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Abstract 

This present study develops an analytical model for mutual visibility in perturbed Low Earth Orbit (LEO), explicitly accounting for Earth’s 
oblateness (J₂ and J₃) and atmospheric drag. The framework extends classical geometric visibility calculations to include long-term perturbation 
effects, thus enabling rapid and reliable prediction of visibility intervals. A series of numerical simulations were conducted on three LEO satellite 
configurations and revealed that perturbations have the capacity to shift rise–set times, alter event frequency and duration, and generate new 
visibility intervals. These effects are of particular significance for satellites operating at lower altitudes and those characterized with moderate 
semi-major axis differences and large inclination disparities. The results of the study underscore the importance of considering secular and long-
period perturbations into the planning of reliable communication relay, the management of constellation, and the scheduling of autonomous 
mission. Importantly, the closed-form formulation enables fast visibility and rise–set prediction without full numerical orbit propagation, 
supporting preliminary constellation design, inter-satellite link scheduling, and onboard visibility assessment in large LEO networks. 
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1. Introduction  

Mutual visibility between satellites in Low Earth Orbit 

(LEO) is crucial for continuous inter-satellite communication, 

data relaying, and coordinated mission operations. The rise–set 

problem determining when two satellites establish or lose a 

direct line of sight, remains central to the design of crosslink 

networks, constellation scheduling, and autonomous 

operations. However, such predictions are significantly 

influenced by orbital perturbations, particularly Earth’s 

oblateness and atmospheric drag. These effects are particularly 

significant in long-duration analyses, where even minor 

deviations in orbital elements can accumulate into substantial 

shifts in visibility windows. The issue of visibility has been 

comprehensively addressed in a substantial corpus of literature. 

In the early stages of analytical research, Escobal [1] provided 

closed-form formulas to calculate rise–set times around an 

oblate Earth. Concurrently, Roth [2] examined the factors 

influencing visibility duration and elevation angle. Lawton [3] 

subsequently introduced a numerical method adapted for 

satellites in near-circular orbits, and Alfano et al. [4] extended 

these calculations by incorporating oblateness corrections. Sun 

et al. [5] refined Alfano’s method and introduced an innovative 

approach to enhance both efficiency and accuracy. As posited 

by Han et al. [6], a Hermite interpolation technique was 

proposed for the expeditious determination of satellite-to-site 

visibility. Li et al. [8] developed an adaptive interpolation 

algorithm with vertex protection to achieve more precise and 

efficient solutions to the satellite visibility period problem. 

Wang et al. [7] formulated a mathematical model for predicting 

satellite-to-site and satellite-to-satellite visibility, framing it as 

a root-finding problem involving multiple hump functions. 

Awad et al. [9] studied same-orbit visibility functions, while 

Ammar et al. [10,11] incorporated the effects of drag and 

oblateness separately. Amin and Hassan [12] further 

demonstrated the role of lunar perturbations on satellite 

visibility intervals. Satellite-based systems are increasingly 

relied upon for Earth observation and positioning, thereby 

motivating the efficient prediction of mutual-visibility in LEO 

networks, as discussed in D. Atunggal et al  [ .13.]  Despite these 

significant contributions, most analytical treatments address 

perturbations individually rather than in a unified framework. 

This methodological shortcoming, consequently, limits their 

accuracy in realistic mission scenarios. In turn, this present 

study addresses this gap by developing an analytical model for 

mutual visibility in perturbed LEO orbits. The approach 

combines classical geometric visibility conditions with 

perturbative corrections obtained from Lagrange’s and Gauss’s 

variational equations. By incorporating secular and long-period 

effects of Earth’s oblateness (J₂, J₃) and atmospheric drag, the 

model enables closed-form visibility predictions in terms of 
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orbital elements and mean anomalies. Numerical case studies 

involving multiple LEO satellite configurations demonstrate 

that such perturbations can shift rise–set times, increase event 

frequency and duration, and even generate new visibility 

opportunities. In this way, the model provides a practical 

analytical tool for more reliable mission planning, constellation 

management, and autonomous scheduling in emerging large-

scale LEO networks.  

2. Materials and Methods 

2.1. Problem formulation 

Consider two satellites located in distinct orbits, which are 

denoted as points 𝑆1 and 𝑆2, respectively. Let 𝜓 denote the 

angle between the two position vectors 𝑟⃗1 and 𝑟⃗2  where  𝑟⃗𝑖 =
(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) , 𝑖 = 1,2. Define the range vector 𝜌⃗ as the vector 

from satellite 𝑆1 to satellite 𝑆2, as geometrically illustrated in 

Fig. 1. 

 

Fig. 1. Geometrical framework of the problem 

Let O denote the Earth’s center and P a point lying on the 

position vector ρ. In this context, P is taken as the closest point 

of the line-of-sight ρ to O. The distance OP is given by OP = 

Re + h, where, Re is the Earth's mean radius and h is the altitude 

of point P above the Earth’s surface. The satellites are 

considered mutually visible only when h > 0; If h = 0 or h < 0, 

the line of sight is obstructed. Formally, the visibility condition 

is presented as follows: 

 

ℎ

{
 
 

 
 
> 0                            visibility achieved         

= 0                             rise or set case condition

< 0                               visibility not achieved

 (1) 

2.1.1. Visibility function derivation 

The geometric relationship between the satellites can be 

expressed as follows: 

𝑟⃗1 ⋅ 𝑟⃗2 −√𝑟1
2 − (𝑅𝑒 + ℎ)

2√𝑟2
2 − (𝑅𝑒 + ℎ)

2 = (𝑅𝑒 + ℎ)
2 (2) 

which can be rearranged to: 

