, then the 

assumption that the transition matrix follows first order 

Markov process is valid. This implies that the rating 

transitions are only influenced by current rating and not by 

other factors such as the momentum from previous transition 

or the length of time at the current rating. Fig. 3 indicates that 

the second, third, fourth, and fifth eigenvalues of transition 

matrices decays exponentially with longer transition horizons 

varying from one quarter to four years. 

  

 

Fig. 3. Eigenvalue analysis 

 

Fig. 3 confirms that the first order Markov process 

property is present in the transition probability matrix. The 

second property related to the eigenvector structure of the 

transition matrix shows the dynamics of rating transition. It 

shows the (asymptotic) distribution of surviving clients (not 

absorbed in the absorbing rating, if any) and their direction of 

convergence. Fig. 4 shows that the similar property of 

eigenvector value is not clearly found in every time horizon. 

However, we find patterns that after 3 years, eigenvectors 

converged at a certain value as indication of reaching the 

steady state equilibrium. Based on the findings in Fig. 3 and 4, 

the hypothesis on the presence of the first order Markov 

process property cannot be rejected. 

Fig. 4 shows that the rating system would reach 

equilibrium after the third year, except for rating KL. This 

condition is possible if there are no interventions from policy 

makers regarding the risk management in Islamic banks. 

Aside from using eigenvalue and eigenvector, this study als o 

employed various metrics to measure matrix distances to test 

the first order Markov assumption. There are two metrics used 

to test whether eigenvector from the transition matrix is 

constant, namely ΔMAGL (𝚲(𝑡), 𝚲′(𝑡)) and ΔMSVD 

(𝚲(𝑡), 𝚲′(𝑡)).  

 
Fig. 4. Eigenvector analysis 

 

Fig. 5 shows that both metrics are relatively varied all the 

time, even sometime exceeding 0.08. According to Arvanitis 

et al. [6], the time in-varying hypothesis of the eigenvector 

cannot be rejected if the value of the MAGL metric varied less 

than 0.08 all the time. Based on the analysis of both metrics, it 

can be surmised that the assumption of first order Markov 

chain process is not satisfied. This finding supports the result 

of hypothesis testing from Fig. 4. 

 

 

Fig. 5. Distance metric analysis 

4.2.2. Time dependent analysis: momentum and waiting time 

Table 4 shows that data confirm the presence of upgraded 

(downgraded) transitions in past which was followed by an 

upgrade (a downgrade) transition in present. Compared to the 

total transition (which are 17.184 × 23 = 395.232 

transitions, included from (or to) NR), proportion of this 

momentum effect is relatively insignificant (which is <
1.00% ). Nevertheless, significance of this relation would be 

crucial once it is keyed to exposure value. No matter how 

small the data portion, analysis of momentum and waiting 

time effect is very urgent in the context of default risk 

mitigation. 

Table 4 presents interesting rating transition behavior. In 

case of rating downgrade, the effect of momentum is clearly 

visible. The number of clients who previously experienced 

rating downgrade was greater than clients who experience 

downgrade at present time. Table 4 confirmed that most rating 

downgrade came from client with previous rating downgrade 
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history, which is 57.15% for DPK-KL, 31.37% for KL-D, and 

33.87% for D-M. 

Table 4. Patterns of covariate and time to migrate 

Rating Zkhj(t)-Momentum Zh(t)-Waiting Time 

From (h) To (j) Nkh(t-1) Nhj(t) Nkhj(t) Mean Max Min 

Previous downgrade effect         

DPK KL 169 21 12 1.524 3 1 

KL D 1642 51 16 2.529 12 1 

D M 502 62 21 1.742 3 1 

Previous upgrade effect         

D KL 21 22 4 1.091 3 1 

KL DPK 70 4 0 1.250 2 1 

DPK L 5 142 5 1.418 5 1 

 

On the other hand, clients with rating upgrade show the 

different behavior. Only few rating upgrade was followed by 

further rating upgrade. The effect of momentum toward rating 

upgrade is consistent only in DPK-L upgrade, even the 

probability is not substantial, only 5 out of 142 clients. This 

showed serious and consistent effort by Islamic banks to 

increase client’s rating from KL to L. However, this effort 

was not too successful for client in rating D, where the 

success of upgrade from D to KL was not followed by the 

success of upgrading rating from KL to DPK. This showed 

that in order to increase client’s rating from D to L required at 

least two-month duration. This is similar to clients in rating 

M. Only 18.18% clients with rating M were successful to be 

upgraded to rating KL for two months in a row. The difficulty 

of increasing client’s rating in from rating D and M should be 

of concern by Islamic banks in running their financing 

portfolio. 

