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Abstract

This present study develops an analytical model for mutual visibility in perturbed Low Earth Orbit (LEO), explicitly accounting for Earth’s
oblateness (J2 and Js) and atmospheric drag. The framework extends classical geometric visibility calculations to include long-term perturbation
effects, thus enabling rapid and reliable prediction of visibility intervals. A series of numerical simulations were conducted on three LEO satellite
configurations and revealed that perturbations have the capacity to shift rise—set times, alter event frequency and duration, and generate new
visibility intervals. These effects are of particular significance for satellites operating at lower altitudes and those characterized with moderate
semi-major axis differences and large inclination disparities. The results of the study underscore the importance of considering secular and long-
period perturbations into the planning of reliable communication relay, the management of constellation, and the scheduling of autonomous
mission. Importantly, the closed-form formulation enables fast visibility and rise—set prediction without full numerical orbit propagation,

supporting preliminary constellation design, inter-satellite link scheduling, and onboard visibility assessment in large LEO networks.
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1. Introduction

Mutual visibility between satellites in Low Earth Orbit
(LEO) is crucial for continuous inter-satellite communication,
data relaying, and coordinated mission operations. The rise—set
problem determining when two satellites establish or lose a
direct line of sight, remains central to the design of crosslink
networks, constellation scheduling, and autonomous
operations. However, such predictions are significantly
influenced by orbital perturbations, particularly Earth’s
oblateness and atmospheric drag. These effects are particularly
significant in long-duration analyses, where even minor
deviations in orbital elements can accumulate into substantial
shifts in visibility windows. The issue of visibility has been
comprehensively addressed in a substantial corpus of literature.
In the early stages of analytical research, Escobal [1] provided
closed-form formulas to calculate rise—set times around an
oblate Earth. Concurrently, Roth [2] examined the factors
influencing visibility duration and elevation angle. Lawton [3]
subsequently introduced a numerical method adapted for
satellites in near-circular orbits, and Alfano et al. [4] extended
these calculations by incorporating oblateness corrections. Sun
et al. [5] refined Alfano’s method and introduced an innovative
approach to enhance both efficiency and accuracy. As posited
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by Han et al. [6], a Hermite interpolation technique was
proposed for the expeditious determination of satellite-to-site
visibility. Li et al. [8] developed an adaptive interpolation
algorithm with vertex protection to achieve more precise and
efficient solutions to the satellite visibility period problem.
Wang et al. [7] formulated a mathematical model for predicting
satellite-to-site and satellite-to-satellite visibility, framing it as
a root-finding problem involving multiple hump functions.
Awad et al. [9] studied same-orbit visibility functions, while
Ammar et al. [10,11] incorporated the effects of drag and
oblateness separately. Amin and Hassan [12] further
demonstrated the role of lunar perturbations on satellite
visibility intervals. Satellite-based systems are increasingly
relied upon for Earth observation and positioning, thereby
motivating the efficient prediction of mutual-visibility in LEO
networks, as discussed in D. Atunggal et al.[13] . Despite these
significant contributions, most analytical treatments address
perturbations individually rather than in a unified framework.
This methodological shortcoming, consequently, limits their
accuracy in realistic mission scenarios. In turn, this present
study addresses this gap by developing an analytical model for
mutual visibility in perturbed LEO orbits. The approach
combines classical geometric visibility conditions with
perturbative corrections obtained from Lagrange’s and Gauss’s
variational equations. By incorporating secular and long-period
effects of Earth’s oblateness (J2, Js) and atmospheric drag, the
model enables closed-form visibility predictions in terms of
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orbital elements and mean anomalies. Numerical case studies
involving multiple LEO satellite configurations demonstrate
that such perturbations can shift rise—set times, increase event
frequency and duration, and even generate new visibility
opportunities. In this way, the model provides a practical
analytical tool for more reliable mission planning, constellation
management, and autonomous scheduling in emerging large-
scale LEO networks.

2. Materials and Methods
2.1. Problem formulation

Consider two satellites located in distinct orbits, which are
denoted as points S; and S,, respectively. Let i denote the
angle between the two position vectors 7; and 7, where 7; =
(x;,v;,2;) ,i = 1,2. Define the range vector p as the vector
from satellite S; to satellite S,, as geometrically illustrated in
Fig. 1.

