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Abstract 

Recognizing the varying learning styles of students is vital to creating customized educational approaches and maximizing academic success. 
While commonly used, conventional evaluation methods such as self-report surveys are frequently characterized by subjective biases and 
inconsistent accuracy. To address this limitation, this present study proposes an EEG-driven approach for learning style classification, 
specifically targeting the Active and Reflective dimensions of the Felder-Silverman Learning Style Model (FSLSM). Data was acquired from 
14 participants using an 8-channel OpenBCI headset, with cognitive engagement stimulated through Raven’s Advanced Progressive Matrices 
(RAPM). Initially, the raw EEG data underwent bandpass filtering process purposely to remove noise. Subsequently, the data was divided into 
consecutive 1-second segments. For feature extraction, the CUSUM algorithm was employed, with an aim to effectively capture significant 
signal variations. These features were then fed into an LDA classifier for style discrimination. The performance evaluation revealed impressive 
results—98.26% accuracy in standard Train-Test validation, and an even higher 99.29% under LOOCV testing. Notably, our approach 
consistently outperformed existing techniques including 1-DCNN and TSMG across all metrics. Notably, computational efficiency and 
reliability were improved, with the "Odd-only" subset yielding peak accuracy (99.24%). These findings demonstrate that integrating EEG signals 
with conventional machine learning enables real-time, high-precision learning style detection. Additionally, this work addresses the 
computational constraints and dataset limitations observed in recent studies, providing a robust foundation for adaptive learning systems. It is 
recommended that future research explore larger, more diverse datasets and additional FSLSM dimensions to enhance generalizability and 
practical implementation of the research. 
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1. Introduction  

Learning styles refer to the preferred ways individuals 

absorb, process, and retain information, which significantly 

determine their academic performance and overall learning 

experience [1,2]. Identifying these styles is crucial for the 

personalization of education, enabling educators to tailor 

instructional methods and materials to meet the diverse needs 

of learners, thereby enhancing engagement and effectiveness  

[3,4]. Conventional assessment methods, such as 

questionnaires, frequently exhibit deficiencies in terms of 

accuracy and objectivity. This then has prompted researchers 

to explore automated detection techniques through machine 

learning and behavioral analysis [1,2]. Of these approaches, 

models such as the Felder-Silverman Learning Style Model 

(FSLSM) have demonstrated high efficacy in identifying 

learning styles through data-driven techniques, achieving 

notable accuracy rates [4,5]. This paradigm shift towards 

automated detection supports the development of adaptive 

learning environments that dynamically respond to individual 

learning preferences. 

Electroencephalogram (EEG) signals provide a viable 

approach for identifying learning preferences, delivering direct, 

moment-to-moment data on neural patterns linked to different 

cognitive functions. Contrasting to conventional methods, EEG 

directly captures neural patterns correlated to learning 

preferences, thereby reducing subjectivity and enhancing 

reliability. Contemporary research has employed 

electroencephalogram (EEG) recordings to enhance 

computational models in this domain. To illustrate this, 

Yuvaraj and colleagues (2024) [6] constructed an analytical 

system incorporating probabilistic metrics and ensemble 

decision trees, subsequently attaining a classification precision 

of 78.45%. Parallel findings by Zhang's team (2021) [7] 

proposed the Temporal-Spatial Multiscale Graph (TSMG) 

architecture, a neural network-based solution that elevated 

detection performance by 5 percentage points relative to 
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conventional techniques. These findings emphasize the 

potential of EEG in advancing personalized educational 

interventions, despite limitations such as high computational 

demands and reliance on public datasets that may lack 

diversity. 

However, existing literature on EEG-based learning style 

detection exhibits certain limitations. Numerous research 

efforts, such as those conducted by Yuvaraj and colleagues 

(2024) [6] and Zhang's research group (2021) [7], employed 

sophisticated algorithms such as neural networks and ensemble 

decision trees. Despite the efficiency of these techniques, their 

computational demands could pose challenges for 

implementation in resource-limited settings. Furthermore, 

reliance on standardized datasets may not adequately represent 

the variability in neurocognitive responses observed among 

different populations. To address these issues, this present 

study utilizes a self-collected dataset recorded from 14 

participants using an OpenBCI device. By leveraging the 

Cumulative Sum (CUSUM) method for feature extraction, the 

objective of this research is to capture rapid changes in EEG 

signals associated with learning styles, enabling efficient 

analysis without the necessity for computationally intensive 

processes. 