𝑟1
2 𝑟2

2 − (r⃗1 ⋅ r⃗2)
2 = (𝑅𝑒 + ℎ)

2((r1
2 + r2

2) − 2(r⃗1 ⋅ r⃗2))  (3) 

 

This then leads to: 

ℎ = √
𝑟1
2 𝑟2

2 − (r⃗1 ⋅ r⃗2)
2

(r1
2 + r2

2) − 2(r⃗1 ⋅  r⃗⃗⃗2)
− Re (4) 

Visibility between satellites is achieved only if 

r1
2r2

2 − (r⃗1 ⋅ r⃗2)
2 > Re

2 ((r1
2 + r2

2) − 2(r⃗1 ⋅ r⃗2)) (5) 

Introducing the visibility function V: 

𝑉 = 𝑅𝑒
2 ((𝑟1

2 + 𝑟2
2) − 2(𝑟⃗1 ⋅ 𝑟⃗2)) − 𝑟1

2𝑟2
2 + (𝑟⃗1 ⋅ 𝑟⃗2)

2 (6) 

the visibility condition can be succinctly expressed as follows: 

𝑉 =

{
 
 

 
 
< 0          visibility achieved        

0                         rise or set      

> 0           visibility not achieved

 (7) 

2.1.2. Orbital representation 

To express V in terms of the orbital elements, we 

computed 𝑟⃗1and 𝑟⃗2, using the following expressions for 

satellite coordinates in an inertial frame [15] 

𝑥 = 𝑟(cos(Ω) cos(𝜔 + 𝑓) − sin(Ω) sin(𝜔 + 𝑓) cos(𝑖)) 
 

𝑦 = 𝑟(sin(Ω) cos(𝜔 + 𝑓) + cos(Ω) sin(𝜔 + 𝑓) cos(𝑖)) (8) 

𝑧 = 𝑟 sin(𝜔 + 𝑓) sin(𝑖)  

where f denotes the true anomaly, 𝜔 signifies the argument of 

perigee, Ω represents the right ascension of the ascending node, 

and i designates the inclination. The rearrangement process 

then yielded the following results: 

𝑥 = 𝑟 cos(𝑓) (sin2 (
𝑖

2
) cos(𝜔 − 𝛺) + cos2 (

𝑖

2
) cos(𝜔 + 𝛺))

−  𝑟 sin(𝑓) (sin2 (
𝑖

2
) sin(𝜔 − 𝛺) + cos2 (

𝑖

2
) sin(𝜔 + 𝛺)) 

(9a) 
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𝑦 = 𝑟 cos(𝑓) (cos2 (
𝑖

2
) sin(𝜔 + 𝛺) − sin2 (

𝑖

2
) sin(𝜔 − 𝛺))        

+  𝑟 sin(𝑓) (cos2 (
𝑖

2
) cos(𝜔 + 𝛺) − sin2 (

𝑖

2
) cos(𝜔 − 𝛺)) 

(9b) 

𝑧 = 2sin (
𝑖

2
) cos (

𝑖

2
) (𝑟 sin(𝑓) cos(𝜔) + 𝑟 cos(𝑓) sin(𝜔)) (9c) 

The expression of 𝑟, 𝑟 sin 𝑓 and 𝑟 cos𝑓 as functions of M and 

expanding to fourth order in in eccentricity e, yielded the 

following result: [16] 

 

𝑟 = 𝑎 ((1 +
1

2
𝑒2) + (−𝑒 +

3

8
𝑒3) cos(𝑀) + (−

1

2
𝑒2 +

1

3
𝑒4) cos(2𝑀) −

3

8
𝑒3 cos(3𝑀) −

1

3
𝑒4 cos(4𝑀)) 

 

(10a) 

𝑟 cos(𝑓) = 𝑎 (−
3

2
𝑒 + (1 −

3

8
𝑒2 +

5

192
𝑒4) cos(𝑀) + (

1

2
𝑒 −

1

3
𝑒3) cos(2𝑀) + (

3

8
𝑒2 −

45

128
𝑒4) cos(3𝑀)

+
1

3
𝑒3 cos(4𝑀) +

125

384
𝑒4 cos(5𝑀)) 

 

 

(10b) 

 

𝑟 sin(𝑓) = 𝑎 ((1 −
5

8
𝑒2 −

11

192
𝑒4) sin(𝑀) + (

1

2
𝑒 −

5

12
𝑒3) sin(2𝑀) + (

3

8
𝑒2 −

51

128
𝑒4) sin(3𝑀)

+
1

3
𝑒3 sin(4𝑀) +

125

384
𝑒4 sin(5𝑀)) 

 

 

(10c) 

 

Remark. Although the eccentricities of the configurations 

considered later were very small (e ≤ 0.01; Table 2), the 

expansions in Eq. (10) were carried out up to fourth order in e, 

thereby ensuring the validity of resulting expressions for 

moderately eccentric LEO orbits. For such small values of e, a 

second–order truncation would already provide excellent 

accuracy; however, retaining the 𝑒4 terms ensured uniform 

applicability of the visibility formulation without requiring 

case–specific rederivations. A numerical examination of the 

configurations as outlined in Section 3 revealed that truncation 

of the series at O(𝑒2) resulted in a change in the predicted rise–

set times less than one second. Consequently, the 𝑒4 terms did 

not influence the conclusions but preserved generality. These 

expressions facilitate the explicit computation of  x, y, and  z in 

terms of orbital elements [12].