Fig. 1. Geometrical framework of the problem

Let O denote the Earth’s center and P a point lying on the
position vector p. In this context, P is taken as the closest point
of the line-of-sight p to O. The distance OP is given by OP =
Re + h, where, R, is the Earth's mean radius and # is the altitude
of point P above the Earth’s surface. The satellites are
considered mutually visible only when 2> 0; If h=0o0r 4 <0,
the line of sight is obstructed. Formally, the visibility condition
is presented as follows:

>0 visibility achieved
h<=0 rise or set case condition (1)
<0 visibility not achieved

x = 1 cos(f) (sin2 (%) cos(w — ) + cos? <%) cos(w + !2))
— rsin(f) (sin2 (%) sin(w — 2) + cos? (i) sin(w + .(2))

2.1.1. Visibility function derivation

The geometric relationship between the satellites can be
expressed as follows:

7Ty — \/rf — (R, + h)ZJr22 —(R.+h1)?=(R,+h)? (2
which can be rearranged to:
le r22 - (Fl * Fz)z = (Re + h)z((l‘lz + rzz) - 2(?1 * Fz)) (3)

This then leads to:

Py — (P - 1,)?

h= J(rlz 1,0 - 20, )

R, 4)

Visibility between satellites is achieved only if

r?r2 — (F - 5)?2 > RE((r 2 + 1) — 2(F, - 1)) ®)
Introducing the visibility function V-

V=R2((r2+n?2) -2 %)) —n’r?+@ %)? (6)

the visibility condition can be succinctly expressed as follows:

(< 0 visibility achieved
V= 0 rise or set (7)
>0 visibility not achieved

2.1.2. Orbital representation

To express V in terms of the orbital elements, we
computed #,and 7,, using the following expressions for
satellite coordinates in an inertial frame [15]
x = r(cos(Q) cos(w + f) — sin(Q) sin(w + f) cos(i))
vy = r(sin(Q) cos(w + f) + cos(Q) sin(w + f) cos(i)) (8)
z = rsin(w + f) sin(i)
where f denotes the true anomaly, w signifies the argument of
perigee, () represents the right ascension of the ascending node,

and i designates the inclination. The rearrangement process
then yielded the following results:

(9a)
2
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i i (9b)
+ rsin(f) <c052 (E) cos(w + ) — sin? (E) cos(w — .(2))
i i
z = 2sin (E) cos (E) (rsin(f) cos(w) + r cos(f) sin(w)) (9¢)
The expression of r, r sin f and r cos f as functions of M and  following result: [16]
expanding to fourth order in in eccentricity e, yielded the
= (1+12)+< +33> (M)+( 12+14) zm) g2 (3m) Lt (4M)
r=a 5€ e+ge’cos e’ +5et)cos g cos ¢ cos (10a)
3 3 5 1 1 3 45
rcos(f) =a (——e + <1 ——e?+ —64) cos(M) + (—e ——63) cos(2M) + (—ez ——64) cos(3M)
2 1 8 1{3225 2 3 8 128 (10b)
2.3 4
+ 3¢ cos(4M) + 384 ¢ cos(SM))
5 11 1 5 3 51
: — __p2 _ T L4 3 I | 3 _ 52 _ L4 :
r sin(f) a((l 3¢ ~197°¢ )sm(M)+(Ze ¢ )51n(2M)+(8e 58¢ )sm(SM) (106)

1., 125 ,
+ 3e sin(4M) + 3846 sm(5M)>
Remark. Although the eccentricities of the configurations
considered later were very small (e < 0.01; Table 2), the
expansions in Eq. (10) were carried out up to fourth order in e,
thereby ensuring the validity of resulting expressions for
moderately eccentric LEO orbits. For such small values of e, a
second—order truncation would already provide excellent
accuracy; however, retaining the e* terms ensured uniform
applicability of the visibility formulation without requiring

X

2 8"