This research aims to enhance the precision and 

computational efficiency of learning style classification 

through EEG signal analysis. Utilizing EEG data obtained from 

14 participants, this research aims to differentiate Active and 

Reflective learning styles through the quantification of abrupt 

change employing the CUSUM method [8] and classification 

employing Linear Discriminant Analysis (LDA) [9]. This 

approach facilitates the more rapid analysis of the changes in 

EEG pattern without compromising accuracy. By addressing 

the computational and dataset limitations in prior studies, this 

research contributes to the development of a more practical and 

efficient framework for supporting learning style-based 

educational interventions. Recent research in Communications 

in Science and Technology has also explored machine learning-

based classification of EEG signals, demonstrating the 

relevance of efficient feature extraction and classification 

techniques in similar contexts [10]. 

2. Materials and Methods 

To ensure a comprehensive and systematic investigation of 

EEG-based learning style classification, this study was 

conducted through a series of structured phases. These include 

participant selection and experimental design, EEG data 

acquisition, and the presentation of stimuli during the recording 

sessions. The research workflow was subsequently established 

to guide the processing pipeline, followed by the 

implementation of appropriate data analysis techniques. The 

ensuing sections provide a comprehensive overview of each 

phase of the methodology, purposely to ensure transparent 

documentation of both experimental protocols and 

computational approaches implemented in this investigation. 

2.1. Participants and experimental design 

The EEG acquisition protocol was performed under 

standardized laboratory conditions to maintain signal integrity 

and experimental consistency. Fourteen university students 

(seven male, seven female) aged between 18 and 21 years were 

recruited for the study and classified in accordance to their 

dominant learning modalities using the Felder-Silverman 

Learning Style Model (FSLSM), with verification through the 

established Index of Learning Styles (ILS) instrument [11]. The 

cohort was balanced between Active and Reflective learner 

classifications. During experimental sessions, participants 

engaged with Raven's Advanced Progressive Matrices (RAPM) 

assessment, completing 10 standardized problems selected to 

trigger distinct cognitive states [12,13]. Each problem trial 

comprised two-timed phases, with a 15-second period allocated 

for problem comprehension followed by a subsequent 15- 

second period for response generation. Continuous EEG 

monitoring was employed to document dynamic neural 

responses throughout the experiment. 

2.2. EEG data acquisition 

Brainwave data was collected by means of an OpenBCI 

Cyton headset equipped with eight electrodes positioned at 

standard scalp locations (Fp1, Fp2, O1, O2, F3, F4, C3, and C4) 

in accordance with the 10-20 international system. The signal 

preprocessing stage involved the implementation of a bandpass 

filter with a frequency range of 13-30 Hz to extract Beta 

frequency components, proven to correlate with cognitive 

processing and mental exertion [14,15]. The continuous 

recordings were partitioned into non-overlapping 1-second 

epochs, generating a dataset that was uniformly distributed for 

computational analysis. Each temporal segment was 

systematically labeled according to the participant's 

predetermined learning style classification (Active/Reflective), 

thereby maintaining data integrity for subsequent pattern 

recognition tasks. 

 

Fig. 1. Participants (A: male, B: female) 

performing RAPM tests with EEG recording setup to capture brain activity 

during cognitive tasks 

The utilization of the OpenBCI EEG setup offered a balance 

between cost-efficiency and accuracy, capturing neural signals 

critical for studying cognitive processes. The setup adhered to 

the established protocols, as illustrated in Fig. 1, where 

participants were shown performing the RAPM test while EEG 

signals were recorded. 

As portrayed in Fig. 1, two participants, a male and a female, 

underwent cognitive stimulation using the RAPM test, in which 

brain activity was recorded via an 8-channel EEG system using 
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OpenBCI. The participants were wearing EEG caps connected 

to electrodes strategically positioned to capture neural signals. 