𝑥𝑗 = 𝑎𝑗 (sin
2 (
𝑖𝑗
2
) cos(𝜔𝑗 − 𝛺𝑗) + cos

2 (
𝑖𝑗
2
) cos(𝜔𝑗 + 𝛺𝑗)) (−

3

2
𝑒𝑗 + (1 −

3

8
𝑒𝑗
2 +

5

192
𝑒𝑗
4) cos(𝑀𝑗)

+ (
1

2
𝑒𝑗 −

1

3
𝑒𝑗
3) cos(2𝑀𝑗) + (

3

8
𝑒𝑗
2 −

45

128
𝑒𝑗
4) cos(3𝑀𝑗) +

1

3
𝑒𝑗
3 cos(4𝑀𝑗) +

125

384
𝑒𝑗
4 cos(5𝑀𝑗))

− 𝑎𝑗 (sin
2 (
𝑖𝑗
2
) sin(𝜔𝑗 − 𝛺𝑗) + cos

2 (
𝑖𝑗
2
) sin(𝜔𝑗 +𝛺𝑗)) ((1 −

5

8
𝑒𝑗
2 −

11

192
𝑒𝑗
4) sin(𝑀𝑗)

+ (
1

2
𝑒𝑗 −

5

12
𝑒𝑗
3) sin(2𝑀𝑗) + (

3

8
𝑒𝑗
2 −

51

128
𝑒𝑗
4) sin(3𝑀𝑗) +

1

3
𝑒𝑗
3 sin(4𝑀𝑗) +

125

384
𝑒𝑗
4 sin(5𝑀𝑗))    

 

 

 

 

 

(11) 

 

𝑦𝑗 = 𝑎𝑗 (cos
2 (
𝑖𝑗
2
) sin(𝜔𝑗 +𝛺𝑗) − sin

2 (
𝑖𝑗
2
) sin(𝜔𝑗 −𝛺𝑗)) (−

3

2
𝑒𝑗 + (1 −

3

8
𝑒𝑗
2 +

5

192
𝑒𝑗
4) cos(𝑀𝑗)

+ (
1

2
𝑒𝑗 −

1

3
𝑒𝑗
3) cos(2𝑀𝑗) + (

3

8
𝑒𝑗
2 −

45

128
𝑒𝑗
4) cos(3𝑀𝑗) +

1

3
𝑒𝑗
3 cos(4𝑀𝑗) +

125

384
𝑒𝑗
4 cos(5𝑀𝑗))

+ 𝑎𝑗 (cos
2 (
𝑖𝑗
2
) cos(𝜔𝑗 +𝛺𝑗) − sin

2 (
𝑖𝑗
2
) cos(𝜔𝑗 − 𝛺𝑗)) ((1 −

5

8
𝑒𝑗
2 −

11

192
𝑒𝑗
4) sin(𝑀𝑗)

+ (
1

2
𝑒𝑗 −

5

12
𝑒𝑗
3) sin(2𝑀𝑗) + (

3

8
𝑒𝑗
2 −

51

128
𝑒𝑗
4) sin(3𝑀𝑗) +

1

3
𝑒𝑗
3 sin(4𝑀𝑗) +

125

384
𝑒𝑗
4 sin(5𝑀𝑗))    

 

 

 

 

 

(12) 
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𝑧𝑗 = 2 sin (
𝑖𝑗
2
) cos (

𝑖𝑗
2
) (𝑎𝑗 ((1 −

5

8
𝑒𝑗
2 −

11

192
𝑒𝑗
4) sin(𝑀𝑗) + (

1

2
𝑒𝑗 −

5

12
𝑒𝑗
3) sin(2𝑀𝑗) + (

3

8
𝑒𝑗
2 −

51

128
𝑒𝑗
4) sin(3𝑀𝑗)

+
1

3
𝑒𝑗
3 sin(4𝑀𝑗) +

125

384
𝑒𝑗
4 sin(5𝑀𝑗)) cos(𝜔𝑗)

+ 𝑎𝑗 (−
3

2
𝑒𝑗 + (1 −

3

8
𝑒𝑗
2 +

5

192
𝑒𝑗
4) cos(𝑀𝑗) + (

1

2
𝑒𝑗 −

1

3
𝑒𝑗
3) cos(2𝑀𝑗)

+ (
3

8
𝑒𝑗
2 −

45

128
𝑒𝑗
4) cos(3𝑀𝑗) +

1

3
𝑒𝑗
3 cos(4𝑀𝑗) +

125

384
𝑒𝑗
4 cos(5𝑀𝑗)) sin(𝜔𝑗))     

 

 

 

 

 

(13) 

 

Thus, the dot product is: 

(𝑟⃗1 ⋅ 𝑟⃗2) = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2                                                                                  
(14) 

The squared radii, expanded up to fourth order in e, are 

expressed as follows:           

𝑟𝑗
2 = 𝑎𝑗

2 ((1 +
3

2
𝑒𝑗
2) − 2𝑒𝑗 (1 −

1

8
𝑒𝑗
2) cos(𝑀𝑗)

−
1

2
𝑒𝑗 (1 −

1

3
𝑒𝑗
2) cos(2𝑀𝑗)

−
1

4
𝑒𝑗
3 cos(3𝑀𝑗) −

1

6
𝑒𝑗
4 cos(4𝑀𝑗))  

 

(15) 

 

Consequently, visibility function V can be expressed 

entirely in terms of the orbital elements and mean anomalies. 

This facilitates accurate evaluation of mutual satellite visibility 

in orbit. 

2.2. Perturbation modeling of orbital elements 

The evolution of satellite orbits in LEO is influenced by 

several perturbative forces, the most significant of which are 

Earth’s oblateness and atmospheric drag. This section 

formulates the corresponding variations in the orbital elements 

and incorporates these effects into the visibility function . 