1 5 3 51
+ (—e- - —e-3) sin(2M;) + (ge]-z ———ef

27 127

. ? 3
Vi =a; (Cosz <%) sin(a)j + .(Zj) — sin? (%1) sin(a)j - .Q]-)) (—

3 2

1 1. 45
+ (Eej —§ej)cos(2MJ-) + (§ef —mej

+a; (cos2 (%’) cos(w; + ;) — sin? (%J) cos(w; — Qj)) ((1

i =q (sin2 (%) cos(w; — 02;) + cos? (%’) cos(w; + .(2]-)) (—

1 1 3 45
3 2 4
+ (—ej -3¢ ) cos(2M;) + (—e- ~ 1389

- a (sin2 (%) sin(w; — £2;) + cos? (%’) sin(w; + .Qj)) ((1

1
) cos(3Mj) + 3 e]-3 cos(4Mj) +

case—specific rederivations. A numerical examination of the
configurations as outlined in Section 3 revealed that truncation
of the series at O(e?) resulted in a change in the predicted rise—
set times less than one second. Consequently, the e* terms did
not influence the conclusions but preserved generality. These
expressions facilitate the explicit computation of x, y, and z in
terms of orbital elements [12].

3

3
36 + (1 —Te2 4 —ef*) cos(M]-)

8 ]

125
ﬁef cos(SM]-))

5 11
-3¢ ~ 7974 ) sin(M)) (11)
_ 1. 125 ,
> 51n(3Mj) + §ej3 sm(4M]-) + ﬁef sm(SMj))
3 5
56+ (1 - geljz + ﬁef) cos(llz\/lg)
) cos(SMj) + 3 ej3 cos(4Mj) + ﬁef cos(SMj))
5 1\
—gejz —me}‘) sin(M;) (12)

1 5 . 3 51 _ 1, 125 ,
+ (E e — Eef) sm(2Mj) + (§ ej2 - ﬁejf‘> 51n(3Mj) + §ej3 sm(4M]-) + @ef 51n(5Mj)>



392 Amin / Communications in Science and Technology 10(2) (2025) 389-398

o 7 7 5 11 5 51
zj—Zsm(2>cos(2)<a]~<(1—§ej2—192 ])51n(M)+( ]—Ee])sm(ZM)+(8 e; ~178 ]>sm(3M)

1 125
+ —ej3 sin(4M]-) +— 382

3

3
+(3 ) 45
8% ~ 1289

Thus, the dot product is:
(14)

(Fy - 73) = X1, + Y1¥2 + 212,

The squared radii, expanded up to fourth order in e, are
expressed as follows:

3 1
rjz = ((1 + 2612) 2¢; (1 ~3% >cos(M)

1

—Ee-<1—%e )cos(ZM) (15)
_%e] COS(3M) ——€ COS(4M ))

Consequently, visibility function V can be expressed
entirely in terms of the orbital elements and mean anomalies.
This facilitates accurate evaluation of mutual satellite visibility
in orbit.

2.2. Perturbation modeling of orbital elements

The evolution of satellite orbits in LEO is influenced by
several perturbative forces, the most significant of which are
Earth’s oblateness and atmospheric drag. This section
formulates the corresponding variations in the orbital elements
and incorporates these effects into the visibility function.

2.2.1. Earth’s oblateness

Earth is modeled as an axially symmetric body, whose
gravitational potential for satellite motion is described by an
expansion in zonal harmonics. In this work, the disturbing
potential incorporates terms up to J3, [14.]. This equation can
be expressed as follows:

2 3

n=-L{, (RT) P,(sin ) + 5 (RT) Py(sing) |  (16)

In this equation, u represents the standard gravitational
parameter, R, denotes the Earth's radius, and P,, P; denote the
second and third Legendre polynomials, respectively. This
present study focuses on the effects caused by terms that

et sin(5M, )) cos(w;)

3 5 1 1
—ge] +ﬁej )cos(M-) + (—ej 36 )cos(ZM)

)COS(3M) +56€ ? cos(4M;) + 322 e; # cos(5M; )) 51“(“’1))

(13)

contain secular and long-period contributions only. Therefore,
the mean anomaly M was employed as the fast variable to
calculate the average of disturbing potential over a short period.