The acquired neural signals were wirelessly transmitted to a 

processing unit for immediate analysis, enabling continuous 

observation of cortical dynamics throughout task performance. 

The RAPM test, a device utilized to evaluate abstract reasoning 

and problem-solving skills, challenged the cognitive abilities of 

participants, rendering it an ideal tool for studying brain 

function during complex tasks [16]. 

Table 1. Dataset summary 

Number of participants 14 (7 Active, 7 Reflective) 

Age range 18–21 years 

EEG recording device OpenBCI (8 channels) 

Electrode placement system Fp1, Fp2, F3, F4, C3, C4, O1, O2 

Frequency range (bandpass filter) 13–30 Hz 

Task 
Raven’s Advanced Progressive 

Matrices (RAPM) 

Data segmentation 1-second intervals 

This dataset is highly valuable for studying the relationship 

between EEG signals and learning styles. The high-quality 

EEG signals with well-annotated labels has made it ideal for 

developing machine learning models. Table 1 provides a 

summary of the dataset structure, including the number of 

participants, recording duration, learning tasks, and EEG 

channel configuration. The experimental protocol was 

conducted in accordance with the guidelines stipulated from 

previous studies on the detection of EEG-based learning style  

[17]. 

The utilization of an 8-channel OpenBCI setup highlights a 

balance between cost-efficiency and the capacity to acquire 

critical neural data [18,19] . This configuration is particularly 

effective for focused studies requiring manageable data 

volumes while maintaining high reliability. The findings from 

these investigations provide insights into of mental processing 

mechanisms, electrophysiological signatures, and their 

correlation with task-solving efficiency. Furthermore, this 

methodology has shown promising utility for creating 

neuroadaptive systems, learning enhancement technologies, 

and individualized mental skill development frameworks. 

This objective of this study was to categorize learning styles 

into Active and Reflective based on the FSLSM through the 

analysis of by EEG signals. The experimental procedure 

comprised participant selection, EEG signal acquisition, 

feature extraction, and model training. 

2.3. Participants and experimental design 

The final study sample consisted of fourteen meticulously 

selected participants (aged 18-21 years, M=19.4, SD=0.8) 

undergoing rigorous screening with the Index of Learning 

Styles (ILS) questionnaire, yielding equal distribution between 

Active and Reflective learners (n=7 per group). The 

experimental sessions were conducted under standardized 

laboratory conditions to control environmental variables, 

employing established protocols that have previously validated 

the ILS as an effective tool for learning style classification. 

2.4. Stimuli and EEG data acquisition 

For cognitive assessment, RAPM, which is a gold-standard 

neuropsychological test with established reliability (α > 0.85) 

and validity for measuring fluid intelligence, was administered.  

The RAPM's pattern-completion design specifically assesses 

two key dimensions: (1) non-verbal abstract reasoning and (2) 

complex problem-solving under time constraints, rendering it 

particularly sensitive to individual differences in higher-order 

cognitive processing among young adults. The protocol 

administered 10 test items using a standardized two-phase trial 

structure: a 15-second stimulus presentation period followed by 

a 15-second response interval per item. This temporal 

configuration, derived from evidence-based experimental 

designs, was implemented to maintain cognitive load within 

optimal parameters while mitigating mental exhaustion effects. 

Neural signals were acquired via an 8-channel OpenBCI 

Cyton system with electrodes placed at standard 10-20 

locations covering four primary cortical regions: frontal (Fp1, 

Fp2), prefrontal (F3, F4), sensorimotor (C3, C4), and visual 

processing areas (O1, O2). This optimized configuration 

enabled reliable capture of task-related brain activity while 

balancing spatial resolution with practical experimental 

constraints. This configuration provides comprehensive 

coverage of cortical areas involved in diverse cognitive 

processes while maintaining the practical benefits of mobile 

EEG technology. This optimized montage provides balanced 

hemispheric coverage of key cortical areas involved in higher 

cognitive functions while maintaining the practical advantages 

of portable EEG systems. This consumer-grade EEG 

technology has been empirically validated in multiple studies 

[7,17], demonstrating comparable signal quality to research-

grade systems for cognitive monitoring applications, 

particularly in experimental paradigms requiring naturalistic 

participant movement and engagement. 