Table 5. Effects of momentum and waiting time 

Rating Baseline Hazard Rate Zh(t)-Time Waiting Zkhj(t)-Momentum  

From (h) To (j) lnαhj0(t) SE prob 𝛽ℎ  SE prob 𝛽ℎ𝑗  SE prob 

Downgrade effect         

DPK KL 1.216 0.000 0.000 -0.405 0.000 0.000 0.288 0.000 0.000 

KL D 0.816 0.088 0.000 -0.205 0.019 0.000 0.401 0.120 0.002 

D M 1.387 0.127 0.000 -0.467 0.055 0.000 -0.006 0.103 0.954 

Upgrade effect          

D KL 1.490 0.193 0.000 -0.497 0.161 0.006 -0.414 0.174 0.028 

KL DPK 1.792 n.a n.a -0.693 n.a n.a 0.000 n.a n.a 

DPK L 1.511 0.024 0.000 -0.457 0.014 0.000 0.045 0.069 0.519 

 

The reason for using present downgrade (upgrade) 

definition, specifically for the nearest rating, is because of the 

real existence of monotonistic behavior in transition matrix. 

Most rating transition will move to the nearest rating, before 

reaching the farther one. This is restrained because there is 

only small number of observations to estimate the model. This 

definition was also conducted by Lando and Skodeberg [17]. 

Table 5 shows null hypothesis that there is no downgrade 

(upgrade) momentum effect of previous rating, is rejected 

(except for case D-M and DPK-L). Except for D-M 

(downgrade) and D-KL (upgrade), which have negative signs, 

all other coefficients are positive. It shows that other than D-

M and D-KL, the event of previous rating downgrade 

(upgrade) will lead to higher probability of present downgrade 

(upgrade). Table 5 also shows that to all cases of downgrade 

(upgrade), null hypothesis of the length of lag time does not 

affect/influence, is rejected. All beta coefficients, which have 

significant negative values, means that the longer lag time in 

the beginning rating, the smaller probability to experience 

downgrade (upgrade). 

The above estimation result of transition matrices and 

behavioral testing of non-Markov was built from the data, 

which are aggregately gathered. Industrial effect as proven by 

Kavvathas [18] cannot be implemented to the sample of this 

research. Small number of samples makes the sub-samples, 

which represent each industry, insufficient to carry out the 

model estimation. In spite of that, by using generalization 

model as shown in eq. 11A (see Appendix), one will be able 

to test the effect of other various covariates, e.g.: business 

cycle effect [8] and many other macroeconomic factors.  

In order to complement the study of waiting time effect to 

downgrade (upgrade), we would like to see when a rating will 

experience a downgrade (upgrade). By using Markov chain 

process, we redefine Markov process to examine downgrade 

(upgrade) probability for each waiting time. Table 6 shows 

that, in common, the longer waiting time, the smaller 

downgrade (upgrade) probability. This result is consistent 

with the previous result of modified Cox estimation model in 

Table 5. Anomaly of decreasing downgrade (upgrade) 

probability is only happened on the waiting time of two and 

three months. Especially for case L-DPK, downgrade 

probability has non-zero value, despite of more than six 

months waiting on rating L. It indicates two things. First, 

rating L is the most stable rating, even though it is important 

to be worried of since there is still a downgrade possibility 

after waiting for long time. Second, while for other ratings, 

including M, tend to be unstable and can migrate within a 

short period. 