1 2
(ﬂ%) = EJ Rm am

The averaged disturbing potential was divided into two
parts: a secular part and a long-period part,

(ER) = 9asec + g‘Rlp (17)

The subscripts “sec” and “Ip” stand for secular and long-
period, respectively, where

1 R? (2 — 3sin? i)

Reee = U)o —
sec 4_#]2 a3 (1_62)% (18)
3 R e(4—5sin?i) =
ﬂ%lp=§y]3—4—ssmlsmw
@ (1-e2)z (19)

To represent the variation of the orbital elements due to
oblateness, in this present study, the Lagrange planetary
equations [17] were employed. Denoting the orbital elements

by

da 2 0R

dt  naoM 3

de 1—e 1 0R O0R

dt ~ na’e (m%‘ﬁ)

di 1 OR OR
a:na2 1—e? sini(COSl%_a_ﬂ)
do 1 (a&ﬁ) (20)
dt  na?Vi-—e?sini ai ) 3
dw 1 1—e?0R cosidR
E:nazx/l——ez< e g_sinig>
am 1 (1—e?dR R

a _W( ” a”“a)

From Eq. (18), (19), and (20), the variations of orbital elements
due to oblateness are
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Aja =
1 e\J3 . . .

Ale——§(7>]—zsmlsmw

N VLAV .

Al = E(;)]—zmcoswmw

A _3(Re)2 (4 — 5sin%i) ) 1(Re)]3(1+3ez+4c052i—5(1+7ez)cos4i)csci

1w =7 2 (1 —e2)z " " 16\alJ, e(1—e?)(4—5sin?0) cosw (1)
3 (R,\? cosi 1 /R,\ J5 e(cosi + 15 cos3i) csci

£ =—2(=2) f———n(t—ty) —=(—2)=

1 Z(a) 2 e (1) 8(a)]2 (1-e)—5sin2i) ¢

2 _ ..
MM = <1 + 5(%) 1, @2 =3sin®D) 3l)>n (t—t,)
(1-e?)2

1 /R,\J; (1 —4e?)
+2<a)]23(1—92)5

For the low-Earth orbits under consideration, the secular
contribution of the J, term dominates the long-term evolution
of Q and w, thereby generating most of the systematic timing
shifts that occur within the mutual-visibility windows. By
contrast, the J; component primarily induces long-period
oscillations in @ and e about their J,-driven trends. These
appear in the visibility function as modest modulations of hump
amplitudes and shapes rather than as large, uniform offsets in
rise—set times. This separation of roles is employed in Section
3 when interpreting numerical examples. The resulting
expressions provide a comprehensive representation of the
secular and long-period variations of the orbital elements
caused by Earth’s oblateness.

2.2.2. Atmospheric drag

The aerodynamic drag force acting on a satellite of mass m,
reference area A, and drag coefficient Cp, is expressed as [18]

1 A
- E p(h)CD E U?ez Vrels (22)

Fp =
where p(h) denotes the atmospheric density at altitude h, vV,
refers to the relative velocity between the satellite and the
rotating atmosphere, and V,,; indicates its unit vector. For a
Keplerian orbit, the orbital speed is constrained by the vis-viva

. 2 1 . .
relation v2,, = u (; - ;), which is used to express the drag

acceleration in terms of 7 and a. The density profile is modeled
by an exponential function, with the scale height as H.

h_ho)

p(h) = po exp (— T

The representative order-of-magnitude ranges of p(h) over

7Sinicos w

typical very-low-LEO to LEO
summarized in Table 1.

altitudes (100-500 km) are

Table 1. Representative atmospheric density ranges versus altitude
(100-500 km)

Altitude (km) Atmospheric Density (kg-m)

100 497 %107
150 (1.13 - 1.25) x 10°®
200 (2.55-3.16) x 10
250 (0.658 — 1.05) x 10
300 (1.7-3.5)x 107
350 (0.612 - 1.62) x 10"
400 (2.2-7.5)x 10"
450 (0.938 -3.87) x 102
500 0.4 -2.0)x 10

where p, denotes the density at the reference altitude h,. Since
aerodynamic drag opposes the satellite’s motion, the drag
acceleration acts predominantly along the transverse
(tangential) direction of the orbital frame. Therefore, in the
radial-transverse—normal (R, 7, N) frame, the perturbing
acceleration has components:

ad = (R; T: N) =~ (Ol T, 0)

where T is the transverse component corresponding to drag.