2.2.1. Earth’s oblateness 

Earth is modeled as an axially symmetric body, whose 

gravitational potential for satellite motion is described by an 
expansion in zonal harmonics. In this work, the disturbing 

potential incorporates terms up to J3, [14.]. This equation can 

be expressed as follows: 

ℜ = −
𝜇 

𝑟
(𝐽2 (

𝑅𝑒
𝑟
)
2

𝑃2(sin𝜑) + 𝐽3 (
𝑅𝑒
𝑟
)
3

𝑃3(𝑠𝑖𝑛 𝜑)) 

 

(16) 

In this equation, 𝜇 represents the standard gravitational 

parameter, 𝑅𝑒 denotes the Earth's radius, and 𝑃2, 𝑃3 denote the 

second and third Legendre polynomials, respectively. This 

present study focuses on the effects caused by terms that 

contain secular and long-period contributions only. Therefore, 

the mean anomaly M was employed as the fast variable to 

calculate the average of disturbing potential over a short period. 

〈ℜ〉 =
1

2𝜋
∫ 𝑅𝑚  𝑑𝑀 

2𝜋

0

 

 

The averaged disturbing potential was divided into two 

parts: a secular part and a long-period part , 

〈ℜ〉 = ℜ𝑠𝑒𝑐 +ℜ𝑙𝑝   (17) 

The subscripts “sec” and “lp” stand for secular and long-

period, respectively, where 

ℜ𝑠𝑒𝑐 =
1

4
𝜇 𝐽2

𝑅𝑒
2

𝑎3
(2 − 3 sin2 𝑖)

(1 − 𝑒2)
3
2

      
(18) 

ℜ𝑙𝑝 =
3

8
𝜇 𝐽3

𝑅𝑒
3

𝑎4
 𝑒(4 − 5sin2 𝑖)

(1 − 𝑒2)
5
2

sin 𝑖 sin𝜔 
(19) 

To represent the variation of the orbital elements due to 

oblateness, in this present study, the Lagrange planetary 

equations [17] were employed. Denoting the orbital elements 

by  

𝑑𝑎

𝑑𝑡
=

2

𝑛 𝑎

𝜕ℜ̅

𝜕𝑀
 

𝑑𝑒

𝑑𝑡
= −

1 − 𝑒2

𝑛𝑎2𝑒
(

1

√1 − 𝑒2

𝜕ℜ̅

𝜕𝜔
−
𝜕ℜ̅

𝜕𝑀
) 

𝑑𝑖

𝑑𝑡
=

1

𝑛𝑎2√1 − 𝑒2  𝑠𝑖𝑛 𝑖
(𝑐𝑜𝑠 𝑖

𝜕ℜ̅

𝜕𝜔
−
𝜕ℜ̅

𝜕Ω
) 

𝑑Ω

𝑑𝑡
=

1

𝑛𝑎2√1 − 𝑒2 𝑠𝑖𝑛 𝑖
(
𝜕ℜ̅

𝜕𝑖
) 

𝑑𝜔

𝑑𝑡
=

1

𝑛𝑎2√1 − 𝑒2
(
1 − 𝑒2

𝑒

𝜕ℜ̅

𝜕𝑒
−
𝑐𝑜𝑠 𝑖

𝑠𝑖𝑛 𝑖

𝜕ℜ̅

𝜕𝑖
) 

𝑑𝑀

𝑑𝑡
= 𝑛 −

1

𝑛𝑎2
(
1 − 𝑒2

𝑒

𝜕ℜ̅

𝜕𝑒
+ 2𝑎

𝜕ℜ̅

𝜕𝑎
) 

 

 

 

 

 

 

 

(20) 

From Eq. (18), (19), and (20), the variations of orbital elements 

due to oblateness are 
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Δ1𝑎 = 0 

Δ1𝑒 = −
1

2
(
𝑅𝑒
𝑎
)
𝐽3
𝐽2
sin 𝑖 sin𝜔 

Δ1𝑖 =
1

2
(
𝑅𝑒
𝑎
)
𝐽3
𝐽2

𝑒

(1 − 𝑒2)
cos 𝑖 sin𝜔 

Δ1𝜔 =
3

4
(
𝑅𝑒
𝑎
)
2

𝐽2
(4 − 5 sin2 𝑖)

(1 − 𝑒2)2
𝑛 (𝑡 − 𝑡0) −

1

16
(
𝑅𝑒
𝑎
)
𝐽3
𝐽2

(1 + 3𝑒2 + 4 𝑐𝑜𝑠 2 𝑖 − 5(1 + 7𝑒2) 𝑐𝑜𝑠 4 𝑖) 𝑐𝑠𝑐 𝑖

𝑒(1 − 𝑒2)(4 − 5𝑠𝑖𝑛2 𝑖)
cos𝜔 

Δ1Ω = −
3

2
(
𝑅𝑒
𝑎
)
2

𝐽2
cos 𝑖

(1 − 𝑒2)2
𝑛 (𝑡 − 𝑡0) −

1

8
(
𝑅𝑒
𝑎
)
𝐽3
𝐽2

𝑒(cos 𝑖 + 15 cos 3𝑖) csc 𝑖

(1 − 𝑒2)(4 − 5 sin2 𝑖)
cos𝜔 

Δ1𝑀 = (1 +
3

4
(
𝑅𝑒
𝑎
)
2

𝐽2
(2 − 3 sin2 𝑖)

(1 − 𝑒2)
3
2

)𝑛 (𝑡 − 𝑡0) 

+
1

2
(
𝑅𝑒
𝑎
)
𝐽3
𝐽2

(1 − 4𝑒2)

𝑒(1 − 𝑒2)
1
2

sin 𝑖 cos𝜔 

 

 

 

 

 

 

 

 

(21) 

For the low-Earth orbits under consideration, the secular 

contribution of the J2 term dominates the long-term evolution 

of Ω and ω, thereby generating most of the systematic timing 
shifts that occur within the mutual-visibility windows. By 

contrast, the J3 component primarily induces long-period 

oscillations in ω and e about their J2-driven trends. These 

appear in the visibility function as modest modulations of hump 

amplitudes and shapes rather than as large, uniform offsets in 

rise–set times. This separation of roles is employed in Section 

3 when interpreting numerical examples. The resulting 

expressions provide a comprehensive representation of the 

secular and long-period variations of the orbital elements 

caused by Earth’s oblateness . 