The structure of this research focuses on detecting learning 

styles based on EEG data using a systematic and data-driven 

approach. The workflow, as illustrated in Fig. 2, starts with the 

collection of raw EEG signals from participants engaged in 

cognitive tasks designed to differentiate Active and Reflective 

learners. The EEG data undergo pre-processing steps, including 

bandpass filtering (13–30 Hz) to isolate Beta wave activity 

relevant to cognitive processes and slicing the signals into 1-

second intervals for detailed analysis. 

For feature extraction, the CUSUM algorithm was employed 

purposely to detect statistically significant transitions in EEG 

patterns corresponding to cognitive state changes. The resulting 

feature vectors were then partitioned into distinct training 

(70%) and testing (30%) subsets using stratified sampling to 

maintain balanced class distributions across both datasets. The 

training set is employed to construct a classification model 

using LDA, which is selected for its simplicity and efficiency 

in managing any small datasets [20,21]. The classification 

model is validated on the testing set, where the predicted 

outputs are aggregated using a majority voting mechanism to 

determine the participant's learning style as either Active or 

Reflective.  
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2.5. Research workflow 

This structured approach ensures a balance between 

computational efficiency and classification accuracy. By 

leveraging well-established signal processing and machine 

learning techniques, this study addresses several primary 

challenges in detecting EEG-based learning style, as 

highlighted in prior studies [6,17]. 

 

Fig. 2. Research workflow for EEG-based learning style classification, 

including pre-processing, feature extraction, classification, and majority 

voting 

Fig. 2 illustrates the comprehensive analytical pipeline for 

the classification of EEG-based learning style (Active vs. 

Reflective). The workflow initiates with raw neural signals that 

undergo systematic pre-processing: (1) spectral filtering (13-30 

Hz bandpass) to extract task-relevant beta-band oscillations, 

followed by (2) temporal segmentation into 1-second epochs to 

capture transient cognitive signatures. Subsequent to this, the 

refined data enters the feature extraction phase where the 

CUSUM algorithm identifies transition points, which are 

statistically significant in cognitive engagement levels. These 

discriminative features successively feed into the classification 

module, which employs a machine learning model trained to 

distinguish between the two learning modalities based on 

characteristic neural patterns. 

Subsequent to the feature extraction, the dataset was divided 

into training (70%) and testing (30%) subsets by means of 

stratified sampling purposely to preserve class distribution. The 

training subset was utilized to develop the classification model, 

with LDA being employed for its efficacy demonstrated in 

neural pattern discrimination. Model performance was 

thoroughly evaluated on the held-out testing subset, with 

classification accuracy that served as the primary metric. The 

final output categorized each subject's learning style as either 

Active or Reflective based on their distinctive 

neurophysiological signatures. This end-to-end analytical 

pipeline transformed raw electrophysiological data into 

interpretable cognitive profiles, establishing a reliable 

methodology for personalized learning assessment. 

As presented in Table 2, the subjects have been distributed 

according to two categories: gender (male and female) and 

learning styles (active and reflective). The number of female 

subjects exhibiting an Active learning style was found to be the 

highest, with a total of 5 subject, indicating dominance in this 

category. In contrast, the number of male subjects with an 

Active learning style was significantly limited (only 2). For the 

Reflective learning style, males dominated with 4 subjects, 

while females accounted for 3. Overall, the total number of 

subjects was 14, demonstrating a varied distribution of learning 

styles by genders. 

