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Abstract 

Block ciphers are used to protect data in information systems from being leaked to unauthorized people. One of many block cipher 
algorithms developed by Indonesian researchers is the BCF (Block Cipher-Four) - a block cipher with 128-bit input/output that 
can accept 128-bit, 192-bit, or 256-bit keys. The BCF algorithm can be used in embedded systems that require fast BCF 
implementation. In this study, the design and implementation of the BCF engine were carried out on the FPGA DE2. It is the first 
research on BCF implementation in FPGA. The operations of the BCF machine were controlled by Nios II as the host processor. 
Our experiments showed that the BCF engine could compute 2,847 times faster than a BFC implementation using only Nios II / 
e. Our contribution presents the description of new block cipher BCF and the first implementation of it on FPGA using an efficient 
method. 
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1. Introduction 

Block cipher is one of the cryptographic components used 

to protect information. Information can be in the internet 

network, financial system, military, and IoT (internet of 

things). IoT is a network of interconnected objects in various 

forms such as wireless sensor networks, electrical, electronic, 

mechanical devices, and their interaction with computer data 

via the internet [5]. In the IoT period, embedded devices were 

connected to the internet. The advent of IoT has put 

telecommunications and embedded systems at risk [6]. BCF is 

an encryption algorithm based on AES [13], Camellia [14], 

TwoFish [15], and Khazad [12]. It has 128 bits of input /output 

and 128, 192, and 256 bits keys. BCF is an encryption 

algorithm designed by Indonesian researchers [1]. This 

algorithm has an advantage over AES: The key schedule in 

BCF is more secure than AES because the main key is very 

difficult to find even when all sub-keys of BCF have been 

found. The SBox from BCF changes dependent on the key, 

while the SBox from AES does not change. Thus, BCF is safer 

than AES. 

There are two types of BCF keys: master key and sub-keys. 

A master key is processed by key schedule function becoming 

the sub-keys. Every sub-key is used to encrypt or decrypt 

partial data in every round. Encryption is a process to convert 

plaintext to be cipher text and decryption converts cipher text 

to be plaintext. 

Cryptanalysis is used to crack the key of a block cipher in 

an unusual way or test the security of a cryptographic algorithm 

that has been created. Correlation power analysis, for instance, 

tries to find all of the sub-keys using the correlation between 

the hamming weights and the power used in the embedded 

device when calculating the encryption algorithm [7].   
The hardware implementation is very important in terms of 

a performance and security, especially as a countermeasure 

against timing attacks [8] in particular and as side-channel 

attacks in general. This paper aims to introduce the BCF 

algorithm implemented in FPGA with an efficient method. This 

paper proposes a hardware architecture of the BCF algorithm 

as a co-host processor (encryption engine accelerator). This 

architecture was written in Verilog and tested on the Altera 

Cyclone IV EP4CE115F29 [9] using NIOS as the host 

processor. We compared the results with AES, Camellia, and 

TDEA data taken from SASEBO [10]. Moreover, we compared 

the BCF hardware accelerator with software implementation 

enabling us to measure how fast the BCF encryption engine 

accelerator computed, compared to software. 

2. Materials and Methods 

2.1. BCF Algorithm 

BCF uses the Feistel structure [11], in contrast to AES 

which uses the SPN structure. The SPN structure requires fewer 

rounds than does Feistel to achieve the same diffusion rate. The 

advantage of using the Feistel structure over SPN is related to 

the use of the same structure for the encryption and decryption 
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processes so that it will require few memories in the 

implementation. SPN requires two different algorithms for 

encryption and decryption. 

The BCF algorithm has two main components: scheduling 

part and randomization part. Key Schedule is performed to 

generate sub keys and randomization is performed to encrypt 

or decrypt data using sub keys generated by key scheduling. 

The number of rounds at the randomization stage depends on 

the length of the key in which 128-bit keys are used in the 

randomization of 15 rounds, 192-bit keys require 16 rounds and 

256-bit keys for 18 rounds. In each round, the F0 function is 

applied. This function uses sub keys to manipulate the input 

data for each round. 

The main features of the BCF algorithm are: 

 

1. The input and output data are 128 bits (plain text and cipher 

text) respectively. 

2. The length of the master key has 3 variants: 128, 192 and 256 

bits. 

3. Key scheduling is done in 8 rounds using the F0 function. 

4. The number of rounds at the randomizing stage (for 

encryption or decryption) depends on the length of the key. 

 

The key schedule stage is carried out at the beginning to 

generate sub-keys for the randomizing stage, but in this paper 

we will begin by explaining the randomizing stage. 

2.2. BCF Encryption 

BCF uses the Feistel structure as in the Twofish algorithm, 

so it can use the same algorithm for encryption and decryption. 

BCF has 128-bit input / output. The pseudo code of the BCF 

encryption algorithm is presented as follows.  
 