2 1

ot

Gauss’s variational equations for the osculating elements (a, e,
i, Q o, M) under a generic perturbation (R, T, N) are well
known:[17]
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da 2 .

E:m[@RSlnf +T(1+eCOSf)];
de—ﬂl—l_ez . . e+cosf
e LE VAR CURE wrrrryd| SO

di rcos(w + f)N
dt  naVi-e?
da rsin(w + f)

dt  na?v1—e?sini

dw \/1—32[ R +T<2+ecosf>]
dt cosf 1+ecosf
.dQ
cosi—
M 2r V1 — e?
—=n-— ——[—cosz
dt na nae

24+ecosf
*(Treeosr)")
1+ ecosf
Substituting the drag-dominated acceleration and averaging
over one orbital period, and expanding in powers of e up to

fourth order results in the time rates of change of the orbital
elements due to drag,

A,a = —na’pCy A <1+3e +Ee )(t—to)
m 4 64 ’

2 16
Azi = Azw = Azﬂ = AzM =0.

A/l 5
Aye = —napC, E( e— —63) (t —to),

At first glance, the mean anomaly appears unperturbed;
however, this observation is incomplete due to the indirect
effect of drag-induced secular changes in the semi-major axis

F(a; e, 1,0, 0, M;) = V(ajo, €jo, ijo, 2jo, wjo, Mjo) + Z ( )(Alal + Aya;)

where V( ios €j0» Ljor (o, Wjo, JO) is the unperturbed visibility
function. The elements a; represent the orbital elements of the
satellites: fori = 1, ...,6, a; correspond to a, e, i, w, 1, M of the
first satellite; for i = 7, ...,12, they correspond to a, e, i, w, £,
M of the second satellite.

3. Results and Discussion

The perturbed visibility function F was applied to case
studies to evaluate the mutual visibility of satellites at varying
altitudes. The orbital parameters are summarized in Table 2 in
which the semi-major axes are geocentric, corresponding to
approximate orbital altitudes of approximately 150 km, 320
km, and 460 km for Satellites #1—#3, respectively. Although

and eccentricity indirectly on the mean anomaly. The relation
is expressed as follows:

E_n 2adt+ e dt

Thus, any alteration in a and e necessarily introduces a
corresponding variation in M. Even though the averaged Gauss
equations for M demonstrate zero direct effect from drag, its
influence manifests indirectly through the coupled secular
changes in the semi-major axis and eccentricity. This behavior
is fully consistent with classical atmospheric-drag theory, in
which the secular decay of a under drag leads to a
corresponding secular change in mean motion and hence in the
mean anomaly. In the low-Earth-orbit regime, the dynamic
significance of atmospheric drag is strongly altitude dependent.
For orbital altitudes of order a few hundred kilometers,
standard exponential-density models predict secular decay of
the semi-major axis on time scales comparable with typical
mission durations. Consequently, drag-induced variations in
the mean motion and orbital phase cannot be neglected when
analyzing mutual visibility. The example configurations
considered later fall within this regime and drag therefore acts
as a genuinely coupled perturbation alongside the J, and J;
effects.

A,a = —na?pCy A (1 +§e +Ee )(t—to)
m 4 64 ’

A/l 5
Aye = —napCy, a(ze - —63) (t —to),

16 (25)

Azi = Az(l) = Azﬂ =0

31 1-—e?
AzM = Tl(t - to) - __Aza + —Aze

2a
2.2.3. Perturbed visibility function
The perturbed visibility function F is then expressed as:

(26)

150 km is at the very low end of LEO and typically not
sustained for long, it is included here as a very-low-LEO stress-
test scenario to demonstrate the coupled J,—J;—drag impact on
mutual-visibility timing over a 24-hour horizon. At 150-320
km, the adopted exponential-density model implies non-
negligible drag over a 24-hour window, consistent with the
few-minute visibility shifts reported below. The influence of
perturbative effects, specifically Earth’s oblateness and
atmospheric drag, was systematically examined. These effects
are illustrated in Figs. 2—4, which present a comparison of the
visibility function, evaluated with and without perturbations,
over a 24-hour period. The associated rise and set times are
documented in Tables 3-5, providing comprehensive
quantification of the visibility intervals.
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Table 2 Orbital Parameters of LEO Satellites at Various Altitudes

