
Communications in Science and Technology 5(2) (2020) 53–64

COMMUNICATIONS IN

SCIENCE AND TECHNOLOGY

Homepage: cst.kipmi.or.id

© 2020 KIPMI

Block cipher four implementation on field programmable gate array

Yusuf Kurniawana,*, Muhammad Adli Rizqullohb

aElectrical Engineering, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung City, 40132, Indonesia
bDepartment of Electrical Engineering Education, Universitas Pendidikan Indonesia, Bandung City, 40154, Indonesia

Article history:
Received: 9 June 2020 / Received in revised form: 12 August 2020 / Accepted: 23 August 2020

Abstract

Block ciphers are used to protect data in information systems from being leaked to unauthorized people. One of many block cipher
algorithms developed by Indonesian researchers is the BCF (Block Cipher-Four) - a block cipher with 128-bit input/output that
can accept 128-bit, 192-bit, or 256-bit keys. The BCF algorithm can be used in embedded systems that require fast BCF
implementation. In this study, the design and implementation of the BCF engine were carried out on the FPGA DE2. It is the first
research on BCF implementation in FPGA. The operations of the BCF machine were controlled by Nios II as the host processor.
Our experiments showed that the BCF engine could compute 2,847 times faster than a BFC implementation using only Nios II /
e. Our contribution presents the description of new block cipher BCF and the first implementation of it on FPGA using an efficient
method.

Keywords: BCF; FPGA; NIOS II; Cryptography

1. Introduction

Block cipher is one of the cryptographic components used

to protect information. Information can be in the internet

network, financial system, military, and IoT (internet of

things). IoT is a network of interconnected objects in various

forms such as wireless sensor networks, electrical, electronic,

mechanical devices, and their interaction with computer data

via the internet [5]. In the IoT period, embedded devices were

connected to the internet. The advent of IoT has put

telecommunications and embedded systems at risk [6]. BCF is

an encryption algorithm based on AES [13], Camellia [14],

TwoFish [15], and Khazad [12]. It has 128 bits of input /output

and 128, 192, and 256 bits keys. BCF is an encryption

algorithm designed by Indonesian researchers [1]. This

algorithm has an advantage over AES: The key schedule in

BCF is more secure than AES because the main key is very

difficult to find even when all sub-keys of BCF have been

found. The SBox from BCF changes dependent on the key,

while the SBox from AES does not change. Thus, BCF is safer

than AES.

There are two types of BCF keys: master key and sub-keys.

A master key is processed by key schedule function becoming

the sub-keys. Every sub-key is used to encrypt or decrypt

partial data in every round. Encryption is a process to convert

plaintext to be cipher text and decryption converts cipher text

to be plaintext.

Cryptanalysis is used to crack the key of a block cipher in

an unusual way or test the security of a cryptographic algorithm

that has been created. Correlation power analysis, for instance,

tries to find all of the sub-keys using the correlation between

the hamming weights and the power used in the embedded

device when calculating the encryption algorithm [7].
The hardware implementation is very important in terms of

a performance and security, especially as a countermeasure

against timing attacks [8] in particular and as side-channel

attacks in general. This paper aims to introduce the BCF

algorithm implemented in FPGA with an efficient method. This

paper proposes a hardware architecture of the BCF algorithm

as a co-host processor (encryption engine accelerator). This

architecture was written in Verilog and tested on the Altera

Cyclone IV EP4CE115F29 [9] using NIOS as the host

processor. We compared the results with AES, Camellia, and

TDEA data taken from SASEBO [10]. Moreover, we compared

the BCF hardware accelerator with software implementation

enabling us to measure how fast the BCF encryption engine

accelerator computed, compared to software.

2. Materials and Methods

2.1. BCF Algorithm

BCF uses the Feistel structure [11], in contrast to AES

which uses the SPN structure. The SPN structure requires fewer

rounds than does Feistel to achieve the same diffusion rate. The

advantage of using the Feistel structure over SPN is related to

the use of the same structure for the encryption and decryption

* Corresponding author.

Email: yusufk@stei.itb.ac.id

54 Kurniawan et al. / Communications in Science and Technology 5(2) (2020) 53-64

processes so that it will require few memories in the

implementation. SPN requires two different algorithms for

encryption and decryption.

The BCF algorithm has two main components: scheduling

part and randomization part. Key Schedule is performed to

generate sub keys and randomization is performed to encrypt

or decrypt data using sub keys generated by key scheduling.

The number of rounds at the randomization stage depends on

the length of the key in which 128-bit keys are used in the

randomization of 15 rounds, 192-bit keys require 16 rounds and

256-bit keys for 18 rounds. In each round, the F0 function is

applied. This function uses sub keys to manipulate the input

data for each round.

The main features of the BCF algorithm are:

1. The input and output data are 128 bits (plain text and cipher

text) respectively.

2. The length of the master key has 3 variants: 128, 192 and 256

bits.