XL = XL ^ KW1 
XR = XR ^ KW2 
XL = XR 
XR = XL ^ F0(K1,XR) 
XL = XR 
XR = XL ^ F0(K2,XR) 
XL = XR 
XR = XL ^ F0(K3,XR) 
XL = XR 
XR = XL ^ F0(K4,XR) 
XL = XR 
XR = XL ^ F0(K5,XR) 
XL = XR 
XR = XL ^ F0(K6,XR) 
XL = XR 
XR = XL ^ F0(K7,XR) 
XL = XR 
XR = XL ^ F0(K8,XR) 
XL = XR 
XR = XL ^ F0(K9,XR) 
XL = XR 
XR = XL ^ F0(K10,XR) 
XL = XR 
XR = XL ^ F0(K11,XR) 
XL = XR 
XR = XL ^ F0(K12,XR) 
XL = XR 
XR = XL ^ F0(K13,XR) 
XL = XR 

XR = XL ^ F0(K14,XR) 
XL = XR 
XR = XL ^ F0(K15,XR) 
XL = XR 
XR = XL ^ F0(K16,XR) 
XL = XR 
XR = XL ^ F0(K17,XR) 
XR = XR 
XL = XL ^ F0(K18,XR) 
XL = XL ^ KW3 
XR = XR ^ KW4 

Figure 1. shows the BCF structure that can be used for both 

encryption and decryption. 

 

 

Fig. 1 BCF encryption 

 

In the BCF algorithm, there is an FO function that has an 

input of two data words x and two words of the k sub-key and 

produces two output words of y, where 1 word is 32 bits. This 

function is the heart of BCF encryption/decryption. For a note, 

1 word is 32 bits. 

 y = FO(x,k) = P(Si(x)) ⊕  k  () 

SBox has 1 byte input / output. Because each x consists of 8 

bytes, there are 8 SBox operations for each input x{ x 0 , x 1 , x 2 

, x 3 , x 4 , x 5 , x 6 , x 7 }. There are 4 SBox-es used in BCF. The 

Substitution Boxes (in hexadecimal) are shown in (Tables 1-4). 
Table 5. shows the algorithms used to select BCF SBox 

before encryption/decryption. 
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Table 1. BCF substitution box 1 

 0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 b4 b7 67 f3 0b 94 52 68 37 3e ef d7 eb 8f 55 93 

1 2b a5 02 be 21 20 98 69 8d 05 73 af a7 bb dc ac 

2 54 70 95 77 c1 06 22 44 b0 c9 76 b5 2f 27 2d 32 

3 72 5b 64 c0 3a 3c 49 de 57 28 3d 0a f4 e7 71 7a 

4 d1 8e f0 43 c8 23 7f aa df 16 ba 5e 18 1a 1d 7c 

5 bd d5 85 ab 56 8c 9f fd 4c ca 9d c7 ed b9 25 cc 

6 75 ee ae fc 4b 03 3f a3 e3 7d e5 d3 d4 10 e0 36 

7 34 d8 3b 82 6e 89 35 01 91 79 d0 da 5c 4 cd fe 

8 84 6b e4 1b 6c 9b 81 Cf 2c 46 a8 c5 07 26 e9 51 

9 c4 d9 0f 33 4d 41 bf 61 4a a0 a6 b1 c2 ea 66 c6 

a 83 f6 e2 40 1f 5d 7b dd f9 b3 a4 15 8b 6a 45 09 

b e1 4e 11 50 b6 58 db 08 cb 7e a2 5a f1 ad 87 ff 

c 53 47 13 80 86 c3 1c 5f a9 59 63 e6 fa 30 42 f5 

d 0d 38 2a 9a f7 90 65 ce 78 d2 9c bc 1e 0c 17 ec 

e 88 d6 6f 62 0e 6d 99 9e 8a 31 48 19 4f 00 74 fb 

f 29 b8 2e a1 39 60 96 12 97 f8 b2 24 e8 92 f2 14 

Table 2. BCF substitution box 2 

 0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 40 a5 3e ee 28 1e 51 21 60 db 4c 59 3c c8 8f 77 

1 5a 43 2a d2 5b ce a1 e9 b1 47 e3 8a 46 e1 e7 89 

2 fd bc f9 c0 a0 f4 09 3d 52 5d fe a6 67 cb ec 97 

3 18 4b 6a 61 b7 c1 9e 24 4f e5 01 03 29 08 b9 06 

4 f0 a7 e6 cc 39 1d 7f 15 57 f3 82 99 70 6e 9c 58 

5 d6 2c d9 cd a3 4d 75 48 74 2f e2 6d d7 12 b0 37 

6 80 7e 86 79 0e 71 d0 34 0a ac 42 94 b8 aa 56 dd 

7 84 55 38 fb 1c dc 33 de 6c c2 a2 d3 e4 66 ae a4 

8 9f 26 22 7 7c f8 3b f2 f6 1f 96 f5 85 c9 c6 ab 

9 8b 45 7b e0 2e 50 9b d8 d1 5f c5 65 0d 88 14 27 

a d5 20 c7 fc 44 fa 3f 62 35 a9 63 2d 49 69 19 0f 

b 13 95 90 72 ad 00 31 17 0c 64 11 b4 16 53 9a 04 

c 8d cf 91 bf d4 a8 ea 8c c3 54 af 93 3a ba 1a eb 

d ef 7d 8e c4 6b 0b 5c 25 bd 4a 1b 68 87 b6 df 6f 

e 83 b3 be f7 78 81 ed 4e bb 2b 36 b5 76 30 9d f1 

f 7a 92 e8 23 da ca 41 5e 10 98 ff 32 b2 73 05 02 

 

