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Abstract

Recognizing the varying learning styles of students is vital to creating customized educational approaches and maximizing academic success.
While commonly used, conventional evaluation methods such as self-report surveys are frequently characterized by subjective biases and
inconsistent accuracy. To address this limitation, this present study proposes an EEG-driven approach for learning style classification,
specifically targeting the Active and Reflective dimensions of the Felder-Silverman Learning Style Model (FSLSM). Data was acquired from
14 participants using an 8-channel OpenBCI headset, with cognitive engagement stimulated through Raven’s Advanced Progressive Matrices
(RAPM). Initially, the raw EEG data underwent bandpass filtering process purposely to remove noise. Subsequently, the data was divided into
consecutive 1-second segments. For feature extraction, the CUSUM algorithm was employed, with an aim to effectively capture significant
signal variations. These features were then fed into an LDA classifier for style discrimination. The performance evaluation revealed impressive
results—98.26% accuracy in standard Train-Test validation, and an even higher 99.29% under LOOCV testing. Notably, our approach
consistently outperformed existing techniques including 1-DCNN and TSMG across all metrics. Notably, computational efficiency and
reliability were improved, with the "Odd-only" subset yielding peak accuracy (99.24%). These findings demonstrate that integrating EEG signals
with conventional machine learning enables real-time, high-precision learning style detection. Additionally, this work addresses the
computational constraints and dataset limitations observed in recent studies, providing a robust foundation for adaptive learning systems. It is
recommended that future research explore larger, more diverse datasets and additional FSLSM dimensions to enhance generalizability and
practical implementation of the research.
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1. Introduction

Learning styles refer to the preferred ways individuals
absorb, process, and retain information, which significantly
determine their academic performance and overall learning
experience [1,2]. Identifying these styles is crucial for the
personalization of education, enabling educators to tailor
instructional methods and materials to meet the diverse needs
of learners, thereby enhancing engagement and effectiveness
[3,4]. Conventional assessment methods, such as
questionnaires, frequently exhibit deficiencies in terms of
accuracy and objectivity. This then has prompted researchers
to explore automated detection techniques through machine
learning and behavioral analysis [1,2]. Of these approaches,
models such as the Felder-Silverman Learning Style Model
(FSLSM) have demonstrated high efficacy in identifying
learning styles through data-driven techniques, achieving
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notable accuracy rates [4,5]. This paradigm shift towards
automated detection supports the development of adaptive
learning environments that dynamically respond to individual
learning preferences.

Electroencephalogram (EEG) signals provide a viable
approach for identifying learning preferences, delivering direct,
moment-to-moment data on neural patterns linked to different
cognitive functions. Contrasting to conventional methods, EEG
directly captures neural patterns correlated to learning
preferences, thereby reducing subjectivity and enhancing
reliability.  Contemporary  research  has  employed
electroencephalogram  (EEG) recordings to enhance
computational models in this domain. To illustrate this,
Yuvaraj and colleagues (2024) [6] constructed an analytical
system incorporating probabilistic metrics and ensemble
decision trees, subsequently attaining a classification precision
of 78.45%. Parallel findings by Zhang's team (2021) [7]
proposed the Temporal-Spatial Multiscale Graph (TSMG)
architecture, a neural network-based solution that elevated
detection performance by 5 percentage points relative to
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conventional techniques. These findings emphasize the
potential of EEG in advancing personalized educational
interventions, despite limitations such as high computational
demands and reliance on public datasets that may lack
diversity.

However, existing literature on EEG-based learning style
detection exhibits certain limitations. Numerous research
efforts, such as those conducted by Yuvaraj and colleagues
(2024) [6] and Zhang's research group (2021) [7], employed
sophisticated algorithms such as neural networks and ensemble
decision trees. Despite the efficiency of these techniques, their
computational demands could pose challenges for
implementation in resource-limited settings. Furthermore,
reliance on standardized datasets may not adequately represent
the variability in neurocognitive responses observed among
different populations. To address these issues, this present
study utilizes a self-collected dataset recorded from 14
participants using an OpenBCI device. By leveraging the
Cumulative Sum (CUSUM) method for feature extraction, the
objective of this research is to capture rapid changes in EEG
signals associated with learning styles, enabling efficient
analysis without the necessity for computationally intensive
processes.