Orbital Parameters

a (Km) e i (0) Q (o) ) (0) M(o) n (md/min)
Satellite #1 6525.17 0.0082 96.71 214.85 281.05 206.35 7.18 X 1072
Satellite #2 6700.49 0.0096 19.96 299.53 286.90 72.07 6.93 X 1072
Satellite #3 6841.56 0.0011 51.64 249.97 3.90 356.21 6.70 x 1072

3.1. Satellites #1 and #2

Fig. 2 illustrates the visibility function for Satellites #1 and
#2 over a 24-hour period, with a comparison of the perturbed
and unperturbed cases. The satellites’ orbital configuration,
with a moderate difference in semi-major axis (al = 6525.17
km vs. a2 = 6700.49 km, corresponding to altitudes of about
150 km and 320 km above the mean Earth radius) and a
significant inclination disparity (96.71 deg vs. 19.96 deg),
results in pronounced sensitivity to Earth’s oblateness and
atmospheric drag. The perturbed wvisibility function
demonstrates systematic shifts in rise—set times (up to
approximately 3 minutes, or about 2% of the orbital period) and
amplitude enhancements, particularly after 600 minutes,
reflecting long-period perturbation effects. Table 3 quantifies
these impacts, demonstrating that perturbations increase the
frequency of visibility events and extend durations by up to
approximately 20%. These findings highlight the critical role
of perturbative corrections in the optimization of
communication windows for LEO satellites exhibiting
disparate orbital parameters. For this pair, the predominant
effect is the differential J2-driven precession of the ascending
nodes, which gradually rotates the orbital planes relative to one
another and accounts for the nearly monotonic shift of rise—set
times over the 24-hour interval. Long-period variations in the

argument of perigee and eccentricity, driven primarily by J3,
manifest as modest changes in the peak amplitudes of the
visibility humps. At the lower altitude of Satellite #I,
atmospheric drag further reduces the semi-major axis and mean
motion, thereby introducing an additional relative phasing that
contributes to the short extra visibility windows that appear in
the perturbed case.

— without perturbation

—— with perturbation

Visibility Function V(t) x 10"

oF ]

1 | 1 i 1
0 200 400 600 800 1000 1200 1400

Time (t) in minutes

Fig. 2 Visibility Function for Satellites #1 and #2 over 24 Hours: Perturbed
vs. Unperturbed Cases

Table 3. 24-hour visibility intervals between Satellites #1 and #2

Unperturbed Case Perturbed Case
) . . Time of Visibility . . . Time of Visibility
Rise (min) Set (min) N Rise (min) Set (min) :
min Sec min sec
7.8379 14.2886 6 27.05 7.7930 14.3055 6 30.75
50.5521 60.6106 10 3.51 50.6146 60.4993 9 53.08
95.9310 104.3115 8 22.83 95.9163 104.2271 8 18.65
139.0937 150.1350 11 2.48 139.1115 150.0023 10 53.45
184.6276 188.2224 3 35.69 184.5124 188.2407 3 43.70
189.8768 193.7252 3 50.90 189.7251 193.6623 3 56.23
228.0516 232.7587 4 42.42 227.9269 232.5136 4 35.20
234.7991 239.2399 4 26.45 234.8059 239.1677 4 21.71
273.4555 277.4266 3 58.27
273.8110 282.6497 8 50.32
278.6139 282.7168 4 6.17
317.0258 322.3604 5 20.08
317.4184 327.9383 10 31.19
322.9902 328.0219 5 1.90
363.5178 371.0519 7 32.05 362.6998 371.4253 8 43.53
407.2527 416.1766 8 55.44 406.3970 416.5733 10 10.58
454.0720 458.6110 4 32.34 452.2752 459.7684 7 29.59
497.8130 503.7002 5 52.34 496.0774 504.7931 8 42.94
- - - - 542.3922 547.5598 5 10.06
- - - - 586.2426 592.5206 6 16.68
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3.2. Satellites #1 and #3