 

 

 

 

 

 

 

Table 3. BCF  substitution box 3 

 0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 47 ec a1 80 49 10 d1 0b 94 50 5e a7 23 45 b0 38 

1 de f5 6e d5 54 c0 8e 34 0e ba 16 44 e2 72 aa e5 

2 26 cb fe 60 3 bf dd 56 57 e4 91 8c 19 65 3b 1 

3 90 7b f9 24 0c c5 61 b7 f7 e1 37 fd 85 7e 9 2c 

4 c9 ac 66 d6 40 a9 42 4 5a 6b 1c ce fa af db b5 

5 83 b3 a6 e7 7a e0 cf 27 6a ef 1e b8 6 18 2f 63 

6 b9 82 76 28 f8 ed 71 fb 70 5 c8 88 e6 4e e3 cc 

7 fc c4 67 95 78 13 9c 2e 74 68 84 31 f2 58 ae 3d 

8 df 87 7c 2 ff 79 86 e9 2d c2 52 5f ad 30 8a 99 

9 25 41 22 8d 1d 20 8f 97 14 77 c7 9a f0 2b 1a 3e 

a 89 9e 7 8 3a 5b 4a ca 9f 12 c1 59 0a 55 81 a8 

b 21 96 73 46 f1 c6 bd 33 0 62 1f 32 b1 7f bc 4d 

c d2 6f d9 d3 b2 f6 36 cd 75 dc 64 7d 6c 93 bb a4 

d a5 f4 53 1b 35 5d a0 a2 4b 4f 43 51 48 e8 0f 5c 

e c3 b4 da ee 2a d0 39 9d 98 ea d7 a3 ab 29 0d eb 

f b6 17 3c 4c f3 3f 6d 15 be 92 8b 9b 11 d4 69 d8 

Table 4. BCF substitution box 4 

 0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 2f 5a c2 d4 9e 0b eb b4 6 43 d5 50 59 df 65 4b 

1 3e 99 5f 27 10 cb 42 a8 cd c3 2c 95 e6 24 dc b5 

2 6a aa a6 46 c0 19 a7 73 84 ff fa 9f 31 7f 3f e9 

3 b0 52 1b 93 3a b3 9a d8 fb 88 4d d3 f3 b7 91 5 

4 13 5b d7 22 40 f4 61 75 e3 48 74 55 e5 d0 47 2d 

5 11 f0 33 29 ae 9c e4 90 68 e8 d1 ef c5 32 6c 20 

6 8b 63 d2 4f 3 d9 72 76 1d bb 2b 1 4 ab 1e a0 

7 96 66 80 25 85 78 34 6f e0 c9 4a 8d 7e c6 b6 e2 

8 62 0e 9d 64 82 fd 5e 71 54 cc a4 f8 b8 94 53 30 

9 35 de ce 2a 3c 21 fc 4e be 12 fe dd db 6b c4 2 

a 51 ad f7 26 8c 15 14 17 af 0f bf 7b 39 a3 e1 6d 

b f2 c8 cf f9 1c 23 b2 7c 87 44 18 f1 0a b9 79 ac 

c f6 0d ee 98 9b 97 36 da 1f d6 81 ca 58 7d 8a 83 

d a9 c1 f5 bc 5d 89 77 6e 2e b1 5c 8e 0c 28 9 1a 

e 7 ea e7 56 37 7a 41 70 57 a5 4c 67 bd c7 60 3d 

f 0 38 92 a2 69 8f ed ba 45 3b a1 8 ec 16 49 86 

 

 

Table 5. The algorithm for selecting SBox 

Round Key Ramdomize 

1-4 KA S[i] = ((K >> (2i + 8(r-1))) & 03x 

5-8 KB S[i] = ((K >> (2i + 8(r-5))) & 03x 

9-12 KA S[i] = ((K >> (2i + 8(r-9))) & 03x 

13-16 KB S[i] = ((K >> (2i + 8(r-13))) & 03x 

17-18 KA S[i] = ((K >> (2i + 8(r-17))) & 03x 
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P is the product between the matrix M and the input x with 

an aim to obtain optimal diffusion. 

 b = P(x) =M . x  () 

 

The input is x = { x 0 , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 } and the 

output is P(x) = b = {b 0 , b 1 , b 2 , b 3 , b 4 , b 5 , b 6 , b 7 }. BCF uses 

the same irreducible polynomials used by AES, m(x). 

 m(x) = x8 + x4 + x3 + x + 1  () 

2.3. BCF Key Expansion 

The BCF keyschedule (key expansion) algorithm has a key 

input of 128 bits (16 bytes or 4 words), and performs a Key 

Expansion to generate some sub-keys. The Key Expansion 

produces a total of 17 sub-keys, 15 sub-keys for the regular 

round ( K 0 , K 1 , ..., K 14 ) and 4 sub-keys for whitening keys 

( KW 1, KW 2, KW 3, KW 4 ). If the primary key is 192 bits 

or 256 bits, then we perform XOR operation between the left 

side and the right side of the primary key so that it still 

generates a key of 128 bits to be included in the key schedule. 