3. Key scheduling is done in 8 rounds using the F0 function.

4. The number of rounds at the randomizing stage (for

encryption or decryption) depends on the length of the key.

The key schedule stage is carried out at the beginning to

generate sub-keys for the randomizing stage, but in this paper

we will begin by explaining the randomizing stage.

2.2. BCF Encryption

BCF uses the Feistel structure as in the Twofish algorithm,

so it can use the same algorithm for encryption and decryption.

BCF has 128-bit input / output. The pseudo code of the BCF

encryption algorithm is presented as follows.

XL = XL ^ KW1
XR = XR ^ KW2
XL = XR
XR = XL ^ F0(K1,XR)
XL = XR
XR = XL ^ F0(K2,XR)
XL = XR
XR = XL ^ F0(K3,XR)
XL = XR
XR = XL ^ F0(K4,XR)
XL = XR
XR = XL ^ F0(K5,XR)
XL = XR
XR = XL ^ F0(K6,XR)
XL = XR
XR = XL ^ F0(K7,XR)
XL = XR
XR = XL ^ F0(K8,XR)
XL = XR
XR = XL ^ F0(K9,XR)
XL = XR
XR = XL ^ F0(K10,XR)
XL = XR
XR = XL ^ F0(K11,XR)
XL = XR
XR = XL ^ F0(K12,XR)
XL = XR
XR = XL ^ F0(K13,XR)
XL = XR

XR = XL ^ F0(K14,XR)
XL = XR
XR = XL ^ F0(K15,XR)
XL = XR
XR = XL ^ F0(K16,XR)
XL = XR
XR = XL ^ F0(K17,XR)
XR = XR
XL = XL ^ F0(K18,XR)
XL = XL ^ KW3
XR = XR ^ KW4

Figure 1. shows the BCF structure that can be used for both

encryption and decryption.

Fig. 1 BCF encryption

In the BCF algorithm, there is an FO function that has an

input of two data words x and two words of the k sub-key and

produces two output words of y, where 1 word is 32 bits. This

function is the heart of BCF encryption/decryption. For a note,

1 word is 32 bits.

 y = FO(x,k) = P(Si(x)) ⊕ k ()

SBox has 1 byte input / output. Because each x consists of 8

bytes, there are 8 SBox operations for each input x{ x 0 , x 1 , x 2

, x 3 , x 4 , x 5 , x 6 , x 7 }. There are 4 SBox-es used in BCF. The

Substitution Boxes (in hexadecimal) are shown in (Tables 1-4).
Table 5. shows the algorithms used to select BCF SBox

before encryption/decryption.

 Kurniawan et al. / Communications in Science and Technology 5(2) (2020) 53-64 55

Table 1. BCF substitution box 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 b4 b7 67 f3 0b 94 52 68 37 3e ef d7 eb 8f 55 93

1 2b a5 02 be 21 20 98 69 8d 05 73 af a7 bb dc ac

2 54 70 95 77 c1 06 22 44 b0 c9 76 b5 2f 27 2d 32

3 72 5b 64 c0 3a 3c 49 de 57 28 3d 0a f4 e7 71 7a

4 d1 8e f0 43 c8 23 7f aa df 16 ba 5e 18 1a 1d 7c

5 bd d5 85 ab 56 8c 9f fd 4c ca 9d c7 ed b9 25 cc

6 75 ee ae fc 4b 03 3f a3 e3 7d e5 d3 d4 10 e0 36

7 34 d8 3b 82 6e 89 35 01 91 79 d0 da 5c 4 cd fe

8 84 6b e4 1b 6c 9b 81 Cf 2c 46 a8 c5 07 26 e9 51

9 c4 d9 0f 33 4d 41 bf 61 4a a0 a6 b1 c2 ea 66 c6

a 83 f6 e2 40 1f 5d 7b dd f9 b3 a4 15 8b 6a 45 09

b e1 4e 11 50 b6 58 db 08 cb 7e a2 5a f1 ad 87 ff

c 53 47 13 80 86 c3 1c 5f a9 59 63 e6 fa 30 42 f5

d 0d 38 2a 9a f7 90 65 ce 78 d2 9c bc 1e 0c 17 ec

e 88 d6 6f 62 0e 6d 99 9e 8a 31 48 19 4f 00 74 fb

f 29 b8 2e a1 39 60 96 12 97 f8 b2 24 e8 92 f2 14

Table 2. BCF substitution box 2

 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 40 a5 3e ee 28 1e 51 21 60 db 4c 59 3c c8 8f 77