Table 2. Distribution of subjects by gender (male and female) and learning 

style (active and reflective) 

Gender Class Number 

Male Active 2 

Female Active 5 

Male Reflective 4 

Female Reflective 3 

  14 

 

Fig. 3. Example questions from the Raven's advanced progressive matrices 

(RAPM) test 

Fig. 3 displays a representative item from the RAPM 

assessment. The RAPM assessment is a psychometrically 

validated instrument frequently employed to evaluate higher-

order cognitive functions including non-verbal abstract 

reasoning and complex problem-solving capacities. The 

primary grid contains a 3x3 matrix of patterns that adhere to a 

logical progression or rule. The task is purposely to determine 

the missing piece in the bottom-right corner by identifying the 

pattern or relationship among the given elements in rows or 

columns. The options numbered 1 to 8 represent possible 

answers, with only one fitting the logical sequence. The 

successful completion of these tasks demands the identification 

of spatial configurations, the inference of systematic 

connections among components, and the implementation of 

analytical cognition to arrive at accurate solutions. Such 

evaluative instruments specifically assess fluid cognitive 

capacity, expressing one's aptitude for adaptive logical thought 

and innovative problem-resolution when confronted with 

unfamiliar scenarios. 

2.6. Data analysis technique 

The data analysis in this research encompassed a multi-step 

process including pre-processing, feature extraction, and 

classification to accurately identify learning styles based on 

EEG signals. The pre-processing step incorporated the 
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implementation of a bandpass filter (13–30 Hz) to isolate Beta 

waves, which are associated with cognitive engagement and 

problem-solving [22,23]. The filtered signals subsequently 

were segmented into 1-second intervals to ascertain uniformity 

and facilitate the detailed feature extraction.  

This step is crucial to eliminate noise and artifacts, thereby 

enhancing the quality of the EEG signals for analysis. Feature 

extraction was performed utilizing the CUSUM method, which 

quantifies abrupt changes in the EEG signals [24,25]. CUSUM 

is mathematically defined as: 

1. Change point density 

D = N_cp/W                                            () 

Ncp: Number of change points in the time window 

W: Length of the time window 

2. Time between change points 

𝑇𝑎𝑣𝑔 =  
1

 𝑁𝑐𝑝−1
 ∑ (𝑡𝑖+1 − 𝑡𝑖)

𝑁𝑐𝑝−1

𝑖=1
                    () 

ti: Time or index of the i-th change point 

ti+1: Time or index of the next change point 

Ncp: Total number of change points in the window 

3. Magnitude of change 

M = 1/N_cp   ∑_(i=1)^(N_cp)▒〖|μ_post (i)- μ_pre (i)|〗       () 

µpost(i): Average value of segments after change point i 

µpre(i): Average value of segments before change point i 

Ncp: Total number of change points 

4. CUSUM value 

𝐶𝑈𝑆𝑈𝑀𝑖 =  ∑ (𝑥𝑗 −  𝜇)𝑖
𝑗=1                          () 

xj: The value of the j-th observation 

µ: The average (mean) or target value of the dataset 

𝐶𝑈𝑆𝑈𝑀𝑐𝑝𝑖
 : The CUSUM value at the i-th change point 

5. Duration of stable period 

𝑆 =  
1

𝑁𝑐𝑝−1
 ∑ (𝑡𝑖+1 − 𝑡𝑖)

𝑁𝑐𝑝−1

𝑖=1
                      () 

Ti: Time or index of the i-th change point 

Ti+1: Time or index of the next change point 

Ncp: Total number of change points 

For pattern classification, the implementation of LDA 

emerges as a prominent approach. LDA refers to a parametric 

statistical method that projects feature vectors onto a 

hyperplane, with the purpose of maximizing between-class 

variance while minimizing within-class dispersion. This 

transformation yields an optimal decision boundary in a 

reduced-dimensional space, effectively separating the Active 

and Reflective learner categories based on their distinct neural 

signatures. The operation of this algorithm entails the 

calculation of hyperplanes that simultaneously maximize inter-

class Euclidean distances and minimize intra-class scatters. 

This is accomplished through eigendecomposition of the 

feature covariance matrices, thereby achieving maximum class 

separability in the projected space. Mathematically, LDA aims 

to maximize the Fisher criterion. 

The model's performance was rigorously evaluated through 

dual validation approaches: (1) a conventional hold-out method 

utilizing a stratified 70-30 train-test partition [17,26], and (2) 

exhaustive leave-one-out cross-validation (LOOCV) [7,27,28]. 

Each observation sequentially served as an independent test set. 