At the beginning of the key schedule, the intermediate 

keys:K A , K B , ..., K G are generated. From these intermediate 

keys, all sub-keys required for the encryption and decryption 

processes are generated. Figure 2 shows the beginning of the 

key expansion to generate K A , K B , K C and K D. 

 

Fig. 2 BCF key expansion 

 

Table 6 describes the complete key expansion process. The 

table is connected to the figure 2 as key expansion process. 

Table 6. BCF key expansion 

Key Key Function 

KE (KA KB)KC 

KF (KA KC)KD 

KG (KE KF)KAKB 

Kw1 (KE KF)KC 

Kw2 KC  KDKE 

K1 Kw1 Kw2 0x00007a0000000000  

K2 K1 KC  KD 

K3 (K2 0xff00000000000000)  KE 

K4 K3   KC KD 

K5 (K4 KF) KG 

K6 (C1 KE) K5 

K7 (KG K6)KF 

K8 (K7 K6)    KG 

K9 (K8 KF)    KG 

K10 (K9 KC)    K8 

K11 K8K9K10 

K12 (K10 + K11)|8 bit 

K13 (K11 + K12)|32 bit 

K14 (K1332l<<<1)||(K1332r<<<1) K11  

K15 (K12 K14)    K13 

K16 (K14 K15)K12 

K17 (K14 K15)  

K18 (K15 K16)K17 

KW3 K13K14 

 

2.4. BCF Decrytpion 

The BCF decryption (Figure 3) procedure can be performed 

in the same way as encryption, but with the sub-key order 

reversed. More details are shown in the following pseudo code. 
 

 

XR = XR ^ KW4 
XL = XL ^ KW3 
XL = XL ^ F0(K18,XR) 
XR = XL 
XR = XL ^ F0(K17,XR) 
XL = XR 
XR = XL ^ F0(K16,XR) 
XL = XR 
XR = XL ^ F0(K15,XR) 
XL = XR 
XR = XL ^ F0(K14,XR) 
XL = XR 
XR = XL ^ F0(K13,XR) 
XL = XR 
XR = XL ^ F0(K12,XR) 
XL = XR 
XR = XL ^ F0(K11,XR) 
XL = XR 
XR = XL ^ F0(K10,XR) 
XL = XR 
XR = XL ^ F0(K9,XR) 
XL = XR 
XR = XL ^ F0(K8,XR) 
XL = XR 
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XR = XL ^ F0(K7,XR) 
XL = XR 
XR = XL ^ F0(K6,XR) 
XL = XR 
XR = XL ^ F0(K5,XR) 
XL = XR 
XR = XL ^ F0(K4,XR) 
XL = XR 
XR = XL ^ F0(K3,XR) 
XL = XR 
XR = XL ^ F0(K2,XR) 
XL = XR 
XR = XL ^ F0(K1,XR) 
XL = XR 
XR = XR ^ KW2 
XL = XL ^ KW1 

Fig. 3 BCF decryption 

2.5. BCF Core IP Design 

IP BCF core design is implemented in Verilog HDL 

language, top down method. The design begins by defining the 

system, making the architecture first, and designing the 

supporting modules. The IP BCF core symbol and pin out are 

shown in Figure 4. Table 7 describes the function of each pin. 

Figure 5 shows the general architecture of BCF. Key_len pin 

out functions to set the number of rounds and the number of 

rounds depends on the size of the key. For a key with a size of 

128 bits, 192 bits, 256 bits, it takes 15, 16, and 18 rounds, 

respectively. The decrypt pin out determines whether 

BCF_Core will encrypt or decrypt. The core of the BCF Engine 

contains encryption, decryption and keyschedule. Figure 6 

illustrates the core algorithm for the BCF engine. 

 

 

Table 7. Core pinout 

Port 

Name 

Port 

Width 

(bit) 

Direction Description 

clk 1 Input System clock 

rst 1 Input Reset, active high 

sel 1 Input 
0: Reset BCF Core 

1: Active BCF Core 

decrypt 1 Input 
0: Decryption 

1: Encryption 

key_len 2 Input 

00 : 128 bits 

01 : 192 bits 

10 : 256 bits 

key 256 Input BCF key 

din 128 Input Data input 

dout 128 Output Data output 

done 1 output 
0 : BCF Process Done 

1 : BCF  Processing 

 

 

Fig. 4 Core Pin out 

 

Fig. 5 BCF general architecture 

This core architecture was used interchangeably for 
randomizing and key schedule, resulting in large latency. For 
the encryption and decryption process, the BCF engine required 
316 clocks.  