1 5a 43 2a d2 5b ce a1 e9 b1 47 e3 8a 46 e1 e7 89

2 fd bc f9 c0 a0 f4 09 3d 52 5d fe a6 67 cb ec 97

3 18 4b 6a 61 b7 c1 9e 24 4f e5 01 03 29 08 b9 06

4 f0 a7 e6 cc 39 1d 7f 15 57 f3 82 99 70 6e 9c 58

5 d6 2c d9 cd a3 4d 75 48 74 2f e2 6d d7 12 b0 37

6 80 7e 86 79 0e 71 d0 34 0a ac 42 94 b8 aa 56 dd

7 84 55 38 fb 1c dc 33 de 6c c2 a2 d3 e4 66 ae a4

8 9f 26 22 7 7c f8 3b f2 f6 1f 96 f5 85 c9 c6 ab

9 8b 45 7b e0 2e 50 9b d8 d1 5f c5 65 0d 88 14 27

a d5 20 c7 fc 44 fa 3f 62 35 a9 63 2d 49 69 19 0f

b 13 95 90 72 ad 00 31 17 0c 64 11 b4 16 53 9a 04

c 8d cf 91 bf d4 a8 ea 8c c3 54 af 93 3a ba 1a eb

d ef 7d 8e c4 6b 0b 5c 25 bd 4a 1b 68 87 b6 df 6f

e 83 b3 be f7 78 81 ed 4e bb 2b 36 b5 76 30 9d f1

f 7a 92 e8 23 da ca 41 5e 10 98 ff 32 b2 73 05 02

Table 3. BCF substitution box 3

 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 47 ec a1 80 49 10 d1 0b 94 50 5e a7 23 45 b0 38

1 de f5 6e d5 54 c0 8e 34 0e ba 16 44 e2 72 aa e5

2 26 cb fe 60 3 bf dd 56 57 e4 91 8c 19 65 3b 1

3 90 7b f9 24 0c c5 61 b7 f7 e1 37 fd 85 7e 9 2c

4 c9 ac 66 d6 40 a9 42 4 5a 6b 1c ce fa af db b5

5 83 b3 a6 e7 7a e0 cf 27 6a ef 1e b8 6 18 2f 63

6 b9 82 76 28 f8 ed 71 fb 70 5 c8 88 e6 4e e3 cc

7 fc c4 67 95 78 13 9c 2e 74 68 84 31 f2 58 ae 3d

8 df 87 7c 2 ff 79 86 e9 2d c2 52 5f ad 30 8a 99

9 25 41 22 8d 1d 20 8f 97 14 77 c7 9a f0 2b 1a 3e

a 89 9e 7 8 3a 5b 4a ca 9f 12 c1 59 0a 55 81 a8

b 21 96 73 46 f1 c6 bd 33 0 62 1f 32 b1 7f bc 4d

c d2 6f d9 d3 b2 f6 36 cd 75 dc 64 7d 6c 93 bb a4

d a5 f4 53 1b 35 5d a0 a2 4b 4f 43 51 48 e8 0f 5c

e c3 b4 da ee 2a d0 39 9d 98 ea d7 a3 ab 29 0d eb

f b6 17 3c 4c f3 3f 6d 15 be 92 8b 9b 11 d4 69 d8

Table 4. BCF substitution box 4

 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 2f 5a c2 d4 9e 0b eb b4 6 43 d5 50 59 df 65 4b

1 3e 99 5f 27 10 cb 42 a8 cd c3 2c 95 e6 24 dc b5

2 6a aa a6 46 c0 19 a7 73 84 ff fa 9f 31 7f 3f e9

3 b0 52 1b 93 3a b3 9a d8 fb 88 4d d3 f3 b7 91 5

4 13 5b d7 22 40 f4 61 75 e3 48 74 55 e5 d0 47 2d

5 11 f0 33 29 ae 9c e4 90 68 e8 d1 ef c5 32 6c 20

6 8b 63 d2 4f 3 d9 72 76 1d bb 2b 1 4 ab 1e a0

7 96 66 80 25 85 78 34 6f e0 c9 4a 8d 7e c6 b6 e2

8 62 0e 9d 64 82 fd 5e 71 54 cc a4 f8 b8 94 53 30

9 35 de ce 2a 3c 21 fc 4e be 12 fe dd db 6b c4 2

a 51 ad f7 26 8c 15 14 17 af 0f bf 7b 39 a3 e1 6d

b f2 c8 cf f9 1c 23 b2 7c 87 44 18 f1 0a b9 79 ac

c f6 0d ee 98 9b 97 36 da 1f d6 81 ca 58 7d 8a 83

d a9 c1 f5 bc 5d 89 77 6e 2e b1 5c 8e 0c 28 9 1a

e 7 ea e7 56 37 7a 41 70 57 a5 4c 67 bd c7 60 3d

f 0 38 92 a2 69 8f ed ba 45 3b a1 8 ec 16 49 86

Table 5. The algorithm for selecting SBox

Round Key Ramdomize

1-4 KA S[i] = ((K >> (2i + 8(r-1))) & 03x

5-8 KB S[i] = ((K >> (2i + 8(r-5))) & 03x

9-12 KA S[i] = ((K >> (2i + 8(r-9))) & 03x

13-16 KB S[i] = ((K >> (2i + 8(r-13))) & 03x

17-18 KA S[i] = ((K >> (2i + 8(r-17))) & 03x

56 Kurniawan et al. / Communications in Science and Technology 5(2) (2020) 53-64

P is the product between the matrix M and the input x with

an aim to obtain optimal diffusion.