This research aims to enhance the precision and
computational efficiency of learning style classification
through EEG signal analysis. Utilizing EEG data obtained from
14 participants, this research aims to differentiate Active and
Reflective learning styles through the quantification of abrupt
change employing the CUSUM method [8] and classification
employing Linear Discriminant Analysis (LDA) [9]. This
approach facilitates the more rapid analysis of the changes in
EEG pattern without compromising accuracy. By addressing
the computational and dataset limitations in prior studies, this
research contributes to the development of a more practical and
efficient framework for supporting learning style-based
educational interventions. Recent research in Communications
in Science and Technology has also explored machine learning-
based classification of EEG signals, demonstrating the
relevance of efficient feature extraction and classification
techniques in similar contexts [10].

2. Materials and Methods

To ensure a comprehensive and systematic investigation of
EEG-based learning style classification, this study was
conducted through a series of structured phases. These include
participant selection and experimental design, EEG data
acquisition, and the presentation of stimuli during the recording
sessions. The research workflow was subsequently established
to guide the processing pipeline, followed by the
implementation of appropriate data analysis techniques. The
ensuing sections provide a comprehensive overview of each
phase of the methodology, purposely to ensure transparent
documentation of both experimental protocols and
computational approaches implemented in this investigation.

2.1. Participants and experimental design

The EEG acquisition protocol was performed under
standardized laboratory conditions to maintain signal integrity

and experimental consistency. Fourteen university students
(seven male, seven female) aged between 18 and 21 years were
recruited for the study and classified in accordance to their
dominant learning modalities using the Felder-Silverman
Learning Style Model (FSLSM), with verification through the
established Index of Learning Styles (ILS) instrument [11]. The
cohort was balanced between Active and Reflective learner
classifications. During experimental sessions, participants
engaged with Raven's Advanced Progressive Matrices (RAPM)
assessment, completing 10 standardized problems selected to
trigger distinct cognitive states [12,13]. Each problem trial
comprised two-timed phases, with a 15-second period allocated
for problem comprehension followed by a subsequent 15-
second period for response generation. Continuous EEG
monitoring was employed to document dynamic neural
responses throughout the experiment.

2.2. EEG data acquisition

Brainwave data was collected by means of an OpenBClI
Cyton headset equipped with eight electrodes positioned at
standard scalp locations (Fp1, Fp2, O1, O2, F3, F4, C3, and C4)
in accordance with the 10-20 international system. The signal
preprocessing stage involved the implementation of a bandpass
filter with a frequency range of 13-30 Hz to extract Beta
frequency components, proven to correlate with cognitive
processing and mental exertion [14,15]. The continuous
recordings were partitioned into non-overlapping 1-second
epochs, generating a dataset that was uniformly distributed for
computational analysis. Each temporal segment was
systematically labeled according to the participant's

predetermined learning style classification (Active/Reflective),
thereby maintaining data integrity for subsequent pattern
recognition tasks.

Fig. 1. Participants (A: male, B: female)
performing RAPM tests with EEG recording setup to capture brain activity

during cognitive tasks

The utilization of the OpenBCI EEG setup offered a balance
between cost-efficiency and accuracy, capturing neural signals
critical for studying cognitive processes. The setup adhered to
the established protocols, as illustrated in Fig. 1, where
participants were shown performing the RAPM test while EEG
signals were recorded.

As portrayed in Fig. 1, two participants, a male and a female,
underwent cognitive stimulation using the RAPM test, in which
brain activity was recorded via an 8-channel EEG system using
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OpenBCI. The participants were wearing EEG caps connected
to electrodes strategically positioned to capture neural signals.
The acquired neural signals were wirelessly transmitted to a
processing unit for immediate analysis, enabling continuous
observation of cortical dynamics throughout task performance.
The RAPM test, a device utilized to evaluate abstract reasoning
and problem-solving skills, challenged the cognitive abilities of
participants, rendering it an ideal tool for studying brain
function during complex tasks [16].

Table 1. Dataset summary

Number of participants 14 (7 Active, 7 Reflective)

Age range 18-21 years

EEG recording device OpenBCI (8 channels)

Electrode placement system Fpl, Fp2, F3, F4, C3, C4, O1, 02

Frequency range (bandpass filter) 13-30 Hz

Raven’s Advanced Progressive
Matrices (RAPM)

Task

Data segmentation 1-second intervals

This dataset is highly valuable for studying the relationship
between EEG signals and learning styles. The high-quality
EEG signals with well-annotated labels has made it ideal for
developing machine learning models. Table 1 provides a
summary of the dataset structure, including the number of
participants, recording duration, learning tasks, and EEG
channel configuration. The experimental protocol was
conducted in accordance with the guidelines stipulated from
previous studies on the detection of EEG-based learning style
[17].