Table 6. Pattern of probability to migrate 

Rating T ime waiting (month) 

From (i) To (j) 1 2 3 4 5 6 

Downgrade             

L DPK 0.013 0.030 0.031 0.045 0.045 0.018 

DPK KL 0.394 0.424 0.182 0 0 0 

KL D 0.240 0.109 0.186 0.093 0 0 

D M 0.321 0.183 0.495 0 0 0 

Upgrade            

M D 0.528 0.056 0 0 0 0 

D KL 0.875 0 0.125 0 0 0 

KL DPK 0.600 0.400 0 0 0 0 

DPK L 0.564 0.137 0.074 0.176 0.049 0 

5. Conclusion 

Various metric testing conducted, i.e.: eigenvalue and 

eigenvector analysis, and also MAGL and MSVD metric, 

cannot distinctively accept or reject the assumption of 

transitional matrices homogeneity. It indicates that there is a 

possibility that transition probability matrices follow the 

assumption of non-homogenous time. This result is surely not 

gladden enough, recall that implication from using the above 

model with two assumptions lead to calculation of minimum 
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required additional capital is different. 

The semi-parametric linearity estimation result of modified 

Cox proportional hazard rate model shows that waiting time 

affects present downgrade (upgrade) rating in a significantly 

negative way. Previous downgrade (upgrade) momentum 

positively affected the waiting time, except for D-M 

(downgrade) and D-KL (upgrade) in negative way. Expansion 

of Markov chain process definition was used to study the 

length of waiting time required for each rating before 

experiencing downgrade (upgrade). The result shows that the 

longer the waiting time is, the smaller the downgrade 

(upgrade) probability will be. It shows consistency with the 

previous modified Cox model estimation result.  

These various findings implied that Islamic banks s hould 

not only see client’s current rating position to predict the 

rating transition in the future, but also examine other factors, 

such as previous rating transitions and the waiting time in the 

current rating. With various tables and graphics, which 

employed various measures of financing risk, Islamic banks 

can use it as basis for formulating an effective early warning 

system to improve existing bank’s supervisory system. 

Various simulations on the proposed risk management 

policies could be conducted and the effect can be compared. 

In practice, these findings imply that there are some clients 

who experienced a rating movement systematically. The 

momentum effect and waiting time effect in the current rating 

system should be included in Islamic banks risk management 

policies, especially, if Islamic banks can gather the profile of 

these clients and their business. These issues are necessary, 

even though, in fact, there are over 99.00% of total clients in 

Indonesian Islamic banks following the memory-less property 

of the first order Markov chain process. This means that the 

client’s rating migration in next period is purely random and 

only depends on their current rating. Implementing the 

mitigation policies that recognize the effects of momentum 

and waiting time for all of client may be biased and 

misleading. 

The last issue is that the PLS contract is the form of 

financial partnership with a risk sharing concept (instead the 

risk transfer). Then the use of PLS contract is based on the 

condition that each partner (bank and client) has known each 

other. Naturally, client had a good track record in previous 

financing contract, such as murabahah or ijarah (usually for 

2-3 years). So, the bank could trust the client and minimize 

the asymmetric information. In the PLS contract, the decrease 

in the performance of client’s business is not only become a 

concern for the bank, but also the client. The client bears the 

risk as well as bank. Internally, the bank faces not only the 

investment risk and capital-loss risk, but also the market risk, 

especially when the bank decides to divest from the business, 

by selling its share to the client or third parties. When we use 

the rating system, we must aware that some parameters of risk 

are frequently biased to the bank interest, where this concept 

is consistent with interest-based activities that rely on the risk 

transfer concept. So, in evaluating the risk of PLS contract, 

especially in use credit rating system, we should address the 

concept of risk sharing (instead risk transfer) and other 

characteristics of the PLS contract. 