 b = P(x) =M . x ()

The input is x = { x 0 , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 } and the

output is P(x) = b = {b 0 , b 1 , b 2 , b 3 , b 4 , b 5 , b 6 , b 7 }. BCF uses

the same irreducible polynomials used by AES, m(x).

 m(x) = x8 + x4 + x3 + x + 1 ()

2.3. BCF Key Expansion

The BCF keyschedule (key expansion) algorithm has a key

input of 128 bits (16 bytes or 4 words), and performs a Key

Expansion to generate some sub-keys. The Key Expansion

produces a total of 17 sub-keys, 15 sub-keys for the regular

round (K 0 , K 1 , ..., K 14) and 4 sub-keys for whitening keys

(KW 1, KW 2, KW 3, KW 4). If the primary key is 192 bits

or 256 bits, then we perform XOR operation between the left

side and the right side of the primary key so that it still

generates a key of 128 bits to be included in the key schedule.

At the beginning of the key schedule, the intermediate

keys:K A , K B , ..., K G are generated. From these intermediate

keys, all sub-keys required for the encryption and decryption

processes are generated. Figure 2 shows the beginning of the

key expansion to generate K A , K B , K C and K D.

Fig. 2 BCF key expansion

Table 6 describes the complete key expansion process. The

table is connected to the figure 2 as key expansion process.

Table 6. BCF key expansion

Key Key Function

KE (KA KB)KC

KF (KA KC)KD

KG (KE KF)KAKB

Kw1 (KE KF)KC

Kw2 KC KDKE

K1 Kw1 Kw2 0x00007a0000000000

K2 K1 KC KD

K3 (K2 0xff00000000000000) KE

K4 K3 KC KD

K5 (K4 KF) KG

K6 (C1 KE) K5

K7 (KG K6)KF

K8 (K7 K6) KG

K9 (K8 KF) KG

K10 (K9 KC) K8

K11 K8K9K10

K12 (K10 + K11)|8 bit

K13 (K11 + K12)|32 bit

K14 (K1332l<<<1)||(K1332r<<<1) K11

K15 (K12 K14) K13

K16 (K14 K15)K12

K17 (K14 K15)

K18 (K15 K16)K17

KW3 K13K14

2.4. BCF Decrytpion

The BCF decryption (Figure 3) procedure can be performed

in the same way as encryption, but with the sub-key order

reversed. More details are shown in the following pseudo code.

XR = XR ^ KW4
XL = XL ^ KW3
XL = XL ^ F0(K18,XR)
XR = XL
XR = XL ^ F0(K17,XR)
XL = XR
XR = XL ^ F0(K16,XR)
XL = XR
XR = XL ^ F0(K15,XR)
XL = XR
XR = XL ^ F0(K14,XR)
XL = XR
XR = XL ^ F0(K13,XR)
XL = XR
XR = XL ^ F0(K12,XR)
XL = XR
XR = XL ^ F0(K11,XR)
XL = XR
XR = XL ^ F0(K10,XR)
XL = XR
XR = XL ^ F0(K9,XR)
XL = XR
XR = XL ^ F0(K8,XR)
XL = XR

 Kurniawan et al. / Communications in Science and Technology 5(2) (2020) 53-64 57

XR = XL ^ F0(K7,XR)
XL = XR
XR = XL ^ F0(K6,XR)
XL = XR
XR = XL ^ F0(K5,XR)
XL = XR
XR = XL ^ F0(K4,XR)
XL = XR
XR = XL ^ F0(K3,XR)
XL = XR
XR = XL ^ F0(K2,XR)
XL = XR
XR = XL ^ F0(K1,XR)
XL = XR
XR = XR ^ KW2
XL = XL ^ KW1

Fig. 3 BCF decryption

2.5. BCF Core IP Design

IP BCF core design is implemented in Verilog HDL

language, top down method. The design begins by defining the

system, making the architecture first, and designing the

supporting modules. The IP BCF core symbol and pin out are

shown in Figure 4. Table 7 describes the function of each pin.

Figure 5 shows the general architecture of BCF. Key_len pin

out functions to set the number of rounds and the number of

rounds depends on the size of the key. For a key with a size of

128 bits, 192 bits, 256 bits, it takes 15, 16, and 18 rounds,

respectively. The decrypt pin out determines whether

BCF_Core will encrypt or decrypt. The core of the BCF Engine

contains encryption, decryption and keyschedule. Figure 6

illustrates the core algorithm for the BCF engine.

Table 7. Core pinout

Port

Name

Port

Width

(bit)

Direction Description

clk 1 Input System clock

rst 1 Input Reset, active high

sel 1 Input
0: Reset BCF Core

1: Active BCF Core

decrypt 1 Input
0: Decryption

1: Encryption

key_len 2 Input

00 : 128 bits

01 : 192 bits

10 : 256 bits

key 256 Input BCF key

din 128 Input Data input

dout 128 Output Data output

done 1 output
0 : BCF Process Done

1 : BCF Processing

Fig. 4 Core Pin out

Fig. 5 BCF general architecture

This core architecture was used interchangeably for
randomizing and key schedule, resulting in large latency. For
the encryption and decryption process, the BCF engine required
316 clocks.

