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Abstract

Electricity generation remains dominated by fossil fuel-based sources, underscoring the necessity to optimize the utilization of solar energy
through photovoltaic (PV) systems in support of the Sustainable Development Goals (SDGs). Variations in solar irradiance and temperature
significantly influence PV performance, necessitating effective Maximum Power Point Tracking (MPPT) methods. This present study proposes
HI-POnIC as an adaptive development of conventional MPPT algorithms using a deterministic, feature-based decision mechanism. The method
employed dynamic weighting and adaptive step adjustment to modify the control response to changes in PV operating characteristics, without
any reliance on learning processes. Performance of the system was evaluated through convergence analysis, energy and power tracking
efficiency, and spatial accuracy assessment. The findings from the simulation demonstrated that HI-POnIC achieved faster convergence and
enhanced stability around the maximum power point when compared with conventional methods. Its lightweight and easily implementable
adaptive structure has rendered HI-POnlIC suitable for PV systems operating under dynamically varying environmental conditions.
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1. Introduction

Electricity is regarded as one of the most pivotal sources of
energy used in many aspects of daily life, including lighting,
transportation and industrial processes. It is an important
energy source that propel economic and social growth on a
global basis. In 2019, the International Energy Agency (IEA)
released data concerning the global generation of electricity
based on the types of energy used. Most electricity is still
generated from conventional sources, such as coal (36.7%),
natural gas (23.6%), hydropower (15.7%), nuclear (10.7%),
non-hydro renewable energy and waste (10.8%), and oil (2.8%)
[1]. From this data, despite the finite nature of coal as an energy
source and its environmental impacts, it continues to
predominate global electricity generation. Coal combustion
produces elevated carbon emissions that contribute to global
warming and air pollution [2]. As these natural resources are
limited and detrimental to the environment, there is a need for
alternative solutions that are both cleaner and more sustainable
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to meet the requirement of future electricity. Renewable
energy, particularly solar power from natural sources, is a better
alternative for the environment [3]. The transition to renewable
energy is dependent upon the realization of "Affordable and
Clean Energy," in line with the Sustainable Development Goals
(SDGs) aimed at ensuring universal access to affordable,
accessible, and long-lasting energy in both developed and
developing countries [4].

Solar energy is one of the most promising types of
renewable energy. The process of its conversion into electrical
energy is performed through photovoltaic effect using
photovoltaics (PV) [5,6]. In PV systems, electricity is generated
when light hits semiconductor materials such as silicon. In this
process, the photons in the light make an electric current by
hitting electrons out of the atoms in the semiconductor material.

Many studies have been conducted on the subject of PV
systems. Liier L. et al. examined sophisticated photovoltaic
architectures, including multi-junction cells and multi-
excitation generation, to surpass the efficiency constraints of
individual cells and attain enhanced power conversion
efficiency [7]. Dada M. et al. examined the latest developments
in solar photovoltaic materials and systems for multi-
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generation applications, with an emphasis on the enhancement
of the performance and efficiency of PV systems [8]. Hossain
et al. conducted a study into the management of photons in
silicon photovoltaic cells to reduce optical losses and enhance
the efficiency of the power conversion process. The study
examined surface texture and nanostructure as potential
solutions [9]. Mulda et al. highlighted that enhancements in
solar cell efficiency remain predominantly influenced by the
capacity of system to optimally extract available electrical
energy [10].

Rihani A.T. and Ghandchi M. suggested a solution using
methods to monitor the energy requirement for PV systems to
function optimally [11]. The method employed in this study is
unique since the proposed algorithm has been designed to
generate electrical energy that can be utilized to track processes
that are like those of PV modules.