Finally, in this study, various factors determining the 

client’s rating were excluded from the model. Using Markov 

approach, any client or client’s business identification was 

eliminated, such as client’s age, education level of client, 

duration of business running, industry sector, bank-client 

relationship, business’s profitability, business cycle, and 

various macroeconomics indicators. Only client’s rating was 

employed as variable in building financing risk model in 

Islamic banks in this study. Therefore, this study suggests for 

future research to employ various factors to build transition 

matrix-based client’s supervisory system so that the resulted 

model can capture various effects of client, business and 

market, specific to each factor. This would provide better 

explanation on the various simulations based on metrics 

developed in this study. 
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Appendix 

Continuous-time and Homogeneous Markov Model 

 

A1. Markov process 

Suppose process [𝑋(𝑡), 𝑡 ≥ 0] as a random variable – 

following stochastic process with continuous time – which 

shows a single firm in the system S on state (rating) i at time t. 

While [𝑋(𝑡), 𝑡 ≥ 0] is continuous-time Markov process, if for 

all s, t≥0 and integer value i,j,x(u), and also 0 ≤ 𝑢 < 𝑠  

considered as follows: 

𝑃[𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖, 𝑋(𝑢) = 𝑥(𝑢), 0 ≤ 𝑢 < 𝑠]

= 𝑃[𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖]                   (1𝐴) 

If 𝑃[𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖] is independent to s, then the 

continuous-time Markov chain process will have stationary or 

homogeneous transitional probability. 

Suppose Ti shows the length of time a firm stays on a state 

(rating) i before migrating to different state j, for all s, 𝑡 ≥ 0, 

then 𝑃[𝑇𝑖 > 𝑠 + 𝑡|𝑇𝑖 > 𝑠] = 𝑃[𝑇𝑖 > 𝑡]. Then, Ti can be 

considered memory-less and should be exponentially 

distributed (for 𝑒−𝜆(𝑠+𝑡) = 𝑒−𝜆𝑠 . 𝑒−𝜆𝑡 , where λ shows the 

average of migration rate). These Markov properties can be 

rewritten as follows: 

𝑃[𝑇𝑖 > 𝑠 + 𝑡, 𝑇𝑖 > 𝑠] 𝑃(𝑇𝑖 > 𝑠)⁄ = 𝑃(𝑇𝑖 > 𝑡) or 𝑃[𝑃(𝑇𝑖 >
𝑠 + 𝑡)] = 𝑃(𝑇𝑖 > 𝑠). 𝑃(𝑇𝑖 > 𝑡) 

Using Chapman-Kolgomorov differential equation, for 

various pair of state i and j, then: 𝜆 𝑖𝑗 = 𝜆 𝑖𝑃𝑖𝑗 . Where 𝜆𝑖𝑗 is a 

transitional rate from state i to j, 𝜆 𝑖 is the rate at which the 

firms in state i made a transition, and Pij means the transition 

probability from state i to state j. 𝜆 𝑖𝑗 is also said as 

instantaneous transition rate for: 𝜆𝑖 = ∑ 𝜆 𝑖 .𝑃𝑖𝑗𝑗 = ∑ 𝜆 𝑖𝑗𝑗  and 

𝑃𝑖𝑗 = 𝜆 𝑖𝑗 𝜆𝑖
⁄ = 𝜆 𝑖𝑗

∑ 𝜆 𝑖𝑗𝑗
⁄ . In conclusion, 𝜆 𝑖𝑗 may be defined 

as migration intensity. By using equation 1A, Pij(t) can be 

rewritten as follows: 

𝑃𝑖𝑗
(𝑡) = 𝑃[𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖]              (2𝐴) 

For all 𝑠 ≥ 0, 𝑡 ≥ 0, Chapman-Kolmogorov equation can be 

defined as: 

𝑃𝑖𝑗
(𝑠 + 𝑡) = ∑ 𝑃𝑖𝑘(𝑠) . 𝑃𝑘𝑗

(𝑡)
∞

𝑘=0
             (3𝐴) 

By using lemma, that for time limit s approximates to zero (0), 

we get: 

lim
𝑠→0

1 − 𝑃𝑖𝑗 (𝑠)

𝑠
= 𝜆 𝑖 

lim
𝑠→0

𝑃𝑖𝑗
(𝑠)

𝑠
= 𝜆 𝑖𝑗 

By deducting both sides of equation 3A with Pij(t), we obtain: 