This combined evaluation strategy ensured both computational 

efficiency and robust estimation of generalization capability 

across different validation paradigms. In the Train-Test scheme, 

the dataset was divided into 70% for training and 30% for 

testing to assess performance on previously unnoticed data. 

LOOCV, on the other hand, provides a more rigorous and 

exhaustive validation method iteratively utilizing a single 

sample for testing while the model is trained on all remaining 

samples. Given the high inter-subject variability of the EEG 

signal, leave-one-out cross-validation is implemented to better 

capture the model’s generalization across different individuals 

[7]. This method is particularly effective for small datasets, as 

it maximizes the utilization of available data and minimize 

variance in the evaluation process. By ensuring that every data 

point is used once as a test case, LOOCV offers a robust 

estimate of the model’s generalization ability. It is expected that 

this will yield enhanced accuracy and more reliable 

performance metrics for the assessment of the efficacy of the 

proposed framework. 

This method is consistent with earlier research that 

employed EEG data to categorize learning preferences [17,29]. 

In this study, the combination of robust feature extraction and 

classification techniques led to high accuracy while addressing 

computational challenges. This demonstrates the viability of 

EEG-based learning style detection. 

The effectiveness of the EEG-driven learning style 

identification model was assessed through two key indicators: 

classification accuracy and standard deviation. Accuracy 

quantified the percentage of correctly predicted learning styles 

relative to the total number of samples. 

The standard deviation was computed to evaluate the 

consistency of the model's results across various data partitions 

and cross-validation runs. Furthermore, the assessment 

examined performance on distinct data segments, including 

"Odd only" and "6–10," to analyze how varying data patterns 

influence classification precision. 

These evaluation metrics aim to confirm the effectiveness of 

combining the CUSUM method for feature extraction and LDA 

for classification in EEG-based learning style detection. The 

system's combination of strong predictive accuracy and 

minimal fluctuation highlights its suitability for dynamic 

adaptive learning systems. Subsequent research could enhance 

the analysis protocol through the integration of supplementary 

measures such as precision, recall, and F1-score, thereby 

enabling a more thorough evaluation of model effectiveness. 
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3. Results and Discussion 

The proposed CUSUM–LDA framework achieved an 

accuracy of 98.26% under the Train-Test evaluation scheme 

and further enhanced to 99.29% when assessed using LOOCV. 

This high classification performance indicates that the 

CUSUM-based feature extraction effectively captures abrupt 

EEG signal variations associated with cognitive transitions 

between Active and Reflective learning styles. 

The superior LOOCV result suggests strong generalization 

capability despite the limited dataset size, as each sample is 

iteratively tested against all remaining data, thereby reducing 

bias in performance estimation. 

The findings demonstrate that lightweight statistical 

classifiers, when combined with appropriate feature extraction, 

can achieve a level of accuracy comparable to or exceeding that 

of significantly more complex deep learning approaches while 

maintaining computational efficiency. This then renders the 

proposed method suitable for real-time and resource-

constrained educational applications. 

The detailed classification accuracy for each participant 

under the LOOCV scheme is presented in Table 3. 

Table 3. EEG Classification Accuracy per Subject Using Leave-One-Out 

Cross-Validation (LOOCV)  

Train Test All Odd Even 1-5 6-10 

N-S1 S1 100 100 100 80 100 

N-S2 S2 100 100 100 100 100 

N-S3 S3 100 90 100 100 100 

N-S4 S4 100 100 100 80 100 

N-S5 S5 95 100 100 80 100 

N-S6 S6 100 100 100 100 80 

N-S7 S7 100 100 100 100 100 

N-S8 S8 95 100 90 60 100 

N-S9 S9 100 90 100 100 100 

N-S10 S10 100 100 100 100 100 

N-S11 S11 100 90 100 100 100 

N-S12 S12 100 100 100 100 100 

N-S13 S13 100 100 90 100 100 

N-S14 S14 100 100 100 100 100 

 Avg 99.29 97.86 98.58 92.86 98.57 

 Stdev 1.75 4.10 3.5 12.21 5.15 

An analysis of different data subsets revealed notable 

performance variations across configurations. Of all evaluated 

subsets, the Odd-only subset achieved the highest classification 

accuracy of 99.24%, outperforming other subsets such as the 

6–10 configuration. 