Figure 7 shows the BCF timing diagram. The system was 
controlled by clk. 

To implement BCF, we needed a FSM (Finite State 
Machine). The BCF FSM is shown in Figure 8.  
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Fig. 6 BCF engine core 

 

316 clock

Fig. 7 BCF Timing diagram  

     

 Fig. 8 BCF FSM 

Figure 9 and Figure 10 illustrate the keys schedule (key 

expansion) architecture and the FO module, respectively. One 

Core FO was used interchangeably in encryption, decryption, 

and key schedule. The advantage of this design is to use a small 

area but it has the disadvantage of having a large latency.  

The further explanation of FSM in Figure 8 and FO Core in 

Figure 9 is described in more detailed in Table 14 and Table 15 

(appendix). 

 

Fig. 9 FO core 

Subbyte BCF operations were implemented using LUTs for 

the ease of design and minimization of critical paths [4].  

The description of FO module pins is described in Table 16 

(appendix).  

The search for the substitution box number was obtained 

from this equation : 

 

si = ((K >> ( (2*i) + (8*r) ) ) & 8'h03) ^ ( (((K >> (8*r + 2)) 

& 8'h03) ^ ((K >> (8*r + 4)) & 8'h03) ^ ((K >> (8*r + 6)) & 

8'h03)) & zero)              () 
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Fig 10 F0 module 

The MixColumn operation used a systolic array architecture 

(Figure 11). The architecture used only eight processing 

elements in MixColumn and one processing element in 

Subbyte processing. The tradeoff of this architecture was the 

latency from one clock to eight clocks. 

 

 

Fig. 11 Systolic array diagram block edge map  

 

Figure 12 shows the Processing Element Design.  If Input data 

is  x and multiplier number in mixcolumn is  M, then the result 

of polynomial multiplication between x and M is b. 

The design of processing elements is implemented using the 

architecture as shown in Figure 13. 

 

 

 

b

x

M

Z
-1

 

Fig. 12 Processing element design 

Table 8. Processing element pinout description  

Port Name 

Data 

Length 

(bit) 

Direction Description 

A 8 Input 
Data input for polynomial 

multiplication in mixcolumn. 

B 8 Input 
Data input for polynomial 

multiplication in mixcolumn. 

R 8 Output 

Data output for polynomial 

multiplication in mixcolumn 

A * B. 

 

Table 8 shows some descriptions of the Processing Element 

pinouts. Pinout R contains the result of polynomial 

multiplication between data from pinout A and B. Xtime 

algorithm was used for polynomial multiplication in 

mixcolumn operation. For efficiency in Mixcolumn operation, 

shift and xor operation was applied [3]. Figure 14 depicts the 

architecture of xtime algorithm implemented in mixcolumn. 

Table 9 shows some descriptions of the XTime pinouts. 

Xtime architecture used in this design had one input data and 

eight output data. It was purposely to enable the polynomial 

multiplication to be completed in one clock. 

 

 

Fig. 13 Processing element architecture 
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Fig. 14 Xtime architecture

 

Table 9. Xtime pinout description  

Port Name 

Data 

Length 

(bit) 

Direction Description 

d 8 Input Data input xtime function. 

x1 8 Output Data output for d multiple by 1x. 

x3 8 Output Data output for d multiple by 3x. 

x4 8 Output Data output for d multiple by 4x. 

x5 8 Output Data output for d multiple by 5x. 

x6 8 Output Data output for d multiple by 6x. 

x7 8 Output Data output for d multiple by 7x. 

x8 8 Output Data output for d multiple by 8x. 

xB 8 Output Data output for d multiple by Bx. 

 

Table 10. Synthesis comparation 

Algorithm 
Logic 

Element 
Register 

FMax 

(MHz) 

Key 

length 

(bit) 

Throughput 

(Bps) at 50 

MHz 

BCFV1 5790 729 54.7 256 7594937 

SASEBO 

AES 
5122 396 84.84 128 123076923 

SASEBO 

Camellia 
4251 397 59.36 128 55172413 

SASEBO 

TDEA 
1017 256 74.4 192 38461538 

 

 

 

2.6. BCF Integration to FPGA Atera DE II 

DE2-115 is a development board with the main component 

in the form of Altera Cyclone® IV 4CE115 FPGA. Soft core 

NIOS processor can be implemented on FPGA. NIOS is a soft 

core 32-bit RISC Microprocessor. In this paper, we used 50 

MHz frequency on BCF. The BCF module was wrapped with 

the Avalon interconnect interface. Figure 15 shows the block 

diagram of the NIOS interface. 

 

 

 

 

 

 

 

 

 

Fig. 15 BCF - NIOS interface 

 

To access IP BCF, NIOS write / read registers in Table 11.  
The functionality test of IP BCF was carried out by 

comparing the computing results of BCF IP with program that 

run on a computer. Figure 16 and 17 show the result.  

Based on the above test, the ciphertext and plaintext values 

generated by the IP Core BCF were found similar with those 

generated by the C program running on the computer. This 

means that the implementation of BCF on BCF has been 

functionally successful. 