𝑃𝑖𝑗
(𝑠 + 𝑡) − 𝑃𝑖𝑗

(𝑡) = [∑ 𝑃𝑖𝑘
(𝑠). 𝑃𝑘𝑗

(𝑡)
∞

𝑘=0
] − 𝑃𝑖𝑗

(𝑡)   

= [∑ 𝑃𝑖𝑘
(𝑠) . 𝑃𝑘𝑗

(𝑡)
∞

𝑘≠𝑖
] + 𝑃𝑖𝑖

(𝑠) . 𝑃𝑖𝑗
(𝑡)

− 𝑃𝑖𝑗
(𝑡)  

= [∑ 𝑃𝑖𝑘
(𝑠) . 𝑃𝑘𝑗

(𝑡)
∞

𝑘≠𝑖
] − [−𝑃𝑖𝑖

(𝑠) . 𝑃𝑖𝑗 (𝑡) ]                  (4𝐴) 

By considering time limit 𝑠 → 0 both sides of equation 4A, 

𝑃𝑖𝑗
(𝑠 + 𝑡) = 𝑃𝑖𝑗

(𝑡 + 𝑠), and by replacing each other’s limit 

and sum, will be obtained result as follows : 

lim
𝑠→0

𝑃𝑖𝑗
(𝑡 + 𝑠) − 𝑃𝑖𝑗 (𝑡)

𝑠

= lim
𝑠→0

{[∑ 𝑃𝑖𝑘
(𝑠). 𝑃𝑘𝑗

(𝑡)
∞

𝑘≠𝑖
]

− [1 − 𝑃𝑖𝑖
(𝑠). 𝑃𝑖𝑗

(𝑡)]} 

𝑃𝑖𝑗
′ (𝑡) = [∑ 𝜆 𝑖𝑗 .𝑃𝑖𝑗

(𝑡)
𝑘≠𝑖

] − 𝜆 𝑖 .𝑃𝑖𝑗
(𝑡)            (5𝐴) 

Equation 5A is called as Kolgomorov’s backward equation. 

Lets for each pair of state i and j, defined that: 

𝑟𝑖𝑗 = {
𝜆𝑖𝑗 𝑖𝑓 𝑖 ≠ 𝑗 

−𝜆 𝑖 𝑖𝑓 𝑖 = 𝑗
 

Hence, the equation 5A can be rewritten as follows : 

𝑃𝑖𝑗
′ (𝑡) = ∑ 𝑟𝑖𝑘 . 𝑃𝑘𝑗

(𝑡)
𝑘

 𝑜𝑟 𝑷′(𝑡) = 𝑹. 𝑷(𝑡)         (6𝐴) 

Where: P’(t) is matrix 𝑛 × 𝑛 transition probability of the next 

1 period,  

𝑷(𝑡) = [

𝑝1,1 𝑝1,2

𝑝2,1 𝑝2 ,2
⋯

𝑝1,𝑛

𝑝1,𝑛

⋮ ⋱ ⋮
𝑝𝑛 ,1 𝑝𝑛 ,2 ⋯ 𝑝𝑛 ,𝑛

], and    

𝑹(𝑡) = [

−𝜆1 𝜆1,2

𝜆2,1 −𝜆2
⋯

𝜆1,𝑛

𝜆1,𝑛

⋮ ⋱ ⋮
𝜆𝑛,1 𝜆𝑛,2 ⋯ −𝜆𝑛

]. 

By using scalar equation differential solution method (which 

if 𝑓′ (𝑡) = 𝑐𝑓(𝑡) → 𝑓(𝑡) = 𝑓(0) .𝑒𝑐𝑡), the solution of the 

above matrices differential equation is as follows : 

𝑷(𝑡) = 𝑷(0). 𝒆𝑹𝒕  𝑜𝑟 𝑷(𝑡) = 𝒆𝑹𝒕                 (7𝐴) 

 

A2. Estimator life table (ELT) 