Fig. 3 illustrates the visibility function for Satellites #1 and
#3 over a 24-hour period, with a comparison of the perturbed
and unperturbed cases. The satellites’ orbital configuration,
characterized by a significant disparity in semi-major axis
(6525.17 km vs. 6841.56 km, i.e., altitudes of approximately
150 km and 460 km) and an intermediate inclination for
Satellite #3 (51.64 deg, between 96.71 deg for Satellite #1 and
19.96 deg for Satellite #2), results in moderate sensitivity to
Earth’s oblateness and atmospheric drag. In this configuration,
the greater separation in semi-major axis makes the geometry
particularly sensitive to differential nodal precession. The
secular J2-driven drift in Q produces the primary timing offsets
between the perturbed and unperturbed curves, while the
weaker J3-induced modulation of ® and e primarily affects the
fine structure of the visibility humps. As in the previous case,
the drag in the lower orbit modifies the mean motion of Satellite
#1, thereby enhancing the relative phasing and helping to bring
near-threshold humps above the visibility limit. This explains
the appearance of additional short windows in the perturbed
solution. The perturbed visibility function demonstrates shifts
in rise—set times (up to approximately 2 minutes, or about 1.5%
of the orbital period) and introduces new visibility intervals,
with duration changes of up to about 15%. Table 4 quantifies

Amin / Communications in Science and Technology 10(2) (2025) 389-398

these effects, indicating that perturbations exhibit a reduced
impact in comparison to the Satellite #1—#2 pair due to Satellite
#3’s higher altitude, which mitigates drag effects. Visibility
peaks remain largely synchronized, with discrepancies
primarily manifesting as minor shifts and extensions after 300
minutes.

& = without perturbation
= —— with perturbation
x
=
> L
S 4
=
5
=
ps
o
£ 2t 1
e
@
=>
0

" L
1000 1200

1 | |
0 200 400 600 800

1400
Time (t) in minutes

Fig. 3 Visibility Function for Satellites #1 and #3 over 24 Hours: Perturbed
vs. Unperturbed Cases

Table 4 24-hour visibility intervals between Satellites #1 and #3.

Unperturbed Case Perturbed Case
. . . Time of Visibility . . . Time of Visibility
Rise (min) Set(min) —————— — Rise(min) Set(min) ,
min sec min sec
220.8656 232.1233 11 15.46 221.7638 231.6132 9 50.96
264.6407 279.5003 14 51.58 265.0220 279.4767 14 27.28
306.8816 315.9952 9 6.82
307.3530 326.6765 19 19.41
317.9478 326.4656 8 31.07
353.2755 359.3434 6 4.07 353.2802 359.3114 6 1.87
364.1262 371.0510 6 55.49 364.8746 371.7684 6 53.63
398.0189 415.5477 17 31.73 397.9862 416.5846 18 35.90
447.76188 456.8319 9 4.20 446.5640 459.1042 12 32.41
- - - - 494.8345 500.8287 5 59.65

3.3. Satellites #2 and #3

Fig. 4 illustrates the visibility function for Satellites #2 and
#3 over a 24-hour period, with a comparison of the perturbed
and unperturbed cases. The satellites’ orbital configuration,
with elevated semi-major axes (6700.49 km and 6841.56 km,
corresponding to altitudes of approximately 320 km and 460
km) and disparate inclinations (19.96 deg vs. 51.64 deg), results
in moderate sensitivity to Earth’s oblateness and atmospheric
drag. The perturbed visibility function exhibits systematic
shifts in rise-set times (up to approximately 2.5 minutes, or
about 1.8% of the orbital period) and introduces new visibility
intervals, with duration changes of up to about 25%. Table 5
quantifies these effects, demonstrating an increase in visibility
event frequency and redistribution of observation windows.