The utilization of an 8-channel OpenBCI setup highlights a
balance between cost-efficiency and the capacity to acquire
critical neural data [18,19] . This configuration is particularly
effective for focused studies requiring manageable data
volumes while maintaining high reliability. The findings from
these investigations provide insights into of mental processing
mechanisms, electrophysiological signatures, and their
correlation with task-solving efficiency. Furthermore, this
methodology has shown promising utility for creating
neuroadaptive systems, learning enhancement technologies,
and individualized mental skill development frameworks.

This objective of this study was to categorize learning styles
into Active and Reflective based on the FSLSM through the
analysis of by EEG signals. The experimental procedure
comprised participant selection, EEG signal acquisition,
feature extraction, and model training.

2.3. Participants and experimental design

The final study sample consisted of fourteen meticulously
selected participants (aged 18-21 years, M=19.4, SD=0.8)
undergoing rigorous screening with the Index of Learning
Styles (ILS) questionnaire, yielding equal distribution between
Active and Reflective learners (n=7 per group). The
experimental sessions were conducted under standardized
laboratory conditions to control environmental variables,

employing established protocols that have previously validated
the ILS as an effective tool for learning style classification.

2.4. Stimuli and EEG data acquisition

For cognitive assessment, RAPM, which is a gold-standard
neuropsychological test with established reliability (o > 0.85)
and validity for measuring fluid intelligence, was administered.
The RAPM's pattern-completion design specifically assesses
two key dimensions: (1) non-verbal abstract reasoning and (2)
complex problem-solving under time constraints, rendering it
particularly sensitive to individual differences in higher-order
cognitive processing among young adults. The protocol
administered 10 test items using a standardized two-phase trial
structure: a 15-second stimulus presentation period followed by
a 15-second response interval per item. This temporal
configuration, derived from evidence-based experimental
designs, was implemented to maintain cognitive load within
optimal parameters while mitigating mental exhaustion effects.

Neural signals were acquired via an 8-channel OpenBCI
Cyton system with electrodes placed at standard 10-20
locations covering four primary cortical regions: frontal (Fpl,
Fp2), prefrontal (F3, F4), sensorimotor (C3, C4), and visual
processing areas (O1, O2). This optimized configuration
enabled reliable capture of task-related brain activity while
balancing spatial resolution with practical experimental
constraints. This configuration provides comprehensive
coverage of cortical areas involved in diverse cognitive
processes while maintaining the practical benefits of mobile
EEG technology. This optimized montage provides balanced
hemispheric coverage of key cortical areas involved in higher
cognitive functions while maintaining the practical advantages
of portable EEG systems. This consumer-grade EEG
technology has been empirically validated in multiple studies
[7,17], demonstrating comparable signal quality to research-
grade systems for cognitive monitoring applications,
particularly in experimental paradigms requiring naturalistic
participant movement and engagement.

The structure of this research focuses on detecting learning
styles based on EEG data using a systematic and data-driven
approach. The workflow, as illustrated in Fig. 2, starts with the
collection of raw EEG signals from participants engaged in
cognitive tasks designed to differentiate Active and Reflective
learners. The EEG data undergo pre-processing steps, including
bandpass filtering (13-30 Hz) to isolate Beta wave activity
relevant to cognitive processes and slicing the signals into 1-
second intervals for detailed analysis.

For feature extraction, the CUSUM algorithm was employed
purposely to detect statistically significant transitions in EEG
patterns corresponding to cognitive state changes. The resulting
feature vectors were then partitioned into distinct training
(70%) and testing (30%) subsets using stratified sampling to
maintain balanced class distributions across both datasets. The
training set is employed to construct a classification model
using LDA, which is selected for its simplicity and efficiency
in managing any small datasets [20,21]. The classification
model is validated on the testing set, where the predicted
outputs are aggregated using a majority voting mechanism to
determine the participant's learning style as either Active or
Reflective.
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2.5. Research workflow

This structured approach ensures a balance between
computational efficiency and classification accuracy. By
leveraging well-established signal processing and machine
learning techniques, this study addresses several primary

challenges in detecting EEG-based learning style, as
highlighted in prior studies [6,17].
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Fig. 2. Research workflow for EEG-based learning style classification,
including pre-processing, feature extraction, classification, and majority

voting

Fig. 2 illustrates the comprehensive analytical pipeline for
the classification of EEG-based learning style (Active vs.
Reflective). The workflow initiates with raw neural signals that
undergo systematic pre-processing: (1) spectral filtering (13-30
Hz bandpass) to extract task-relevant beta-band oscillations,
followed by (2) temporal segmentation into 1-second epochs to
capture transient cognitive signatures. Subsequent to this, the
refined data enters the feature extraction phase where the
CUSUM algorithm identifies transition points, which are
statistically significant in cognitive engagement levels. These
discriminative features successively feed into the classification
module, which employs a machine learning model trained to
distinguish between the two learning modalities based on
characteristic neural patterns.