Maximum Power Point Tracking (MPPT) is a technique
employed in photovoltaic systems to ensure that solar power
systems operate at maximum power points under various
environmental conditions. This technique is employed to
optimize the conversion of solar energy from solar panels into
electrical energy [12]. The MPPT method utilizes a voltage-
current (V-I) curve to maximize electrical power output.
Haque A. proposed a solution for the MPPT scheme to enhance
the speed and accuracy of maximum power tracking in stand-
alone and grid-connected photovoltaic systems, particularly in
areas with rapid changes in solar radiation [13]. Samosir A.S.
and others utilized a number of hybrid methods, including
fuzzy-neural MPPT optimized with genetic algorithms, to
examine the efficacy of Maximum Power Point (MPP) tracking
in different atmospheric and load conditions for the
enhancement of performance [14]. Ali A. et al. introduced a
hybrid approach that integrates a conventional MPPT,
specifically the Perturbation and Observation (P&O) method,
with fuzzy logic controllers. The results of the simulation
demonstrated that the output voltage could stably be reversed
[15].

The P&O and Incremental Conductance (InC) are
foundational MPPT methods for PV modules, frequently
conducted in combination with other methods [12,13,15,16].
Yuksek et al. created a hybrid algorithm utilizing different step
sizes to reduce oscillations and speed up MPP tracking [17].
Bhat et al. integrated P&O and InC employing Fibonacci theory
and the golden ratio, resulting in an enhanced performance
under partial shading and varying environmental conditions
[18]. Neeraj et al. proposed a novel integration of a Cuk—SEPIC
hybrid converter with a gravitational search algorithm-particle
swarm optimization (GSA—PSO) hybrid MPPT algorithm in a
photovoltaic system for water pumps [19].

The P&O and InC methods are characterized by ease of
implementation, owing to their independence from complex
computational requirements. The MPPT method, in common
with many researchers, is frequently implemented in
conjunction with the algorithms of artificial intelligence (Al).
However, the implementation of MPPT method, when applied
with Al algorithms, requires complex computations. Therefore,
development is required to ensure that the P&O and InC
algorithms can still be utilized, with results that can still track
the maximum power point.

This present study proposes an algorithm for the

development of a combination of the P&O and InC algorithms.
It is expected to yield results that can achieve the maximum
power point. The proposed algorithm will not utilize Al
algorithm integration, but it will create an Al-inspired
algorithm that can adapt effectively to both static and dynamic
environments. The algorithm will be analyzed based on its
convergence capability in tracking the maximum power point
(MPP), tracking efficiency, and power loss, as well as spatial
and statistical analysis of power tracking accuracy.

2. Materials and Methods

PV modules refer to a system utilized as a source of
renewable energy. The utilization of sunlight, when naturally
generated, has the potential to produce electrical energy. The
widespread utilization of electrical energy processed from
environmentally unfriendly and finite energy sources is
undoubtedly a serious concern, thus rendering it one of the
SDGs goals.

MPPT, a method for maximizing energy efficiency, is
expected to contribute to the realization of the SDGs. The P&O
and InC methods are commonly used due to their ease of
application in PV systems. However, these methods still have
weaknesses, particularly in terms of the determining factors of
energy produced by PV, namely solar irradiation and
temperature.

The PV system can be modeled using an equivalent circuit
consisting of a current source, diodes, and resistors connected
in series and parallel. The output current (/) from the solar cell
is shown in Eq. (1) [20].
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where [, is the photogenerated current that depends on
irradiance (G) and temperature (T). The diode current follows
the Shockley equation to describe the current and voltage
characteristics of semiconductor diodes, including photovoltaic
diodes [21]. I is defined as the reverse saturation current,
which is the current that flows through the diode when the
voltage is applied in the opposite direction (reverse bias). The
solar cell creates V, which is defined as the voltage. n is the
ideality factor, which is a measure of the energy changes and
the functionality of semiconductor devices system. Number n
is typically situated within the range of 1 and 2. A value of 1
indicates a perfect system. Higher values mean that greater
number of losses in the system. The Boltzmann constant, k,
equals 1.38 x 10 J/K. It demonstrates a correlation of
temperature and energy on a small scale, like in semiconductor
systems. The solar cell works at a temperature of T, and the
charge of the electron is q (1.602 x 107*° C). Meanwhile, R;
represents the series resistance, and Ry, represents the shunt
resistor, which determines the current path through the lower
resistance rather than through the main load. The MPPT will
process all quantities that yield an output current from the PV.