Because both satellites in this pair operate at higher altitudes,
drag effects are weaker and the visibility shifts are dominated
by Jo-driven nodal precession and perigee rotation. The
resulting perturbations generate smaller but still noticeable
offsets in rise—set times and a redistribution of visibility
intervals, with J3-induced variations in ® and ¢ again appearing
mainly as changes in the amplitudes and shapes of individual
humps. The additional windows, as documented in Table 5, are
therefore a consequence of the similar cumulative phasing
mechanism as in the lower-altitude cases, but with reduced drag
sensitivity. These results highlight the pivotal role of
perturbative corrections in optimizing mission planning for
LEO satellites at higher altitudes with varying orbital
geometries.
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Fig. 4 Visibility Function for Satellites #2 and #3 over 24 Hours: Perturbed vs. Unperturbed Cases

Table 5 24-hour visibility intervals between Satellites #2 and #3

Unperturbed Case Perturbed Case
. X . Time of Visibility . X . Time of Visibility
Rise (min) Set (min) - Rise (min) Set(min) ——
min sec min sec
31.8321 56.1497 24 19.06 31.7771 56.2890 24 30.72
77.7241 103.1940 25 28.20 77.1395 103.3892 26 14.98
119.6014 152.7050 33 6.21 119.1355 153.0336 33 53.89
165.9313 199.1244 33 11.58 164.8985 199.1870 34 17.31
208.7258 247.2256 38 29.98 208.0718 226.7536 18 41.03
228.2514 247.3305 19 4.75
256.1718 272.2631 16 5.48 255.1199 272.0968 16 58.61
275.5172 291.7333 16 12.97 274.6143 290.9878 16 22.41
300.9136 338.1489 37 14.12 300.8132 337.2859 36 28.36
350.1366 380.9469 30 48.61 349.9237 379.5137 29 35.40
396.4124 426.8320 30 25.17 396.8765 425.2733 28 23.81
446.7445 468.5233 21 46.73 447.4127 466.3976 18 59.10
493.5909 514.1568 20 33.95 494.8999 511.7054 16 48.33
548.2879 551.4034 3 6.93 - - - -

This present paper has developed an analytical framework
for predicting mutual visibility between low-Earth-orbit
satellites under the combined effects of Earth’s oblateness and
atmospheric drag. The model starts from a perturbed two-body
description, incorporating the secular J2 contribution, the long-
period J3 effects, and drag-induced decay of the semi-major
axis and eccentricity. These perturbations are then propagated
into a closed-form visibility function F(t) for a given satellite
pair. The formulation was applied to three representative LEO
configurations, spanning altitudes of approximately 150 km,
320 km, and 460 km and differing inclinations. For each pair,
we compared the unperturbed and perturbed visibility functions
over a 24-hour interval. The numerical results presented in Fig.
2—4 and Tables 3—5 conclude that even minimal perturbations
can induce non-negligible alteration in mutual visibility in both
rise and set times, and the emergence of additional brief
visibility windows in the perturbed solutions, particularly when
one satellite operates at very low altitude. From dynamic and
geometrical perspective, the visibility function can be viewed
as a multi-hump function of time, each of which corresponds to
a potential line-of-sight opportunity as the two orbits re-phase.
The secular J2 term dominates the long-term evolution of Q2 and

o, thereby generating most of the systematic timing offsets
observed in the visibility windows. Whereas, J3 primarily
induces long-period oscillations in ® and e that manifest as
modest changes in the amplitudes and shapes of the humps.
Atmospheric drag modifies the semi-major axis and mean
motion, particularly at the lowest altitudes, thereby introducing
an additional phase drift between the satellites. When an
unperturbed hump is located close to the visibility threshold,
these combined perturbations can shift its maximum above or
below the threshold. This process can result in the creation or
suppression of short visibility intervals. The additional
windows reported in Tables 3—5 arise from this mechanism and
are therefore a geometric consequence of small but cumulative
perturbations rather than numerical artefacts. In practical terms,
the proposed framework provides a rapid tool for estimating
mutual visibility and rise-set times without the need for full
numerical propagation. This makes it suitable for preliminary
design and trade-off studies in LEO constellations, including
relay placement and inter-satellite link scheduling. The present
analysis focuses on the dominant secular and long-period
effects of J2, J3, and drag over a one-day horizon in low Earth
orbit. Short-period J2 terms, solar radiation pressure, and third-
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body perturbations are neglected and it is expected that they
will contribute at most at the percent level for the regimes
considered. Accordingly, the present manuscript focuses on the
dominant secular and long-period drivers over the one-day
horizon, while these smaller effects are left for a
straightforward extension of the same analytical structure.
Future work will extend the framework to include these
additional perturbations, explore longer time spans, and
generalize the methodology to multi-satellite constellations
with more complex field-of-view constraints.
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