2.2.2. Atmospheric drag 

The aerodynamic drag force acting on a satellite of mass m, 

reference area 𝐴, and drag coefficient 𝐶𝐷 is expressed as [18]  

𝐹𝐷 = −
1

2
𝜌(ℎ)𝐶𝐷

𝐴

𝑚
𝑣𝑟𝑒𝑙
2  𝐯̂𝑟𝑒𝑙 , 

(22) 

where 𝜌(ℎ) denotes the atmospheric density at altitude ℎ, 𝑣𝑟𝑒𝑙 
refers to the relative velocity between the satellite and the 

rotating atmosphere, and 𝐯̂𝑟𝑒𝑙 indicates its unit vector. For a 

Keplerian orbit, the orbital speed is constrained by the vis-viva 

relation 𝑣𝑟𝑒𝑙
2 = 𝜇 (

2

𝑟
−

1

𝑎
), which is used to express the drag 

acceleration in terms of r and a. The density profile is modeled 

by an exponential function, with the scale height as H. 

𝜌(ℎ) = 𝜌0 exp(−
ℎ − ℎ0
𝐻

), 

 

The representative order-of-magnitude ranges of ρ(h) over 

typical very-low-LEO to LEO        altitudes (100–500 km) are 

summarized in Table 1. 

Table 1. Representative atmospheric density ranges versus altitude 

(100–500 km) 

Altitude (km) Atmospheric Density (kg·m⁻³) 

100 4.97 × 10⁻⁷ 

150 (1.13 – 1.25) × 10⁻⁸ 

200 (2.55 – 3.16) × 10⁻¹⁰ 

250 (0.658 – 1.05) × 10⁻¹⁰ 

300 (1.7 – 3.5) × 10⁻¹¹ 

350 (0.612 – 1.62) × 10⁻¹¹ 

400 (2.2 – 7.5) × 10⁻¹² 

450 (0.938 – 3.87) × 10⁻¹² 

500 (0.4 – 2.0) × 10⁻¹² 

 

where 𝜌0 denotes the density at the reference altitude ℎ0. Since 

aerodynamic drag opposes the satellite’s motion, the drag 

acceleration acts predominantly along the transverse 

(tangential) direction of the orbital frame. Therefore, in the 

radial–transverse–normal (R, T, N) frame, the perturbing 

acceleration has components: 

𝒂𝒅 = (𝑅,    𝑇,    𝑁) ≈ (0,    𝑇,    0) 

where T is the transverse component corresponding to drag. 

𝑇 = −
𝜇

2
𝜌(ℎ) 𝐶𝑑

𝐴

𝑚
(
2

𝑟
−
1

𝑎
) 

Gauss’s variational equations for the osculating elements (a, e, 

i, Ω, ω, M) under a generic perturbation (R, T, N) are well 

known   [17 :]
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𝑑𝑎

𝑑𝑡
=

2

𝑛√1 − 𝑒2
[𝑒 𝑅 sin 𝑓  + 𝑇(1 + 𝑒 cos 𝑓 )], 

𝑑𝑒

𝑑𝑡
=
√1 − 𝑒2

𝑛𝑎
[𝑅 sin 𝑓 + 𝑇 (cos𝑓 +

𝑒+ cos 𝑓

1 + 𝑒 cos𝑓
)], 

𝑑𝑖

𝑑𝑡
=
𝑟 cos(𝜔 + 𝑓)

𝑛𝑎2√1 − 𝑒2
𝑁, 

𝑑Ω

𝑑𝑡
=

𝑟 sin(𝜔 + 𝑓)

𝑛𝑎2√1 − 𝑒2 sin 𝑖
𝑁, 

𝑑𝜔

𝑑𝑡
=
√1 − 𝑒2

𝑛𝑎𝑒
[−𝑅 cos 𝑓  + 𝑇 (

2 + 𝑒 cos 𝑓

1 + 𝑒 cos 𝑓
)]

− cos 𝑖
𝑑Ω

𝑑𝑡
, 

𝑑𝑀

𝑑𝑡
= 𝑛 −

2𝑟

𝑛𝑎
𝑅 −

√1 − 𝑒2

𝑛𝑎𝑒
[−cos𝑓  𝑅

+ (
2 + 𝑒 cos𝑓

1 + 𝑒 cos𝑓
) 𝑇], 

 

 

 

 

(24) 

 

Substituting the drag-dominated acceleration and averaging 

over one orbital period, and expanding in powers of e up to 

fourth order results in the time rates of change of the orbital 

elements due to drag, 

 

Δ2𝑎 = −𝑛𝑎
2𝜌𝐶𝑑  

𝐴

𝑚
 (1 +

3

4
𝑒2 +

21

64
𝑒4) (𝑡 − 𝑡0),                

Δ2𝑒 = −𝑛𝑎𝜌𝐶𝑑 
𝐴

𝑚
(
1

2
𝑒 −

5

16
𝑒3) (𝑡 − 𝑡0), 

Δ2𝑖 = Δ2𝜔 = Δ2Ω = Δ2𝑀 = 0. 
 