2.1. Maximum Power Point Tracking (MPPT) Algorithm

MPPT controls current and voltage to obtain maximum
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power output. The P&O algorithm is responsible for the
monitoring of the power generated by the system by adjusting
the output voltage of the PV panel in small increments. If the
power increases because of the alteration, the modification will
continue in the same direction; otherwise, the direction of the
change will be reversed. This cyclic process enables the system
to reach its maximum power point.

P&O utilizes Eq. (2-4) for voltage distortion. The difference
is attributed to variations in step size associated with either
fixed or variable duty cycle settings. After monitoring the PV
power (P(t)), the power difference (APV) is obtained by
comparing it with the previous maximum power (P(t — 1)).
The APV is utilized to calculate the duty ratio, which, in turn,
regulates the converter to increase or decrease the voltage
(V(t)) depending on the voltage difference (AV) [22].

P@)=V() x I(t) (2)
APV=P(1) - P(t-1) 3)
V)=V(t-1) £ AV &)

Meanwhile, the InC algorithm continuously monitors and
analyzes voltage and current values to obtain the maximum
power that can be generated by the panel. This is because the
slope of the PV array power curve is zero at the maximum point
(MPP). In the InC MPPT algorithm, the terminal voltage
system is constantly set to the PV voltage at the MPP. It is based
on the increase in conductivity of the PV array. The operation
of the InC MPPT technique is predicated on the premise that
the derivative of power with respect to voltage is zero at the
MPP, as expressed in Eq. (5).

L_r+vd (5)
av av
When the derivative of power with respect to voltage is zero
at the maximum power point, i.e., dP/dV=0, Eq. (5) can also be
expressed as follows.

dr
1+V2=0 (6)

Equivalently, Eq. (6) can be written as follows [23].

dl 1
W=y ™

In this context, dI/dV signifies the additional conductivity,
while I/V represents the instantaneous conductivity.

P&O is fast in processing its algorithm towards stability, yet
it is not readily stable. In contrast, InC can be more accurate in
terms of stability, though its responsiveness is not as
expeditious as that of P&O, thereby leading to the identification
of weaknesses in both algorithms. For this reason, this study
will combine P&O and InC into Hybrid P&O and InC (H-
POnIC). The H-POnIC algorithm used in this study does not
merely combine the two. The H-POnIC algorithm does not
employ ON/OFF logic, where one is turned on and the other is
turned off.

In the H-POnIC algorithm, changes in the duty cycle of the
converter are determined by considering the contributions of
P&O and InC. The primary objective of this approach is to

utilize the fast response advantage of P&O while maintaining
the stability and accuracy of InC around MPP. Changes in the
duty cycle (AD) are formulated as a weighted combination of
two correction signals generated by the P&O and InC
algorithms.

AD = w,,ADp, + @inADip, ®)

The weight values of the P&O (w,,) and InC (w;y,) algorithms
are adaptively determined based on the strength of information
provided by each method. The P&O method provides
information through the power gradient with respect to voltage,
while the InC method provides information through the
incremental error between dI/dV and -1/V. Both demonstrate
the sensitivity of the system to the operating position relative to
the MPP point.

The weight w,,, is calculated using the following equation.

_ |dP/dv|
PO T \dp/dv|+|(dl/dV)+I/V|

1) )
The w,, weight is indicative of the change in power relative
to the voltage applied, which is utilized to evaluate the
dominant dynamics and incremental errors. When the P&O
gradient increases due to rapid changes in solar irradiation or
temperature, the w;,. weight will increase, rendering the
algorithm more responsive to changes. Conversely, when the
system is near MPP, the weight w,,, will be greater, causing the
system to be more stable and reducing oscillations around the
optimal operating point, which can be expressed as follows.
Wine =1 - Wpo (10)