 

NIOS II

PROCESSOR

INTERVAL

TIMER

JTAG PORT
ON-CHIP

MEMORY
BCF ENGINE

AVALON BUS
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Fig 16. IP BCF result   

  

Fig 17. BCF engine computer result 

 

One way to measure the BCF performance is by comparing 

the hardware and software implementation. If the speed of the 

hardware far exceeds the speed of the software, the hardware 

implementation can be stated to be successful. The 

measurement results are presented in Table 12 showing that the 

computation time for BCF software implementation depends 

on the processor architecture. Hardware BCF Engine can speed 

up BCF compute 488-2847 times compared to software, 

dependent on processor architecture and BCF key length. 

Table 12. Software and hardware running time comparation 

 

The speed of BCF and AES was measured, and the results 

of the comparison are shown in Table 13 informing the BCF 

Engine was 44 times faster than the AES hardware accelerator, 

where the devices operated at a clock of 50MHz. From this 

data, BCF Engine is suitable to be implemented in devices with 

small computing resources such as IoT, where these devices 

require a low clock for power saving, but require a high level 

of security for sending data to the internet [17]. 

Table 13. Comparasion of Block Cipher 128-bit implementation on FPGA 

 

3. Conclusion 

This paper describes the BCF encryption algorithm, the 

algorithm implementation on the Altera DE2-115 FPGA and its 

performance. On Altera DE2-115 boards, hardware 

implementations were found 488-2847x faster than software 

implementations, dependent on processor architecture and BCF 

key length. BCF also has a high speed to be implemented on 

devices with small resources such as IoT. For further research, 

we will perform a Correlation Power Analysis (CPA) attack on 

this proposed BCF device. The attack will be based on the 

previous paper [2]. 

References 

1. Y. Kurniawan. The BCF block cipher design, Technical Report, Institut 
Teknologi Bandung, Indonesia, 2018. 

2. Ma'muri, Y. Kurniawan and S. Sutikno, Implementation of BC3 
encryption algorithm on FPGA Zynq-7000, Int. Symp. Electronics Smart 
Devices, Yogyakarta, Indonesia, 2017, pp. 329-334. 

3. Hua Li and Z. Friggstad, An efficient architecture for the AES mix 
columns operation, IEEE Int. Symp. Circuits Syst., Kobe, 2005, pp. 4637-
4640. 

4. S. Ghaznavi, C. Gebotys and R. Elbaz, Efficient technique for the FPGA 
implementation of the AES mixcolumns transformation, Int. Conf. 
Reconfigurable Computing FPGAs, Quintana Roo, 2009, pp. 219-224. 

5. A. O. Adebayo, M. S. Chaubey, and L. P. Lumbu, Industry 4.0: The fourth 
industrial revolution and how it relates to the application of internet of 
things(IoT), J. Multidisciplinary Eng. Sci. Studies 5 (2019) 2477-2482. 

6. I. A. Landge and H. Satopay, Secured IoT through hashing using MD5, 
Fourth Int. Conf. Adv. Electric., AEEICB, Chennai, 2018, pp. 1-5. 

7. S. D. Putra, M. Yudhiprawira, Y. Kurniawan, S. Sutikno and A. S. 
Ahmad, Security analysis of BC3 algorithm for differential power 

Table 11. Register for software 

Address W/R Description 

0x81080 W Write to register Key on bit 0 to 31 

0x81081 W Write to register Key on bit 32 to 63 

0x81082 W Write to register Key on bit 64 to 95 

0x81083 W Write to register Key on bit 96 to 127 

0x81084 W Write to register Key on bit 128 to 159 

0x81085 W Write to register Key on bit 160 to 191 

0x81086 W Write to register Key on bit 192 to 223 

0x81087 W Write to register Key on bit 224 to 255 

0x81088 W Write to register din on bit 0 to 31 

0x81089 W Write to register din on bit 32 to 63 

0x8108A W Write to register din on bit 64 to 95 

0x8108B W Write to register din on bit 96 to 127 

0x8108C W 

Write to register key_len 

0: 128 bit 

1: 192 bit 

2: 256 bit 

0x8108E W 

Write to register decrypt 

0: Decryption 

1: Mode encryption 

0x8108F W Write to register BCF_start 

0x81090 R 

Read BCF_Flag 

0: BCF not done 

1: BCF done 

0x81091 R Read register dout on bit 0 to 31 

0x81092 R Read register dout on bit 32 to 63 

0x81093 R Read register dout on bit 64 to 95 

0x81094 R Read register dout on bit 96 to 127 

0x81095 W Reset BCF Engine 

NIOS II 

Version 

Average execution time (μS) 

256 bit 192 bit 128 bit 

NIOS II 
BCF 

Engine 
NIOS II 

BCF 

Engine 
NIOS II 

BCF 

Engine 

Fast 141664 290 135977 255 127704 239 

Standart 172815 273 159609 261 153015 253 

Economy 760116 267 701536 267 672323 267 

Design Algorithm Execution time (uS) 

Sideris et al.[16] AES 10414 

This work BCF 239 



62 Kurniawan et al. / Communications in  Science and Technology 5(2) (2020) 53-64 

 
analysis attack, Int. Symp. Electronics Smart Devices (ISESD), 
Yogyakarta, 2017, pp. 341-345. 