Figure 7 shows the BCF timing diagram. The system was
controlled by clk.

To implement BCF, we needed a FSM (Finite State
Machine). The BCF FSM is shown in Figure 8.

58 Kurniawan et al. / Communications in Science and Technology 5(2) (2020) 53-64

Fig. 6 BCF engine core

316 clock

Fig. 7 BCF Timing diagram

 Fig. 8 BCF FSM

Figure 9 and Figure 10 illustrate the keys schedule (key

expansion) architecture and the FO module, respectively. One

Core FO was used interchangeably in encryption, decryption,

and key schedule. The advantage of this design is to use a small

area but it has the disadvantage of having a large latency.

The further explanation of FSM in Figure 8 and FO Core in

Figure 9 is described in more detailed in Table 14 and Table 15

(appendix).

Fig. 9 FO core

Subbyte BCF operations were implemented using LUTs for

the ease of design and minimization of critical paths [4].

The description of FO module pins is described in Table 16

(appendix).

The search for the substitution box number was obtained

from this equation :

si = ((K >> ((2*i) + (8*r))) & 8'h03) ^ ((((K >> (8*r + 2))

& 8'h03) ^ ((K >> (8*r + 4)) & 8'h03) ^ ((K >> (8*r + 6)) &

8'h03)) & zero) ()

 Kurniawan et al. / Communications in Science and Technology 5(2) (2020) 53-64 59

SubBytes MixColoumn
64

8

64

64

64

8

8

8

8

8

8

8

Ks

dinR

cnt

4

3

3

3

3

3

3

3

3

S

cnt

4

S1

S2

S3

S4

S5

S6

S7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

64

A

SSub

3

8

R x b
64

XR

dinL

64

XL
64

Fig 10 F0 module

The MixColumn operation used a systolic array architecture

(Figure 11). The architecture used only eight processing

elements in MixColumn and one processing element in

Subbyte processing. The tradeoff of this architecture was the

latency from one clock to eight clocks.

Fig. 11 Systolic array diagram block edge map

Figure 12 shows the Processing Element Design. If Input data

is x and multiplier number in mixcolumn is M, then the result

of polynomial multiplication between x and M is b.

The design of processing elements is implemented using the

architecture as shown in Figure 13.

b

x

M

Z
-1

Fig. 12 Processing element design

Table 8. Processing element pinout description

Port Name

Data

Length

(bit)

Direction Description

A 8 Input
Data input for polynomial

multiplication in mixcolumn.

B 8 Input
Data input for polynomial

multiplication in mixcolumn.

R 8 Output

Data output for polynomial

multiplication in mixcolumn

A * B.

Table 8 shows some descriptions of the Processing Element

pinouts. Pinout R contains the result of polynomial

multiplication between data from pinout A and B. Xtime

algorithm was used for polynomial multiplication in

mixcolumn operation. For efficiency in Mixcolumn operation,

shift and xor operation was applied [3]. Figure 14 depicts the

architecture of xtime algorithm implemented in mixcolumn.

Table 9 shows some descriptions of the XTime pinouts.

Xtime architecture used in this design had one input data and

eight output data. It was purposely to enable the polynomial

multiplication to be completed in one clock.

Fig. 13 Processing element architecture

60 Kurniawan et al. / Communications in Science and Technology 5(2) (2020) 53-64

Fig. 14 Xtime architecture

Table 9. Xtime pinout description

Port Name

Data

Length

(bit)

Direction Description

d 8 Input Data input xtime function.

x1 8 Output Data output for d multiple by 1x.

x3 8 Output Data output for d multiple by 3x.

x4 8 Output Data output for d multiple by 4x.

x5 8 Output Data output for d multiple by 5x.

x6 8 Output Data output for d multiple by 6x.

x7 8 Output Data output for d multiple by 7x.

x8 8 Output Data output for d multiple by 8x.

xB 8 Output Data output for d multiple by Bx.

Table 10. Synthesis comparation

Algorithm
Logic

Element
Register

FMax

(MHz)

Key

length

(bit)

Throughput

(Bps) at 50

MHz

BCFV1 5790 729 54.7 256 7594937

SASEBO

AES
5122 396 84.84 128 123076923

SASEBO

Camellia
4251 397 59.36 128 55172413

SASEBO

TDEA
1017 256 74.4 192 38461538

2.6. BCF Integration to FPGA Atera DE II

DE2-115 is a development board with the main component

in the form of Altera Cyclone® IV 4CE115 FPGA. Soft core

NIOS processor can be implemented on FPGA. NIOS is a soft

core 32-bit RISC Microprocessor. In this paper, we used 50

MHz frequency on BCF. The BCF module was wrapped with

the Avalon interconnect interface. Figure 15 shows the block

diagram of the NIOS interface.