The H-POnIC algorithm can be developed to facilitate not
only the examination of the gradient magnitude but also the
rapid calculation of the power change. It can anticipate rapid
changes in solar irradiation or temperature. If light conditions
change quickly, the P&O weight automatically increases.
Conversely, if conditions remain stable, the InC weight will
increase. In essence, the H-POnlC algorithm also needs to
adapt quickly. For the adjustment of an algorithm, additional
intelligent methods, in general, are required. However, in this
study, the HI-POnIC algorithm is an H-POnIC algorithm with
an adaptive weighting mechanism inspired by several Al
methods without using fuzzy logic, neural networks, PSO, or
other Al methods. The adaptive weighting mechanism in HI-
POnIC is a feature-based deterministic decision rule that
adjusts the contribution of P&O and InC contextually. Since
this approach does not involve data-based learning, it is more
appropriately classified as an Al-inspired adaptive mechanism
or heuristic inference layer. The concept of the weighting
mechanism can change contextually based on local data
characteristics, with the aim of enhancing accuracy and
computational efficiency without the necessity of data-based
learning [24].

In HI-POnIC, the wp, and w;,. weights are no longer
dependent solely on the gradient magnitude, but also on the
sensitivity function to map the system's dynamic level, as
expressed in the following equation. Each variable has an ¢, as
a tolerance threshold to prevent division by zero or minimal
values in the variables V or AV. @5 is also limited to a maximum
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of 1.0; therefore, when its value is elevated, it is restricted to
the range of 0 to 1.

|aP|

b1 = lav|+ey a1
di i
b2 = leincl = -ty (12)
, |ap|
¢3 = mlnm, 1.0 (13)

Each represents the sensitivity of the power-voltage
gradient, the distance to the MPP, and the relative change in
power. All three are used to calculate adaptive weight:

81

w,, = ———— 14

PO g +0,+05 (14)
__ P

Wine = 01+0,+03 (15)

In addition to the dynamic gain factor g = @5, the duty cycle
change step is automatically adjusted using the following
equation.

step = stepmin + g(Stepmax - Stepmin) (1 6)

Subsequently, the combined voltage command (V,,4) is
calculated as follows.

Vema = wpono *+ WincVine (17)

Based on the flow described above, the HI-POnIC algorithm
can be formed with the flowchart as presented in Fig. 1.

2.2. Research Methodology

HI-POnIC algorithm, as proposed in this study, will undergo
evaluation in a static environment with solar irradiation and
temperature inputs in accordance with the Standard Test
Conditions (STC) commonly used in PV modules, namely
1000 W/m? and 25°C. The PV module employed in this study
is of the monocrystalline variety and its specifications are
outlined in Table 1 [25].

Table 1. PV module specifications

Specification Value
Nominal Maximum Power 375.43W
Optimum Operating Voltage (V,,) 39.77V
Optimum Operating Current (5, 9.44A
Open Circuit Voltage (V) 48.45V
Short Circuit Current (Ig.) 9.96A

To observe the response of PV under real conditions,
dynamic testing was conducted using a PT100 RTD
temperature sensor and a pyranometer solar irradiation sensor.
Real-time condition testing can provide sufficient operational

understanding to detect inefficiencies due to environmental
factors such as clouds or weather variations [26,27].

As demonstrated in Fig. 2, the temperature sensor was
attached to the PV, given that PV performance is also
influenced by temperature [28-31]. In conditions of elevated
temperature, for example, on a particularly hot day, the
efficiency of the PV system can be significantly reduced. The
pyranometer sensor was placed close to the PV module.
Dynamic testing was carried out for approximately 33 minutes,
and the results will be plotted in a graph for 20 seconds. Every
1 second represents hundreds of real conditions.

In addition to the measurements of temperature and solar
radiation, electrical measurements are also taken using a
PZEM-017 sensor. The ESP32 acquires data from the sensor
and then transmits it via the Message Queue Telemetry
Transport (MQTT) protocol to the server. The monitoring
dashboard will display the data that is stored on the database
server. This will enable users to observe the PV measurement
conditions in real time, as illustrated in Fig. 3.