8. P. C. Kocher. Timing attacks on implementations of diffie-hellman, RSA, 
DSS, and other systems. In: Koblitz N. (eds) Advances in Cryptology — 
CRYPTO ’96. Lecture Notes in Computer Science, Springer, Berlin, 
Heidelberg, 1996.  

9. Altera, DE2-115 cyclone II development board user manual, Altera, 2010 

10. A. Laboratory,  Cryptographic  hardware  project:  IP  core,   
http://www.aoki.ecei.tohoku.ac.jp/crypto/web/cores.html, 2019. 

11. W. Stalling. Cryptography and network security principles and 
practices(4th ed). New Jersey: Prentice Hall, 2005. 

12. P. S. L. M. Barreto and V. Rijmen. The Khazad Legacy-level Block 
Cipher, NESSIE, 2001.  

13. A. E. Standard., Federal Information Processing Standards Publication, 
FIPS PUB 197, 2001.  

14. K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, T. 
Tokita,Specification of camellia — a 128-bit block cipher,  NTT and 
Mitsubishi Electric Corporation 2000-2001, 2001, pp. 1-35.  

15. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, 
Twofish: a 128-bit block cipher. Proceedings first AES cand. conf., 1998.  

16. A. Sideris, T. Sanida and M. Dasygenis, Hardware acceleration of the 
AES algorithm using Nios-II processor, Panhellenic Conf. Electronics 
Telecommunications, Volos, Greece, 2019, pp. 1-5. 

17. R. Mahmoud, T. Yousuf, F. Aloul and I. Zualkernan, Internet of things 
(IoT) security: Current status, challenges and prospective measures, 10th 
Int. Conf. Internet Tech. Secured Transactions, London, 2015, pp. 336-
341. 

Appendix 

Table 14. FSM state description 

State Description 

S0 Reset state 

KeyS = 1 

S1 Pre-Whitening 

S2 round = 1 

S3 round = 15 

S4 round = 16 

S5 round = 18 

S6 Conditional state 

S7 dinR = KM, dinL = KL 

S8 dinR = XRreg, dinL = XLreg 

S9 Wait until F0 done, then XReg = XR, XLreg = XL 

S10 Input data to KAreg and KBreg register 

S11 Key Schedule finished 

S12 Process(Key Schedule) not finished, go to S6 state, ronde = 

ronde + 1 

S13 Conditional state 

S14 Process (encryption or decryption) not finished, go to S6 state, 

ronde = ronde + 1 

S15 Process (Key Schedule or encryption or decryption i) finished, 

goto S6 state, if Key Schedul finished and KeyS = 1, then 

KeyS = 0 and go to state S1.  

Table 15. FO core pinout description 

Port Name 

Data 

Length 

(bit) 

Direction Description 

din 128 Input Data input, plain text or cipher text. 

Table 15 “continued”. FO core pinout description 

Port Name Data 

Length 

(bit) 

Direction Description 

dinR 64 Input Data input right 

dinL 64 Input Data input left 

Ks 64 Input Subkey  

XR 64 Output Data output right 

XL 64 Output Data output left 

KS1…KS18 64 Input Subkey for each round 

KS1 64 Input KeyS = 1, then KS1 = C3. 

Decrypt = 1, then KS1 = K1. 

Key_len = 0 & decrypt = 0, then KS1 = 

K15. 

Key_len = 1 & decrypt = 0, then KS1 = 

K16. 

Key_len = 2 & decrypt = 0, then KS1 = 

K18. 

KS2 64 Input KeyS = 1, then KS2 = C4. 

Decrypt = 1, then KS2 = K2. 

Key_len = 0 & decrypt = 0, then KS2 = 

K14. 

Key_len = 1 & decrypt = 0, then KS2 = 

K15. 

Key_len = 2 & decrypt = 0, then KS2 = 

K17. 

KS3 64 Input KeyS = 1, then KS3 = K1R. 

Decrypt = 1, then KS3 = K3. 

Key_len = 0 & decrypt = 0, then KS3 = 

K13. 

Key_len = 1 & decrypt = 0, then KS3 = 

K14. 

Key_len = 2 & decrypt = 0, then KS3 = 

K16. 

KS4 64 Input KeyS = 1, then KS4 = K1L. 

Decrypt = 1, then KS4 = K4. 

Key_len = 0 & decrypt = 0, then KS4 = 

K12. 

Key_len = 1 & decrypt = 0, then KS4 = 

K13. 

Key_len = 2 & decrypt = 0, then KS4 = 

K15. 

KS5 64 Input KeyS = 1, then KS5 = C1. 

Decrypt = 1, then KS5 = K5. 

Key_len = 0 & decrypt = 0, then KS5 = 

K11. 

Key_len = 1 & decrypt = 0, then KS5 = 

K12. 