Fig. 15 BCF - NIOS interface

To access IP BCF, NIOS write / read registers in Table 11.
The functionality test of IP BCF was carried out by

comparing the computing results of BCF IP with program that

run on a computer. Figure 16 and 17 show the result.

Based on the above test, the ciphertext and plaintext values

generated by the IP Core BCF were found similar with those

generated by the C program running on the computer. This

means that the implementation of BCF on BCF has been

functionally successful.

NIOS II

PROCESSOR

INTERVAL

TIMER

JTAG PORT
ON-CHIP

MEMORY
BCF ENGINE

AVALON BUS

 Kurniawan et al. / Communications in Science and Technology 5(2) (2020) 53-64 61

Fig 16. IP BCF result

Fig 17. BCF engine computer result

One way to measure the BCF performance is by comparing

the hardware and software implementation. If the speed of the

hardware far exceeds the speed of the software, the hardware

implementation can be stated to be successful. The

measurement results are presented in Table 12 showing that the

computation time for BCF software implementation depends

on the processor architecture. Hardware BCF Engine can speed

up BCF compute 488-2847 times compared to software,

dependent on processor architecture and BCF key length.

Table 12. Software and hardware running time comparation

The speed of BCF and AES was measured, and the results

of the comparison are shown in Table 13 informing the BCF

Engine was 44 times faster than the AES hardware accelerator,

where the devices operated at a clock of 50MHz. From this

data, BCF Engine is suitable to be implemented in devices with

small computing resources such as IoT, where these devices

require a low clock for power saving, but require a high level

of security for sending data to the internet [17].

Table 13. Comparasion of Block Cipher 128-bit implementation on FPGA

3. Conclusion

This paper describes the BCF encryption algorithm, the

algorithm implementation on the Altera DE2-115 FPGA and its

performance. On Altera DE2-115 boards, hardware

implementations were found 488-2847x faster than software

implementations, dependent on processor architecture and BCF

key length. BCF also has a high speed to be implemented on

devices with small resources such as IoT. For further research,

we will perform a Correlation Power Analysis (CPA) attack on

this proposed BCF device. The attack will be based on the

previous paper [2].

References

1. Y. Kurniawan. The BCF block cipher design, Technical Report, Institut
Teknologi Bandung, Indonesia, 2018.

2. Ma'muri, Y. Kurniawan and S. Sutikno, Implementation of BC3
encryption algorithm on FPGA Zynq-7000, Int. Symp. Electronics Smart
Devices, Yogyakarta, Indonesia, 2017, pp. 329-334.

3. Hua Li and Z. Friggstad, An efficient architecture for the AES mix
columns operation, IEEE Int. Symp. Circuits Syst., Kobe, 2005, pp. 4637-
4640.

4. S. Ghaznavi, C. Gebotys and R. Elbaz, Efficient technique for the FPGA
implementation of the AES mixcolumns transformation, Int. Conf.
Reconfigurable Computing FPGAs, Quintana Roo, 2009, pp. 219-224.

5. A. O. Adebayo, M. S. Chaubey, and L. P. Lumbu, Industry 4.0: The fourth
industrial revolution and how it relates to the application of internet of
things(IoT), J. Multidisciplinary Eng. Sci. Studies 5 (2019) 2477-2482.

6. I. A. Landge and H. Satopay, Secured IoT through hashing using MD5,
Fourth Int. Conf. Adv. Electric., AEEICB, Chennai, 2018, pp. 1-5.

7. S. D. Putra, M. Yudhiprawira, Y. Kurniawan, S. Sutikno and A. S.
Ahmad, Security analysis of BC3 algorithm for differential power

Table 11. Register for software

Address W/R Description

0x81080 W Write to register Key on bit 0 to 31

0x81081 W Write to register Key on bit 32 to 63

0x81082 W Write to register Key on bit 64 to 95

0x81083 W Write to register Key on bit 96 to 127

0x81084 W Write to register Key on bit 128 to 159

0x81085 W Write to register Key on bit 160 to 191

0x81086 W Write to register Key on bit 192 to 223

0x81087 W Write to register Key on bit 224 to 255

0x81088 W Write to register din on bit 0 to 31

0x81089 W Write to register din on bit 32 to 63

0x8108A W Write to register din on bit 64 to 95

0x8108B W Write to register din on bit 96 to 127

0x8108C W

Write to register key_len

0: 128 bit

1: 192 bit

2: 256 bit

0x8108E W

Write to register decrypt

0: Decryption

1: Mode encryption

0x8108F W Write to register BCF_start

0x81090 R

Read BCF_Flag

0: BCF not done

1: BCF done

0x81091 R Read register dout on bit 0 to 31

0x81092 R Read register dout on bit 32 to 63

0x81093 R Read register dout on bit 64 to 95

0x81094 R Read register dout on bit 96 to 127

0x81095 W Reset BCF Engine

NIOS II

Version

Average execution time (μS)

256 bit 192 bit 128 bit

NIOS II
BCF

Engine
NIOS II

BCF

Engine
NIOS II

BCF

Engine

Fast 141664 290 135977 255 127704 239

Standart 172815 273 159609 261 153015 253

Economy 760116 267 701536 267 672323 267

Design Algorithm Execution time (uS)

Sideris et al.[16] AES 10414

This work BCF 239

62 Kurniawan et al. / Communications in Science and Technology 5(2) (2020) 53-64

analysis attack, Int. Symp. Electronics Smart Devices (ISESD),
Yogyakarta, 2017, pp. 341-345.