 

At first glance, the mean anomaly appears unperturbed; 

however, this observation is incomplete due to the indirect 

effect of drag-induced secular changes in the semi-major axis 

and eccentricity indirectly on the mean anomaly. The relation 

is expressed as follows: 

 

𝑑𝑀

𝑑𝑡
= 𝑛 −

3

2

𝑛

𝑎

𝑑𝑎

𝑑𝑡
+
1 − 𝑒2

𝑒

𝑑𝑒

𝑑𝑡
 

Thus, any alteration in a and e necessarily introduces a 

corresponding variation in M. Even though the averaged Gauss 

equations for M demonstrate zero direct effect from drag, its 

influence manifests indirectly through the coupled secular 

changes in the semi-major axis and eccentricity. This behavior 

is fully consistent with classical atmospheric-drag theory, in 

which the secular decay of a under drag leads to a 

corresponding secular change in mean motion and hence in the 

mean anomaly. In the low-Earth-orbit regime, the dynamic 

significance of atmospheric drag is strongly altitude dependent. 

For orbital altitudes of order a few hundred kilometers, 

standard exponential-density models predict secular decay of 

the semi-major axis on time scales comparable with typical 

mission durations. Consequently, drag-induced variations in 

the mean motion and orbital phase cannot be neglected when 

analyzing mutual visibility. The example configurations 

considered later fall within this regime and drag therefore acts 

as a genuinely coupled perturbation alongside the J2 and J3 

effects . 

Δ2𝑎 = −𝑛𝑎
2𝜌𝐶𝑑  

𝐴

𝑚
 (1 +

3

4
𝑒2 +

21

64
𝑒4) (𝑡 − 𝑡0), 

Δ2𝑒 = −𝑛𝑎𝜌𝐶𝑑 
𝐴

𝑚
(
1

2
𝑒 −

5

16
𝑒3) (𝑡 − 𝑡0), 

Δ2𝑖 = Δ2𝜔 = Δ2Ω = 0 

Δ2𝑀 = 𝑛(𝑡 − 𝑡0) −
3

2

1

𝑎
Δ2𝑎 +

1 − 𝑒2

𝑒
Δ2𝑒. 

(25) 

 

2.2.3. Perturbed visibility function 

The perturbed visibility function F is then expressed as:

 

𝐹(𝑎𝑗, 𝑒𝑗, 𝑖𝑗, 𝛺𝑗 , 𝜔𝑗 ,𝑀𝑗) = 𝑉(𝑎𝑗0 , 𝑒𝑗0 , 𝑖𝑗0, 𝛺𝑗0, 𝜔𝑗0, 𝑀𝑗0) +∑(
𝜕𝑉

𝜕𝛼𝑖
)

12

𝑖=1

(Δ1𝛼𝑖 + Δ2𝛼𝑖) (26) 

where 𝑉(𝑎𝑗0 , 𝑒𝑗0 , 𝑖𝑗0, 𝛺𝑗0, 𝜔𝑗0, 𝑀𝑗0) is the unperturbed visibility 

function. The elements 𝛼𝑖 represent the orbital elements of the 

satellites: for 𝑖 = 1,… ,6, 𝛼𝑖 correspond to 𝑎, 𝑒, 𝑖, 𝜔, Ω, M of the 

first satellite; for 𝑖 = 7, … ,12, they correspond to 𝑎, 𝑒, 𝑖, 𝜔, Ω, 

M of the second satellite. 

3. Results and Discussion 

The perturbed visibility function F was applied to case 

studies to evaluate the mutual visibility of satellites at varying 

altitudes. The orbital parameters are summarized in Table 2 in 

which the semi-major axes are geocentric, corresponding to 

approximate orbital altitudes of approximately 150 km, 320 

km, and 460 km for Satellites #1–#3, respectively. Although 

150 km is at the very low end of LEO and typically not 

sustained for long, it is included here as a very-low-LEO stress-

test scenario to demonstrate the coupled J2–J3–drag impact on 

mutual-visibility timing over a 24-hour horizon. At 150–320 

km, the adopted exponential-density model implies non-

negligible drag over a 24-hour window, consistent with the 

few-minute visibility shifts reported below. The influence of 

perturbative effects, specifically Earth’s oblateness and 

atmospheric drag, was systematically examined. These effects 

are illustrated in Figs. 2–4, which present a comparison of the 

visibility function, evaluated with and without perturbations, 

over a 24-hour period. The associated rise and set times are 

documented in Tables 3–5, providing comprehensive 

quantification of the visibility intervals .
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Table 2   Orbital Parameters of LEO Satellites at Various Altitudes 

 Orbital Parameters 

a (Km) e i (o) Ω (o) ω (o) M (o) n (rad/min) 