Researchers can use this monitoring dashboard to oversee
how PV modules system works. The system displays solar
irradiation and module temperature inputs, as well as module
current and voltage outputs. The monitoring dashboard also
has graphs that describe the performance of the PV modules,
thereby facilitating the determination of the PV system’s
operational functionality.

To simplify the analysis process, a series of tests were
conducted in the MATLAB environment. All tests were
subsequently compared to determine the output power
generated by all MPPT algorithms designed according to Fig.
4. The data obtained from the pyranometer and the RTD PT-
100 were entered into the PV module. DC Chopper is a device
that facilitates the conversion of the output of the PV module
into a power converter. It is a power regulator that receives a
control loop from the MPPT algorithm, allowing it to produce
maximum power points. Subsequent to this, the MPPT
algorithm will provide a control loop to the DC Chopper by
processing the duty cycle (D) during a specific pulse period (P).
The control loop is created using a Pulse Width Modulation
(PWM) generator.

In this study, the PV module is constructed with one series
(Ns) and two parallel (N,) modules, enabling the total voltage
(Vrotar) to be calculated using equation below.

Vrotal = NsxVyp = 1x39.77 = 3977V (18)

Eq. (19) yields the total current (I7,tq;) from two parallel
modules as follows.

Itotar = Npxlpmpy = 2x 9.44 = 18.884 (19)

From Eq. (18) and (19), the following total power (Pro¢q;)
equation is derived.

Protat = VrotarXIotas = 39.77 x 18.88 = 750.8576  (20)

Eq. (20) demonstrates the total power that can be extracted
from the PV module when controlled by the MPPT algorithm.
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Fig. 1. Flowchart of the HI-POnIC algorithm

Sun Irradiance

Fig. 4. Block diagram of MPPT algorithm testing on PV modules
3. Results and Discussion

The test results obtained from the four algorithms will be
evaluated to assess the system's ability to quickly, efficiently,
and accurately attain the maximum power point under various
operating conditions. The analysis includes convergence
response to environmental changes, tracking efficiency and
power loss, as well as spatial and statistical mapping that shows
the consistency and precision of the algorithm in following the
maximum power point.

T SOLAR PANEL

3.1. Power tracking dynamics/convergence
3.1.1. Static testing in the STC environment
Static testing is performed to assess the algorithm's capacity

to attain the maximum power point under STC conditions. In
Fig. 3. PV module real-time monitoring system accordance with the MPPT algorithm test design block as
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depicted in Fig. 4, the control loop will continue to operate until
attains the maximum power value, as indicated by the Voltage-
Current (V-I) and Voltage-Power (V-P) curves as depicted in
Fig. 5.

Test results under STC conditions demonstrate the transient
and steady-state behavior of four algorithms: P&O, InC, H-
POnIC, and HI-POnIC. The reference line of 750.8576 W is
employed as the model-based maximum power reference,
obtained from the PV characteristic calculation in Eq. (20), also
illustrated in Fig. 5, and calibrated against the datasheet
parameters (Vyc, Lsc, Vinp, Imp) shown in Table 1. Accordingly,
this reference value represents the computational upper limit
for the purpose of simulation benchmarking, not empirical
verification that the physical module necessarily achieves this
value at STC.
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Fig. 5. V- and V-P curves on the PV module
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Fig. 6. Results of static testing in an STC environment

In the initial phase (t<4s), all algorithms demonstrate the
oscillatory response that is characteristic of the P&O and InC
methods. This is because they are searching for the direction of
the power increase. However, when steady state conditions are
reached, differences start to show up. It is important to consider
the broader context in Fig. 6. The HI-POnIC curve clearly
reaches the maximum power band with the greatest rapidity,
while also exhibiting stability (t=4.4s). InC is the next element
to be considered, and P&O and H-POnIC require a longer time

(t~6.4s) to reach a stable state. InC, on the other hand,
demonstrated an initial stability, subsequently exhibiting
fluctuations at several t values prior to attain a stable state at
t=6.9s.