8. P. C. Kocher. Timing attacks on implementations of diffie-hellman, RSA,
DSS, and other systems. In: Koblitz N. (eds) Advances in Cryptology —
CRYPTO ’96. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 1996.

9. Altera, DE2-115 cyclone II development board user manual, Altera, 2010

10. A. Laboratory, Cryptographic hardware project: IP core,
http://www.aoki.ecei.tohoku.ac.jp/crypto/web/cores.html, 2019.

11. W. Stalling. Cryptography and network security principles and
practices(4th ed). New Jersey: Prentice Hall, 2005.

12. P. S. L. M. Barreto and V. Rijmen. The Khazad Legacy-level Block
Cipher, NESSIE, 2001.

13. A. E. Standard., Federal Information Processing Standards Publication,
FIPS PUB 197, 2001.

14. K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, T.
Tokita,Specification of camellia — a 128-bit block cipher, NTT and
Mitsubishi Electric Corporation 2000-2001, 2001, pp. 1-35.

15. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson,
Twofish: a 128-bit block cipher. Proceedings first AES cand. conf., 1998.

16. A. Sideris, T. Sanida and M. Dasygenis, Hardware acceleration of the
AES algorithm using Nios-II processor, Panhellenic Conf. Electronics
Telecommunications, Volos, Greece, 2019, pp. 1-5.

17. R. Mahmoud, T. Yousuf, F. Aloul and I. Zualkernan, Internet of things
(IoT) security: Current status, challenges and prospective measures, 10th
Int. Conf. Internet Tech. Secured Transactions, London, 2015, pp. 336-
341.

Appendix

Table 14. FSM state description

State Description

S0 Reset state

KeyS = 1

S1 Pre-Whitening

S2 round = 1

S3 round = 15

S4 round = 16

S5 round = 18

S6 Conditional state

S7 dinR = KM, dinL = KL

S8 dinR = XRreg, dinL = XLreg

S9 Wait until F0 done, then XReg = XR, XLreg = XL

S10 Input data to KAreg and KBreg register

S11 Key Schedule finished

S12 Process(Key Schedule) not finished, go to S6 state, ronde =

ronde + 1

S13 Conditional state

S14 Process (encryption or decryption) not finished, go to S6 state,

ronde = ronde + 1

S15 Process (Key Schedule or encryption or decryption i) finished,

goto S6 state, if Key Schedul finished and KeyS = 1, then

KeyS = 0 and go to state S1.

Table 15. FO core pinout description

Port Name

Data

Length

(bit)

Direction Description

din 128 Input Data input, plain text or cipher text.

Table 15 “continued”. FO core pinout description

Port Name Data

Length

(bit)

Direction Description

dinR 64 Input Data input right

dinL 64 Input Data input left

Ks 64 Input Subkey

XR 64 Output Data output right

XL 64 Output Data output left

KS1…KS18 64 Input Subkey for each round

KS1 64 Input KeyS = 1, then KS1 = C3.

Decrypt = 1, then KS1 = K1.

Key_len = 0 & decrypt = 0, then KS1 =

K15.

Key_len = 1 & decrypt = 0, then KS1 =

K16.

Key_len = 2 & decrypt = 0, then KS1 =

K18.

KS2 64 Input KeyS = 1, then KS2 = C4.

Decrypt = 1, then KS2 = K2.

Key_len = 0 & decrypt = 0, then KS2 =

K14.

Key_len = 1 & decrypt = 0, then KS2 =

K15.

Key_len = 2 & decrypt = 0, then KS2 =

K17.

KS3 64 Input KeyS = 1, then KS3 = K1R.

Decrypt = 1, then KS3 = K3.

Key_len = 0 & decrypt = 0, then KS3 =

K13.

Key_len = 1 & decrypt = 0, then KS3 =

K14.

Key_len = 2 & decrypt = 0, then KS3 =

K16.

KS4 64 Input KeyS = 1, then KS4 = K1L.

Decrypt = 1, then KS4 = K4.

Key_len = 0 & decrypt = 0, then KS4 =

K12.

Key_len = 1 & decrypt = 0, then KS4 =

K13.

Key_len = 2 & decrypt = 0, then KS4 =

K15.

KS5 64 Input KeyS = 1, then KS5 = C1.

Decrypt = 1, then KS5 = K5.

Key_len = 0 & decrypt = 0, then KS5 =

K11.