Subsequent to the feature extraction, the dataset was divided
into training (70%) and testing (30%) subsets by means of
stratified sampling purposely to preserve class distribution. The
training subset was utilized to develop the classification model,
with LDA being employed for its efficacy demonstrated in
neural pattern discrimination. Model performance was
thoroughly evaluated on the held-out testing subset, with
classification accuracy that served as the primary metric. The
final output categorized each subject's learning style as either
Active or Reflective based on their distinctive
neurophysiological signatures. This end-to-end analytical
pipeline transformed raw electrophysiological data into
interpretable cognitive profiles, establishing a reliable
methodology for personalized learning assessment.

As presented in Table 2, the subjects have been distributed
according to two categories: gender (male and female) and
learning styles (active and reflective). The number of female

subjects exhibiting an Active learning style was found to be the
highest, with a total of 5 subject, indicating dominance in this
category. In contrast, the number of male subjects with an
Active learning style was significantly limited (only 2). For the
Reflective learning style, males dominated with 4 subjects,
while females accounted for 3. Overall, the total number of
subjects was 14, demonstrating a varied distribution of learning
styles by genders.

Table 2. Distribution of subjects by gender (male and female) and learning
style (active and reflective)

Gender Class Number
Male Active 2
Female Active 5
Male Reflective 4
Female Reflective 3

14
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Fig. 3. Example questions from the Raven's advanced progressive matrices
(RAPM) test

Fig. 3 displays a representative item from the RAPM
assessment. The RAPM assessment is a psychometrically
validated instrument frequently employed to evaluate higher-
order cognitive functions including non-verbal abstract
reasoning and complex problem-solving capacities. The
primary grid contains a 3x3 matrix of patterns that adhere to a
logical progression or rule. The task is purposely to determine
the missing piece in the bottom-right corner by identifying the
pattern or relationship among the given elements in rows or
columns. The options numbered 1 to 8 represent possible
answers, with only one fitting the logical sequence. The
successful completion of these tasks demands the identification
of spatial configurations, the inference of systematic
connections among components, and the implementation of
analytical cognition to arrive at accurate solutions. Such
evaluative instruments specifically assess fluid cognitive
capacity, expressing one's aptitude for adaptive logical thought
and innovative problem-resolution when confronted with
unfamiliar scenarios.

2.6. Data analysis technique

The data analysis in this research encompassed a multi-step
process including pre-processing, feature extraction, and
classification to accurately identify learning styles based on
EEG signals. The pre-processing step incorporated the
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implementation of a bandpass filter (13—30 Hz) to isolate Beta
waves, which are associated with cognitive engagement and
problem-solving [22,23]. The filtered signals subsequently
were segmented into 1-second intervals to ascertain uniformity
and facilitate the detailed feature extraction.

This step is crucial to eliminate noise and artifacts, thereby
enhancing the quality of the EEG signals for analysis. Feature
extraction was performed utilizing the CUSUM method, which
quantifies abrupt changes in the EEG signals [24,25]. CUSUM
is mathematically defined as:

1. Change point density
D=N cp/W (1)

Nep: Number of change points in the time window
W: Length of the time window

2. Time between change points

1

Nep—1
Nep—1 T2 (i —t) (2)

Tavg =

ti: Time or index of the i-th change point
ti+1: Time or index of the next change point
N¢p: Total number of change points in the window

3. Magnitude of change

M=1/N_cp Y (i=D N_cp)i [Ju_post (i)- p_pre (i)|] 3)

ppost(i): Average value of segments after change point i
upre(i): Average value of segments before change point i
Ncp: Total number of change points

4. CUSUM value
CUSUM; = T4 (x; — 1) 4)

xj: The value of the j-th observation
p: The average (mean) or target value of the dataset

CUSUM_,, : The CUSUM value at the i-th change point

5. Duration of stable period

1 Nep—1

S = Ncp_l Zizl

(tivr — tp) )