ELT was developed by Kaplan and Meier [15] using life table, 

where summary of survival data is grouped into few intervals, 

𝐼1,… , 𝐼𝑘, and thus: 𝐼𝑗 = (𝑏0 + ⋯+ 𝑏𝑗−1 ,𝑏0 + ⋯ + 𝑏𝑗) is width 

bj with b0=0. Life table represents number of default and 

censored survival time which felt into each interval. For 

example, mj is a censored time and d j is default time which 

falls into interval Ij, and 𝑛𝑗 = ∑ (𝑑𝑙 + 𝑚𝑙
)

𝑙≥𝑗  is the number of 

risky firms in the beginning of interval j. ELT default 

probability in Ij with survival requirement until Ij is: 𝑞𝑗 = 1 if 

𝑛𝑗 = 0 and 𝑞𝑗 =
𝑑𝑗

𝑛𝑗−(𝑚𝑗 2⁄ )
 if 𝑛𝑗 ≠ 0. Where factor (𝑚𝑗 2⁄ ) is 

used to capture the fact that not all firms  nj are at risk for all Ij. 

ELT for survivor function, 𝐹 , at the end of Ij is: 𝐹(𝑏1 + ⋯+

𝑏𝑗) = ∏ (1 − 𝑞𝑙
)𝑗

𝑙=1 . 

ELT is used for conditions in which actual default and 

censored time were unavailable, while only dj dan mj available 

for interval j. Lets for example, there is an actual (continuous) 

default time and 𝑡𝑗1 , … , 𝑡𝑗𝑟𝑗
 is observed time in Ij where mj is 

sum of censored, dj is sum of default, 𝑟𝑗 = 𝑑𝑗 + 𝑚𝑗 and 𝑗 =

1, … , 𝑘. Lets Hazard function, λ(t), is taken so that value of λj 

within interval Ij to be constant, then MLE of λ j is 𝜆𝑗 =
𝑑𝑗

𝑆𝑗
 

where 𝑆𝑗 = ∑ (𝑡𝑗𝑙 − ∑ 𝑏𝑖
𝑗 −1
𝑖=0

)
𝑟𝑗

𝑙−1
+ 𝑛𝑗+1𝑏𝑗 is the total observed 

survival time within interval Ij. Hence, the survivor function 

of ELT for 𝑡 ∈ 𝐼𝑗 can be defined as  𝐹(𝑡) = 𝑒𝑥𝑝 [−𝜆𝑗(𝑡 −
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∑ 𝑏𝑙
𝑗−1
𝑙=0

)− ∑ 𝜆 𝑖𝑏𝑖
𝑗 −1
𝑖=1

]. This definition enable the use of rating 

withdrawal as a right censoring observation and produce its 

own instantaneous hazard rate, which is  𝜆(𝑡) =
∑ 𝜆𝑖𝑗

(𝑡)
𝐽
𝑗=1,𝑗≠𝑖 . 

Survival probability is defined as not-failing intensity 

cumulative within the firm’s lifetime which calculated as 

exponential of negative value from hazard rate, which for 

∆𝑡 𝑡⁄  is integer and A is survive events, and thus  𝑃(𝐴) =

𝑒𝑥𝑝{−(∑ 𝜆 𝑖𝑗
𝐽
𝑗 =1,𝑗≠𝑖

)𝑡}. By considering both right and left 

censor scheme, duration contribution 1 for failure to state j 

from state i at the time t is 𝜆 𝑖𝑗𝑒𝑥𝑝 [− ∫ (∑ 𝜆 𝑖𝑘
𝐽
𝑘=𝑙,𝑘≠𝑖

)
𝑡𝑙
0 𝑑𝑢] . In 

censored case, the default is considered as not yet happened 

until we dispose cause-specific hazard rate. Let Nj is the 

number of default events to state j and Nc is the number of 

censored observation, with original rating (matrix row) 1 and 

N is the number of total observation either censored or 

uncensored, then: 

𝐿𝑙 = [ ∏ {∏𝜆𝑗𝑒𝑥𝑝(−∫ ∑ 𝜆𝑗 . 𝑑𝑢

𝐽

𝑗=1 ,𝑗≠𝑖

𝑡𝑖

0

)