Satellite  #1 6525.17 0.0082 96.71 214.85 281.05 206.35 7.18 × 10−2 

Satellite  #2 6700.49 0.0096 19.96 299.53 286.90 72.07 6.93 × 10−2 

Satellite  #3 6841.56 0.0011 51.64 249.97 3.90 356.21 6.70 × 10−2 

3.1. Satellites #1 and #2 

Fig. 2 illustrates the visibility function for Satellites #1 and 

#2 over a 24-hour period, with a comparison of the perturbed 

and unperturbed cases. The satellites’ orbital configuration, 

with a moderate difference in semi-major axis (a1 = 6525.17 

km vs. a2 = 6700.49 km, corresponding to altitudes of about 

150 km and 320 km above the mean Earth radius) and a 

significant inclination disparity (96.71 deg vs. 19.96 deg), 

results in pronounced sensitivity to Earth’s oblateness and 

atmospheric drag. The perturbed visibility function 

demonstrates systematic shifts in rise–set times (up to 

approximately 3 minutes, or about 2% of the orbital period) and 

amplitude enhancements, particularly after 600 minutes, 

reflecting long-period perturbation effects. Table 3 quantifies 

these impacts, demonstrating that perturbations increase the 

frequency of visibility events and extend durations by up to 

approximately 20%. These findings highlight the critical role 

of perturbative corrections in the optimization of 

communication windows for LEO satellites exhibiting 

disparate orbital parameters. For this pair, the predominant 

effect is the differential J2-driven precession of the ascending 

nodes, which gradually rotates the orbital planes relative to one 

another and accounts for the nearly monotonic shift of rise–set 

times over the 24-hour interval. Long-period variations in the 

argument of perigee and eccentricity, driven primarily by J3, 

manifest as modest changes in the peak amplitudes of the 

visibility humps. At the lower altitude of Satellite #1, 

atmospheric drag further reduces the semi-major axis and mean 

motion, thereby introducing an additional relative phasing that 

contributes to the short extra visibility windows that appear in 

the perturbed case . 

 

Fig. 2 Visibility Function for Satellites #1 and #2 over 24 Hours: Perturbed 

vs. Unperturbed Cases

 

Table 3.  24-hour visibility intervals between Satellites #1 and #2 

Unperturbed Case Perturbed Case 

Rise (min) Set (min) 
Time of Visibility 

Rise (min) Set (min) 
Time of Visibility 

min Sec min sec 

7.8379 14.2886 6 27.05 7.7930 14.3055 6 30.75 

50.5521 60.6106 10 3.51 50.6146 60.4993 9 53.08 

95.9310 104.3115 8 22.83 95.9163 104.2271 8 18.65 

139.0937 150.1350 11 2.48 139.1115 150.0023 10 53.45 

184.6276 188.2224 3 35.69 184.5124 188.2407 3 43.70 

189.8768 193.7252 3 50.90 189.7251 193.6623 3 56.23 

228.0516 232.7587 4 42.42 227.9269 232.5136 4 35.20 

234.7991 239.2399 4 26.45 234.8059 239.1677 4 21.71 

273.8110 282.6497 8 50.32 
273.4555 277.4266 3 58.27 

278.6139 282.7168 4 6.17 

317.4184 327.9383 10 31.19 
317.0258 322.3604 5 20.08 

322.9902 328.0219 5 1.90 

363.5178 371.0519 7 32.05 362.6998 371.4253 8 43.53 

407.2527 416.1766 8 55.44 406.3970 416.5733 10 10.58 

454.0720 458.6110 4 32.34 452.2752 459.7684 7 29.59 

497.8130 503.7002 5 52.34 496.0774 504.7931 8 42.94 

- - - - 542.3922 547.5598 5 10.06 

- - - - 586.2426 592.5206 6 16.68 
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3.2. Satellites #1 and #3 

Fig. 3 illustrates the visibility function for Satellites #1 and 

#3 over a 24-hour period, with a comparison of the perturbed 

and unperturbed cases. The satellites’ orbital configuration, 

characterized by a significant disparity in semi-major axis 

(6525.17 km vs. 6841.56 km, i.e., altitudes of approximately 

150 km and 460 km) and an intermediate inclination for 

Satellite #3 (51.64 deg, between 96.71 deg for Satellite #1 and 

19.96 deg for Satellite #2), results in moderate sensitivity to 

Earth’s oblateness and atmospheric drag. In this configuration, 

the greater separation in semi-major axis makes the geometry 

particularly sensitive to differential nodal precession. The 

secular J2-driven drift in Ω produces the primary timing offsets 

between the perturbed and unperturbed curves, while the 

weaker J3-induced modulation of ω and e primarily affects the 

fine structure of the visibility humps. As in the previous case, 

the drag in the lower orbit modifies the mean motion of Satellite 

#1, thereby enhancing the relative phasing and helping to bring 

near-threshold humps above the visibility limit. This explains 

the appearance of additional short windows in the perturbed 

solution. The perturbed visibility function demonstrates shifts 

in rise–set times (up to approximately 2 minutes, or about 1.5% 

of the orbital period) and introduces new visibility intervals, 

with duration changes of up to about 15%. Table 4 quantifies 

these effects, indicating that perturbations exhibit a reduced 

impact in comparison to the Satellite #1–#2 pair due to Satellite 

#3’s higher altitude, which mitigates drag effects. Visibility 

peaks remain largely synchronized, with discrepancies 

primarily manifesting as minor shifts and extensions after 300 

minutes . 

 

 
 

Fig. 3 Visibility Function for Satellites #1 and #3 over 24 Hours: Perturbed 

vs. Unperturbed Cases

 

Table 4   24-hour visibility intervals between Satellites #1 and #3. 

Unperturbed Case Perturbed Case 

Rise (min) Set (min) 
Time of Visibility 

Rise (min) Set (min) 
Time of Visibility 

min sec min sec 

220.8656 232.1233 11 15.46 221.7638 231.6132 9 50.96 

264.6407 279.5003 14 51.58 265.0220 279.4767 14 27.28 

306.8816 315.9952 9 6.82 
307.3530 326.6765 19 19.41 

317.9478 326.4656 8 31.07 

353.2755 359.3434 6 4.07 353.2802 359.3114 6 1.87 

364.1262 371.0510 6 55.49 364.8746 371.7684 6 53.63 

398.0189 415.5477 17 31.73 397.9862 416.5846 18 35.90 

447.76188 456.8319 9 4.20 446.5640 459.1042 12 32.41 

- - - - 494.8345 500.8287 5 59.65 

3.3. Satellites #2 and #3 

Fig. 4 illustrates the visibility function for Satellites #2 and 

#3 over a 24-hour period, with a comparison of the perturbed 

and unperturbed cases. The satellites’ orbital configuration, 

with elevated semi-major axes (6700.49 km and 6841.56 km, 

corresponding to altitudes of approximately 320 km and 460 

km) and disparate inclinations (19.96 deg vs. 51.64 deg), results 

in moderate sensitivity to Earth’s oblateness and atmospheric 

drag. The perturbed visibility function exhibits systematic 

shifts in rise-set times (up to approximately 2.5 minutes, or 

about 1.8% of the orbital period) and introduces new visibility 

intervals, with duration changes of up to about 25%. Table 5 

quantifies these effects, demonstrating an increase in visibility 

event frequency and redistribution of observation windows. 