Ti: Time or index of the i-th change point
Ti+1: Time or index of the next change point
Ncp: Total number of change points

For pattern classification, the implementation of LDA
emerges as a prominent approach. LDA refers to a parametric
statistical method that projects feature vectors onto a
hyperplane, with the purpose of maximizing between-class
variance while minimizing within-class dispersion. This
transformation yields an optimal decision boundary in a
reduced-dimensional space, effectively separating the Active

and Reflective learner categories based on their distinct neural
signatures. The operation of this algorithm entails the
calculation of hyperplanes that simultaneously maximize inter-
class Euclidean distances and minimize intra-class scatters.
This is accomplished through eigendecomposition of the
feature covariance matrices, thereby achieving maximum class
separability in the projected space. Mathematically, LDA aims
to maximize the Fisher criterion.

The model's performance was rigorously evaluated through
dual validation approaches: (1) a conventional hold-out method
utilizing a stratified 70-30 train-test partition [17,26], and (2)
exhaustive leave-one-out cross-validation (LOOCV) [7,27,28].
Each observation sequentially served as an independent test set.
This combined evaluation strategy ensured both computational
efficiency and robust estimation of generalization capability
across different validation paradigms. In the Train-Test scheme,
the dataset was divided into 70% for training and 30% for
testing to assess performance on previously unnoticed data.
LOOCY, on the other hand, provides a more rigorous and
exhaustive validation method iteratively utilizing a single
sample for testing while the model is trained on all remaining
samples. Given the high inter-subject variability of the EEG
signal, leave-one-out cross-validation is implemented to better
capture the model’s generalization across different individuals
[7]. This method is particularly effective for small datasets, as
it maximizes the utilization of available data and minimize
variance in the evaluation process. By ensuring that every data
point is used once as a test case, LOOCV offers a robust
estimate of the model’s generalization ability. It is expected that
this will yield enhanced accuracy and more reliable
performance metrics for the assessment of the efficacy of the
proposed framework.

This method is consistent with earlier research that
employed EEG data to categorize learning preferences [17,29].
In this study, the combination of robust feature extraction and
classification techniques led to high accuracy while addressing
computational challenges. This demonstrates the viability of
EEG-based learning style detection.

The effectiveness of the EEG-driven learning style
identification model was assessed through two key indicators:
classification accuracy and standard deviation. Accuracy
quantified the percentage of correctly predicted learning styles
relative to the total number of samples.

The standard deviation was computed to evaluate the
consistency of the model's results across various data partitions
and cross-validation runs. Furthermore, the assessment
examined performance on distinct data segments, including
"Odd only" and "6—-10," to analyze how varying data patterns
influence classification precision.

These evaluation metrics aim to confirm the effectiveness of
combining the CUSUM method for feature extraction and LDA
for classification in EEG-based learning style detection. The
system's combination of strong predictive accuracy and
minimal fluctuation highlights its suitability for dynamic
adaptive learning systems. Subsequent research could enhance
the analysis protocol through the integration of supplementary
measures such as precision, recall, and Fl-score, thereby
enabling a more thorough evaluation of model effectiveness.
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3. Results and Discussion

The proposed CUSUM-LDA framework achieved an
accuracy of 98.26% under the Train-Test evaluation scheme
and further enhanced to 99.29% when assessed using LOOCV.

This high classification performance indicates that the
CUSUM-based feature extraction effectively captures abrupt
EEG signal variations associated with cognitive transitions
between Active and Reflective learning styles.

The superior LOOCV result suggests strong generalization
capability despite the limited dataset size, as each sample is
iteratively tested against all remaining data, thereby reducing
bias in performance estimation.

The findings demonstrate that lightweight statistical
classifiers, when combined with appropriate feature extraction,
can achieve a level of accuracy comparable to or exceeding that
of significantly more complex deep learning approaches while
maintaining computational efficiency. This then renders the
proposed method suitable for real-time and resource-
constrained educational applications.

The detailed classification accuracy for each participant
under the LOOCYV scheme is presented in Table 3.