𝑁𝑗

𝑖=1

}

𝐽

𝑗=1,𝑗≠𝑙

]∏𝑒𝑥𝑝(−∫ ∑ 𝜆𝑗 . 𝑑𝑢

𝐽

𝑗=1,𝑗≠𝑖

𝑡𝑖

0

)

𝑁𝑐

𝑖=1

 

By taking the first differential from the above log likelihood, 

we obtain: 

𝜆𝑗 =
𝑁𝑗

∑ 𝑡𝑖
𝑁
𝑖=1

 𝑜𝑟 𝜆 𝑖𝑗 =
𝑁𝑖𝑗

∑ 𝑡𝑖
𝑁
𝑖=1

= [
𝑁𝑖𝑗

𝑁𝑖

] [
∑ 𝑡𝑖

𝑁
𝑖=1

𝑁𝑖

]⁄  

In other notation, it can be stated as:  𝜆 𝑖𝑗 =
𝑁𝑖𝑗(𝑇)

∫ 𝑌𝑖(𝑠)𝑑𝑠
𝑇
0

 where 𝜆 𝑖𝑗 

is the instantaneous hazard rate from state i to state j, Nij(T) is 

sum of total transition from state i to state j within period 
[0, 𝑇] and Yi(s) means sum of firms on rating i at time s. 

 

A3. Time Dependence Effect 

Suppose a random process, Xi, follows the Markov chain 

process if P(Xn=xn|X0=x0, X1=x1, …, Xn-1=xn-1) = P(Xn=xn|Xn -

1=xn-1) is valid for i=0,1,…,n. The probability of future event 

(Xn+1) is only influenced by the present event (Xn) and 

independent from past events. Ross [20] defined this behavior 

as the memory-less property. Bangia et al. [8] used this 

property to test the assumption of first order Markov chain 

process for transition matrices. Similar with Bangia et al [8], 

Lando and Skodeberg [17] defined time dependence 

(covariate) as when present rating upgrade (downgrade) is 

influenced by upgrade (downgrade) in before. Time covariate 

obviously violates the memory-less property. 

Bangia et al. [8] used conditional and unconditional 

transition matrices to analyze the presence of one period time 

dependence within rating migration. Behren and Pederson [9] 

defined that downgraded (upgraded) momentum pattern will 

exist if only the probability of such downgraded (upgraded) is 

higher for previously downgraded (upgraded) compared to 

previously upgraded (downgraded). Testing for time-path 

dependence needs three matrices which is conditionally 

arranged to the previous migration direction, which are 

downgrade, no change, or upgrade. Following Anderson and 

Goodman [5], they tested null hypothesis, 𝐻0: 𝜋
𝑑 = 𝜋𝑛𝑐 =

𝜋𝑢, using a chi square test with statistical test: 𝜒2 =

∑ ∑ (
𝑛𝑖

𝑐(𝑃𝑖𝑗
𝑐 −𝑃𝑖𝑗)

2

𝑃𝑖𝑗
)𝑐 ,𝑗𝑖  and degree of freedom 𝑚(𝑚 − 1)(𝑐 −

1), where 𝑚 means the sum of rating class. 

Lando and Skodeberg [17] used Cox model and Aalen-

Johansen methodology generalization to test time dependent 

covariate. Under independent censoring, counting process for 

each client can be defined as follows: 

𝑁ℎ𝑗𝑖
(𝑡) = ∫ 𝛼ℎ𝑗𝑖

(𝑢)𝑌ℎ𝑖
(𝑢)𝑑𝑢

𝑡

0

+ 𝑀ℎ𝑗𝑖
(𝑡)          (8𝐴)  

Where 𝑁ℎ𝑗𝑖
(𝑡)  is number of observed transition from rating h 

to j by client i at time t, 𝑌ℎ𝑖
(𝑢)  is the process indicator to 

experience transition, which will be valued as 1 when client i 

is on rating h and 0 if others, and 𝑀ℎ𝑗𝑖
(𝑡)  is a martingale from 

a filtrate of 𝑁ℎ𝑗𝑖
(𝑡)  and 𝑌ℎ𝑖

(𝑢).  