Key_len = 1 & decrypt = 0, then KS5 =

K12.

Key_len = 2 & decrypt = 0, then KS5 =

K14.

KS6 64 Input KeyS = 1, then KS6 = C2.

Decrypt = 1, then KS6 = K6.

 Kurniawan et al. / Communications in Science and Technology 5(2) (2020) 53-64 63

Key_len = 0 & decrypt = 0, then KS6 =

K10.S

Key_len = 1 & decrypt = 0, then KS6 =

K11.

Key_len = 2 & decrypt = 0, then KS6 =

K13.

KS7 64 Input KeyS = 1, then KS7 = C3.

Decrypt = 1, then KS7 = K7.

Key_len = 0 & decrypt = 0, then KS7 =

K9.

Key_len = 1 & decrypt = 0, then KS7 =

K10.

Key_len = 2 & decrypt = 0, then KS7 =

K12.

KS8 64 Input KeyS = 1, then KS8 = C4.

Decrypt = 1, then KS8 = K8.

Key_len = 0 & decrypt = 0, then KS8 =

K8.

Key_len = 1 & decrypt = 0, then KS8 =

K9.

Key_len = 2 & decrypt = 0, then KS8 =

K11.

KS9 64 Input KeyS = 1, then KS9 = 0.

Decrypt = 1, then KS9 = K9.

Key_len = 0 & decrypt = 0, then KS9 =

K7.

Key_len = 1 & decrypt = 0, then KS9 =

K8.

Key_len = 2 & decrypt = 0, then KS9 =

K10.

KS10 64 Input KeyS = 1, then KS10 = 0.

Decrypt = 1, then KS10 = K10.

Key_len = 0 & decrypt = 0, then KS10

= K6.

Key_len = 1 & decrypt = 0, then KS10

= K7.

Key_len = 2 & decrypt = 0, then KS10

= K9.

KS11 64 Input KeyS = 1, then KS11 = 0.

Decrypt = 1, then KS11 = K11.

Key_len = 0 & decrypt = 0, then KS11

= K5.

Key_len = 1 & decrypt = 0, then KS11

= K6.

Key_len = 2 & decrypt = 0, then KS11

= K8.

KS12 64 Input KeyS = 1, then KS12 = 0.

Decrypt = 1, then KS12 = K12.

Key_len = 0 & decrypt = 0, then KS12

= K4.

Key_len = 1 & decrypt = 0, then KS12

= K5.

Key_len = 2 & decrypt = 0, then KS12

= K7.

KS13 64 Input KeyS = 1, then KS13 = 0.

Decrypt = 1, then KS13 = K13.

Key_len = 0 & decrypt = 0, then KS13

= K3.

Key_len = 1 & decrypt = 0, then KS13

= K4.

Key_len = 2 & decrypt = 0, then KS13

= K6.

KS14 64 Input KeyS = 1, then KS14 = 0.

Decrypt = 1, then KS14 = K14.

Key_len = 0 & decrypt = 0, then KS14

= K2.

Key_len = 1 & decrypt = 0, then KS14

= K3.

Key_len = 2 & decrypt = 0, then KS14

= K5.

KS15 64 Input KeyS = 1, then KS15 = 0.

Decrypt = 1, then KS15 = K15.

Key_len = 0 & decrypt = 0, then KS15

= K1.

Key_len = 1 & decrypt = 0, then KS15

= K2.

Key_len = 2 & decrypt = 0, then KS15

= K4.

KS16 64 Input KeyS = 1, then KS16 = 0.

Decrypt = 1, then KS16 = K16.

Key_len = 1 & decrypt = 0, then KS16

= K1.

Key_len = 2 & decrypt = 0, then KS16

= K3.

KS17 64 Input KeyS = 1, then KS17 = 0.

Decrypt = 1, then KS17 = K17.

Key_len = 2 & decrypt = 0, then KS17

= K2.

KS18 64 Input KeyS = 1, then KS18 = 0.

Decrypt = 1, then KS18 = K18.

Key_len = 2 & decrypt = 0, then KS18

= K1.

KA, KB,

KJ, KK, KL,

KM

64 Input Subkey untuk randomizing SBox.

KWA,

KWB

64 Input Subkey untuk pre-whitening.

cntF0 4 Input Data counter ronde BCF.

dF0 1 Input 0: Ouput Pre-Whittening

1: Ouput F0

KeyS 1 Input 0: Encrypt/Decrypt

1: Key Schedulling

KeyS1 1 Input 0: XRREg, XLReg

1: KM, KL

64 Kurniawan et al. / Communications in Science and Technology 5(2) (2020) 53-64

Table 16. F0 module pinout description

Port

Name

Data Length (bit) Direction Description

dinR 64 Input Data input F0 function

dinL 64 Input Data input F0 function

Ks 64 Input Subkey

S…S7 3 Input Sbox number used

cnt 4 Input Data counter.

XL 64 Output Data output F0 function

XR 64 Output Data output F0 function