This performance difference may be associated with 

variations in cognitive load and problem structure within the 

RAPM tasks, where certain item sequences could elicit more 

consistent reasoning strategies and EEG patterns. 

Odd-indexed RAPM items may induce more stable 

cognitive engagement, thereby enhancing the discriminative 

capability of CUSUM-based features. 

However, given that the difficulty level of individual RAPM 

items was not explicitly controlled in this study, these findings 

should be interpreted with caution and are acknowledged as a 

limitation, warranting further investigation in future work with 

controlled task difficulty. 

A summary of classification accuracy across different data 

subset configurations is provided in Table 4. 

Table 4. Accuracy results for different data subsets using the CUSUM method 

and LDA classifier 

Number Accuracy (%) 

All 98.48 

Odd-only 99.24 

Even-only 98.46 

1 – 5 98.39 

6 – 10 96.77 

Average 98.27 

Stdev 0.81 

When compared with existing approaches such as 1-DCNN 

and TSMG, the proposed CUSUM–LDA framework 

consistently demonstrated superior classification performance 

across all evaluation metrics. 

Though direct numerical comparisons should be interpreted 

cautiously due to differences in datasets, EEG acquisition 

devices, and experimental protocols, the observed performance 

gains indicate that effective feature extraction plays a crucial 

role in learning style discrimination. 

Contrasting to deep learning-based methods, which  require 

large datasets and extensive computational resources, the 

proposed approach leverages interpretable statistical features 

and a lightweight classifier, enabling high accuracy with 

minimal computational overhead. 

These findings suggest that simpler and more transparent 

models can rival, and in some cases outperform, complex deep 

learning architectures, particularly in scenarios involving 

limited data availability and real-time educational applications. 

Table 5 provides a summary of a comparative performance 

overview between the proposed method and previously 

published EEG-based learning style detection approaches. 

Table 5. Performance comparison of the proposed method with previous 

studies on EEG-based learning style detection 

Method Train-Test (%) LOOCV (%) 

[17] 1-DCNN 71.2 - 

[7] TSMG 72.35 72.65 ± 2.9 

Proposed 98.27 99.29 ± 1.75 

Overall, the experimental results and comparative analyses 

demonstrated that the proposed CUSUM–LDA framework has 

the potential to offer an effective, accurate, and 

computationally efficient solution for EEG-based learning style 

detection. The method has been shown to consistently 

outperform both conventional and deep learning-based 

approaches under limited data conditions. This highlights the 

importance of appropriate feature extraction and model 
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interpretability in educational signal processing. The findings 

in this study provide a robust basis for summarizing the key 

contributions of this study and outlining future research 

directions, as discussed in the subsequent conclusion. 

4. Conclusion 

This present study investigated the utilization of EEG signals 

for learning style detection based on FSLSM, with a specific 

focus on the Active and Reflective dimensions. EEG data were 

collected from 14 participants by means of an 8-channel 

OpenBCI device during cognitively demanding tasks based on 

RAPM and processed using bandpass filtering and 1-second 

segmentation. Feature extraction was performed utilizing the 

CUSUM algorithm, followed by classification with LDA. The 

proposed CUSUM–LDA framework demonstrated strong 

performance, achieving an accuracy of 98.26% under the 

Train-Test scheme and 99.29% using LOOCV, consistently 

outperforming previous approaches such as 1-DCNN and 

TSMG. These findings highlight the robustness, computational 

efficiency, and practical applicability of the proposed method, 

indicating that EEG-based learning style assessment provides a 

quantitative and empirically grounded alternative to 

conventional self-report instruments and supports the 

development of personalized adaptive learning systems. 

Nevertheless, this study is limited by the relatively small 

sample size and its focus on a single FSLSM dimension. It is 

recommended that future work involve larger and more diverse 

participant populations, explore additional learning style 

dimensions, and integrate real-time EEG processing and 

classification mechanisms to enhance generalizability and 

enable practical deployment in adaptive educational 

technologies. 
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