Because both satellites in this pair operate at higher altitudes, 

drag effects are weaker and the visibility shifts are dominated 

by J2-driven nodal precession and perigee rotation. The 

resulting perturbations generate smaller but still noticeable 

offsets in rise–set times and a redistribution of visibility 

intervals, with J3-induced variations in ω and e again appearing 

mainly as changes in the amplitudes and shapes of individual 

humps. The additional windows, as documented in Table 5, are 

therefore a consequence of the similar cumulative phasing 

mechanism as in the lower-altitude cases, but with reduced drag 

sensitivity. These results highlight the pivotal role of 

perturbative corrections in optimizing mission planning for 

LEO satellites at higher altitudes with varying orbital 

geometries .
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Fig. 4 Visibility Function for Satellites #2 and #3 over 24 Hours: Perturbed vs. Unperturbed Cases 

Table 5   24-hour visibility intervals between Satellites #2 and #3 

Unperturbed Case Perturbed Case 

Rise (min) Set (min) 
Time of Visibility 

Rise (min) Set (min) 
Time of Visibility 

min sec min sec 

31.8321 56.1497 24 19.06 31.7771 56.2890 24 30.72 

77.7241 103.1940 25 28.20 77.1395 103.3892 26 14.98 

119.6014 152.7050 33 6.21 119.1355 153.0336 33 53.89 

165.9313 199.1244 33 11.58 164.8985 199.1870 34 17.31 

208.7258 247.2256 38 29.98 
208.0718 226.7556 18 41.03 

228.2514 247.3305 19 4.75 

256.1718 272.2631 16 5.48 255.1199 272.0968 16 58.61 

275.5172 291.7333 16 12.97 274.6143 290.9878 16 22.41 

300.9136 338.1489 37 14.12 300.8132 337.2859 36 28.36 

350.1366 380.9469 30 48.61 349.9237 379.5137 29 35.40 

396.4124 426.8320 30 25.17 396.8765 425.2733 28 23.81 

446.7445 468.5233 21 46.73 447.4127 466.3976 18 59.10 

493.5909 514.1568 20 33.95 494.8999 511.7054 16 48.33 

548.2879 551.4034 3 6.93 - - - - 

This present paper has developed an analytical framework 

for predicting mutual visibility between low-Earth-orbit 

satellites under the combined effects of Earth’s oblateness and 

atmospheric drag. The model starts from a perturbed two-body 

description, incorporating the secular J2 contribution, the long-

period J3 effects, and drag-induced decay of the semi-major 

axis and eccentricity. These perturbations are then propagated 

into a closed-form visibility function F(t) for a given satellite 

pair. The formulation was applied to three representative LEO 

configurations, spanning altitudes of approximately 150 km, 

320 km, and 460 km and differing inclinations. For each pair, 

we compared the unperturbed and perturbed visibility functions 

over a 24-hour interval. The numerical results presented in Fig. 

2–4 and Tables 3–5 conclude that even minimal perturbations 

can induce non-negligible alteration in mutual visibility in both 

rise and set times, and the emergence of additional brief 

visibility windows in the perturbed solutions, particularly when 

one satellite operates at very low altitude. From dynamic and 

geometrical perspective, the visibility function can be viewed 

as a multi-hump function of time, each of which corresponds to 

a potential line-of-sight opportunity as the two orbits re-phase. 

The secular J2 term dominates the long-term evolution of Ω and 

ω, thereby generating most of the systematic timing offsets 

observed in the visibility windows. Whereas, J3 primarily 

induces long-period oscillations in ω and e that manifest as 

modest changes in the amplitudes and shapes of the humps. 

Atmospheric drag modifies the semi-major axis and mean 

motion, particularly at the lowest altitudes, thereby introducing 

an additional phase drift between the satellites. When an 

unperturbed hump is located close to the visibility threshold, 

these combined perturbations can shift its maximum above or 

below the threshold. This process can result in the creation or 

suppression of short visibility intervals. The additional 

windows reported in Tables 3–5 arise from this mechanism and 

are therefore a geometric consequence of small but cumulative 

perturbations rather than numerical artefacts. In practical terms, 

the proposed framework provides a rapid tool for estimating 

mutual visibility and rise-set times without the need for full 

numerical propagation. This makes it suitable for preliminary 

design and trade-off studies in LEO constellations, including 

relay placement and inter-satellite link scheduling. The present 

analysis focuses on the dominant secular and long-period 

effects of J2, J3, and drag over a one-day horizon in low Earth 

orbit. Short-period J2 terms, solar radiation pressure, and third-
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body perturbations are neglected and it is expected that they 

will contribute at most at the percent level for the regimes 

considered. Accordingly, the present manuscript focuses on the 

dominant secular and long-period drivers over the one-day 

horizon, while these smaller effects are left for a 

straightforward extension of the same analytical structure. 

Future work will extend the framework to include these 

additional perturbations, explore longer time spans, and 

generalize the methodology to multi-satellite constellations 

with more complex field-of-view constraints . 
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