Key_len = 2 & decrypt = 0, then KS5 = 

K14. 

KS6 64 Input KeyS = 1, then KS6 = C2. 

Decrypt = 1, then KS6 = K6. 
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Key_len = 0 & decrypt = 0, then KS6 = 

K10.S 

Key_len = 1 & decrypt = 0, then KS6 = 

K11. 

Key_len = 2 & decrypt = 0, then KS6 = 

K13. 

KS7 64 Input KeyS = 1, then KS7 = C3. 

Decrypt = 1, then KS7 = K7. 

Key_len = 0 & decrypt = 0, then KS7 = 

K9. 

Key_len = 1 & decrypt = 0, then KS7 = 

K10. 

Key_len = 2 & decrypt = 0, then KS7 = 

K12. 

KS8 64 Input KeyS = 1, then KS8 = C4. 

Decrypt = 1, then KS8 = K8. 

Key_len = 0 & decrypt = 0, then KS8 = 

K8. 

Key_len = 1 & decrypt = 0, then KS8 = 

K9. 

Key_len = 2 & decrypt = 0, then KS8 = 

K11. 

KS9 64 Input KeyS = 1, then KS9 = 0. 

Decrypt = 1, then KS9 = K9. 

Key_len = 0 & decrypt = 0, then KS9 = 

K7. 

Key_len = 1 & decrypt = 0, then KS9 = 

K8. 

Key_len = 2 & decrypt = 0, then KS9 = 

K10. 

KS10 64 Input KeyS = 1, then KS10 = 0. 

Decrypt = 1, then KS10 = K10. 

Key_len = 0 & decrypt = 0, then KS10 

= K6. 

Key_len = 1 & decrypt = 0, then KS10 

= K7. 

Key_len = 2 & decrypt = 0, then KS10 

= K9. 

KS11 64 Input KeyS = 1, then KS11 = 0. 

Decrypt = 1, then KS11 = K11. 

Key_len = 0 & decrypt = 0, then KS11 

= K5. 

Key_len = 1 & decrypt = 0, then KS11 

= K6. 

Key_len = 2 & decrypt = 0, then KS11 

= K8. 

KS12 64 Input KeyS = 1, then KS12 = 0. 

Decrypt = 1, then KS12 = K12. 

Key_len = 0 & decrypt = 0, then KS12 

= K4. 

Key_len = 1 & decrypt = 0, then KS12 

= K5. 

Key_len = 2 & decrypt = 0, then KS12 

= K7. 

KS13 64 Input KeyS = 1, then KS13 = 0. 

Decrypt = 1, then KS13 = K13. 

Key_len = 0 & decrypt = 0, then KS13 

= K3. 

Key_len = 1 & decrypt = 0, then KS13 

= K4. 

Key_len = 2 & decrypt = 0, then KS13 

= K6. 

KS14 64 Input KeyS = 1, then KS14 = 0. 

Decrypt = 1, then KS14 = K14. 

Key_len = 0 & decrypt = 0, then KS14 

= K2. 

Key_len = 1 & decrypt = 0, then KS14 

= K3. 

Key_len = 2 & decrypt = 0, then KS14 

= K5. 

KS15 64 Input KeyS = 1, then KS15 = 0. 

Decrypt = 1, then KS15 = K15. 

Key_len = 0 & decrypt = 0, then KS15 

= K1. 

Key_len = 1 & decrypt = 0, then KS15 

= K2. 

Key_len = 2 & decrypt = 0, then KS15 

= K4. 

KS16 64 Input KeyS = 1, then KS16 = 0. 

Decrypt = 1, then KS16 = K16. 

Key_len = 1 & decrypt = 0, then KS16 

= K1. 

Key_len = 2 & decrypt = 0, then KS16 

= K3. 

KS17 64 Input KeyS = 1, then KS17 = 0. 

Decrypt = 1, then KS17 = K17. 

Key_len = 2 & decrypt = 0, then KS17 

= K2. 

KS18 64 Input KeyS = 1, then KS18 = 0. 

Decrypt = 1, then KS18 = K18. 

Key_len = 2 & decrypt = 0, then KS18 

= K1. 

KA, KB, 

KJ, KK, KL, 

KM 

64 Input Subkey untuk randomizing SBox. 

KWA, 

KWB 

64 Input Subkey untuk pre-whitening. 

cntF0 4 Input Data counter ronde BCF. 

dF0 1 Input 0: Ouput Pre-Whittening 

1: Ouput F0 

KeyS 1 Input 0: Encrypt/Decrypt 

1: Key Schedulling 

KeyS1 1 Input 0: XRREg, XLReg 

1: KM, KL 
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Table 16. F0 module pinout description 

Port 

Name 

Data Length (bit) Direction Description 

dinR 64 Input Data input F0 function 

dinL 64 Input Data input F0 function 

Ks 64 Input Subkey 

S…S7 3 Input Sbox number used 

cnt 4 Input Data counter. 

XL 64 Output Data output F0 function 

XR 64 Output Data output F0 function 

 