Table 3. EEG Classification Accuracy per Subject Using Leave-One-Out
Cross-Validation (LOOCV)

Train Test All Odd  Even 1-5 6-10
N-S1 S1 100 100 100 80 100
N-S2 S2 100 100 100 100 100
N-S3 S3 100 90 100 100 100
N-S4 S4 100 100 100 80 100
N-S5 S5 95 100 100 80 100
N-S6 S6 100 100 100 100 80
N-S7 S7 100 100 100 100 100
N-S8 S8 95 100 90 60 100
N-S9 S9 100 90 100 100 100
N-S10 S10 100 100 100 100 100
N-S11 S11 100 90 100 100 100
N-S12 S12 100 100 100 100 100
N-S13 S13 100 100 90 100 100
N-S14 S14 100 100 100 100 100

Avg 99.29 97.86 98.58 92.86 98.57
Stdev 1.75  4.10 3.5 1221 5.15

An analysis of different data subsets revealed notable
performance variations across configurations. Of all evaluated
subsets, the Odd-only subset achieved the highest classification
accuracy of 99.24%, outperforming other subsets such as the
6-10 configuration.

This performance difference may be associated with
variations in cognitive load and problem structure within the
RAPM tasks, where certain item sequences could elicit more
consistent reasoning strategies and EEG patterns.

Odd-indexed RAPM items may induce more stable
cognitive engagement, thereby enhancing the discriminative
capability of CUSUM-based features.

However, given that the difficulty level of individual RAPM

items was not explicitly controlled in this study, these findings
should be interpreted with caution and are acknowledged as a
limitation, warranting further investigation in future work with
controlled task difficulty.

A summary of classification accuracy across different data
subset configurations is provided in Table 4.

Table 4. Accuracy results for different data subsets using the CUSUM method

and LDA classifier
Number Accuracy (%)

All 98.48
Odd-only 99.24
Even-only 98.46
1-5 98.39
6—-10 96.77
Average 98.27
Stdev 0.81

When compared with existing approaches such as 1-DCNN
and TSMG, the proposed CUSUM-LDA framework
consistently demonstrated superior classification performance
across all evaluation metrics.

Though direct numerical comparisons should be interpreted
cautiously due to differences in datasets, EEG acquisition
devices, and experimental protocols, the observed performance
gains indicate that effective feature extraction plays a crucial
role in learning style discrimination.

Contrasting to deep learning-based methods, which require
large datasets and extensive computational resources, the
proposed approach leverages interpretable statistical features
and a lightweight classifier, enabling high accuracy with
minimal computational overhead.

These findings suggest that simpler and more transparent
models can rival, and in some cases outperform, complex deep
learning architectures, particularly in scenarios involving
limited data availability and real-time educational applications.

Table 5 provides a summary of a comparative performance
overview between the proposed method and previously
published EEG-based learning style detection approaches.

Table 5. Performance comparison of the proposed method with previous

studies on EEG-based learning style detection

Method Train-Test (%) LOOCYV (%)
[17] 1-DCNN 712 -
[7] TSMG 72.35 72.65+2.9
Proposed 98.27 99.29+1.75

Overall, the experimental results and comparative analyses
demonstrated that the proposed CUSUM-LDA framework has
the potential to offer an effective, accurate, and
computationally efficient solution for EEG-based learning style
detection. The method has been shown to consistently
outperform both conventional and deep learning-based
approaches under limited data conditions. This highlights the
importance of appropriate feature extraction and model
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interpretability in educational signal processing. The findings
in this study provide a robust basis for summarizing the key
contributions of this study and outlining future research
directions, as discussed in the subsequent conclusion.

4. Conclusion

This present study investigated the utilization of EEG signals
for learning style detection based on FSLSM, with a specific
focus on the Active and Reflective dimensions. EEG data were
collected from 14 participants by means of an 8-channel
OpenBCI device during cognitively demanding tasks based on
RAPM and processed using bandpass filtering and 1-second
segmentation. Feature extraction was performed utilizing the
CUSUM algorithm, followed by classification with LDA. The
proposed CUSUM-LDA framework demonstrated strong
performance, achieving an accuracy of 98.26% under the
Train-Test scheme and 99.29% using LOOCYV, consistently
outperforming previous approaches such as 1-DCNN and
TSMG. These findings highlight the robustness, computational
efficiency, and practical applicability of the proposed method,
indicating that EEG-based learning style assessment provides a
quantitative and empirically grounded alternative to
conventional self-report instruments and supports the
development of personalized adaptive learning systems.
Nevertheless, this study is limited by the relatively small
sample size and its focus on a single FSLSM dimension. It is
recommended that future work involve larger and more diverse
participant populations, explore additional learning style
dimensions, and integrate real-time EEG processing and
classification mechanisms to enhance generalizability and
enable practical deployment in adaptive educational
technologies.
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