Furthermore, Andersen et al. [3] and Klein and 

Moeschberger [16] defined that for each i with time-

dependent covariate vector 𝑍ℎ𝑗𝑖
(𝑡), transition intensity ℎ → 𝑗 

defined as a proportionate intensity model:  

𝜆ℎ𝑗𝑖
(𝑡) = 𝑌ℎ𝑖

(𝑡)𝛼ℎ𝑗𝑖 (𝑡, 𝑍ℎ𝑗𝑖
(𝑡))               (9𝐴)  

Where: 𝛼ℎ𝑗𝑖 (𝑡, 𝑍ℎ𝑗𝑖
(𝑡)) = 𝛼ℎ𝑗0

(𝑡)𝑒𝑥𝑝 (𝛽ℎ𝑗𝑍ℎ𝑗𝑖
(𝑡)), and 

𝑍ℎ𝑗𝑖
(𝑡) is a vector of type specific covariate [4] which will be 

valued as 1 if client i were upgraded to present rating class 

(previously upgraded) and 0 in others. Based from 

observation 𝑁ℎ𝑗𝑖
(𝑡) , 𝑌ℎ𝑖

(𝑡) and𝑍ℎ𝑗𝑖
(𝑡), the true parameter 

vector 𝛽0 can be estimated with value 𝛽̂ by maximizing Cox 

partial likelihood model to 𝛽ℎ𝑗: 

𝐿(𝛽ℎ𝑗) = ∏ ∏
𝑒𝑥𝑝 (𝛽ℎ𝑗𝑍ℎ𝑗𝑖

(𝑡))
∆𝑁ℎ𝑗𝑖(𝑡)

𝑆ℎ𝑗
0 (𝛽ℎ𝑗, 𝑡)ℎ𝑗𝑖𝑡

 

Where 𝑆ℎ𝑗
0 (𝛽ℎ𝑗 , 𝑡) = ∑ 𝑌ℎ𝑖

(𝑡)𝑒𝑥𝑝 (𝛽ℎ𝑗𝑍ℎ𝑗𝑖
(𝑡))𝑛

𝑖=1 . Using the 

(partial) likelihood test, Lando and Skodeberg [17] tested the 

null hypothesis of no rating drift, with statistical test: 

𝐿𝑅 = −2𝑙𝑛 (
𝐿(𝛽ℎ̅𝑗)

𝐿(𝛽̂ℎ𝑗)
) = 2 (𝐿(𝛽̂ℎ𝑗) − 𝑙𝑛𝐿(𝛽ℎ̅𝑗)) 

In which LR follows (asymptotic) chi-square distribution with 

one degree of freedom.  

In this research, to test the effect of previous downgrade 

(upgrade) momentum and waiting time in beginning rating h 

by ignoring all client i with censored Yhi(t), Eq. 9A can be 

rewritten as follows: 

𝜆ℎ𝑗𝑖
(𝑡) = 𝛼ℎ𝑗0

(𝑡)𝑒𝑥𝑝 (𝛽ℎ𝑗𝑍ℎ𝑗𝑖
(𝑡) + 𝛽ℎ𝑍ℎ𝑖

(𝑡))     (10𝐴)  

Where 𝜆ℎ𝑗𝑖
(𝑡) defined for each client i, 𝑍ℎ𝑗𝑖

(𝑡) is covariate, 

which will be valued as 1 if previous downgrade (upgrade) 

followed by present downgrade (upgrade), and 𝑍ℎ𝑖
(𝑡) is 

waiting time covariate in beginning rating h before 

experiencing present downgrade (upgrade). 

This model was developed from Cox proportional hazard 

rate model [14]. By logarithm both sides on eq. 10A, we can 

obtain: 

𝑙𝑛𝜆ℎ𝑗𝑖
(𝑡) = 𝑙𝑛𝛼ℎ𝑗0

(𝑡) + 𝛽ℎ𝑗𝑍ℎ𝑗𝑖
(𝑡) + 𝛽ℎ𝑍ℎ𝑖

(𝑡)     (11𝐴) 

 