The HI-POnIC curve attains the maximum power band and
demonstrates stability more rapidly, followed by InC. P&O and
H-POnIC require longer periods to attain a stable state. This
phenomenon is consistent with the core principle that adaptive
step adjustments in HI-POnIC diminish the amplitude of
oscillations as the power gradient relative to voltage (JAPJ/|P|)
declines. Thus, the step adaptation that HI-POnIC must
perform accelerates the transition from the exploration phase to
the stabilization phase.

Theoretically, the MPP condition can be expressed as the
derivative of power with respect to voltage, dP/dV = 0, which
can be decomposed into incremental conductance and
instantaneous conductance. This relationship explains why
power gradient-based and conductance-based decision
directions can be consistent in determining the operating side
relative to the MPP. However, the equivalence of these sign
directions is inadequate to fully explain the similarity of
dynamic responses. In the tests conducted, H-POnIC employed
a combination of P&O and InC with relatively static/limited
weight changes, and the test profile did not involve partial
shading or truly extreme irradiance changes. Under conditions
of smooth gradient changes and low measurement noise, the
P&O component tends to dominate the correction decision,
resulting in the transient response of H-POnIC appearing
almost identical to P&O.

The practical consequence is that, while the direction of the
mathematically derived sign may indicate a similar direction of
correction around the MPP, the real-time response is
determined by the discrete implementation, the perturbation
step size, and the quality of the gradient estimation. P&O
causes oscillations because of continuous fixed perturbations
that reverse direction around the power peak. At the same time,
InC is contingent on the AI/AV ratio, consequently rendering
its performance susceptible to measurement noise and minor
AV conditions. In this study, the combined strategy in H-
POnIC does not significantly alter the perturbation step
mechanism under STC conditions, so the oscillation pattern and
settling time follow the characteristics of P&O.

Conversely, the similarity between InC and HI-POnIC
occurs because the adaptive weighting mechanism in HI-
POnIC tends to increase the contribution of the InC branch
when the conductance error indicator is in a small range (i.e.,
the system is approaching a dP/dV = 0 condition), so that the
correction decision follows the character of InC. The
distinguishing feature of HI-POnIC is its ability to enhance the
signal-to-noise ratio in addition to increasing the gain. Instead,
it adjusts the contribution of each branch contextually based on
dynamic indicators such as |dP/dV|, |ein|, and relative power
change |dP/P|. Therefore, residual oscillations around the MPP
can be suppressed without eliminating the sensitivity of InC to
changes in operating conditions.

The momentary instability in the InC curve after
approximately 6 s can be attributed to the approach of AV to
zero. This results in a heightened sensitivity of the AI/AV ratio
to noise and quantization, thereby causing the I-V slope
estimates to oscillate and reverse the duty cycle decision,
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despite the actual operating conditions already close to MPP.
HI-POnIC mitigates the effects of instability because adaptive
weighting reduces the contribution of the InC branch when the
gradient indicator is unreliable (e.g., AV is very small or power
fluctuations are relatively high) and increases the role of the
P&O branch, which is more stable against noise. As a result,
the combined decision signal remains smooth and is not easily
reversed.

Testing under real-time conditions is necessary, given the
assumption that the system was stable under STC conditions.
This is also evident from the V-I and V-P curves as depicted in
Fig. 5, which demonstrate that both solar irradiation and
temperature affect the maximum power output of the PV
module. Therefore, dynamic testing is required to assess the
robustness of the HI-POnIC algorithm in maintaining its
maximum output.

3.1.2. Dynamic testing in a real-time environment

Dynamic testing was conducted under fluctuating
conditions of sun irradiation and temperature, as illustrated in
Figs. 7 and 8. The primary objective of this study was to assess
the MPPT algorithm's capacity to adapt to rapid environmental
changes and to measure the power output response of the
photovoltaic system to these variations in input.
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Fig. 7. (a) Sun irradiance and (b) PV temperature input in the real-time system

In depicted in Fig. 7(a), the initial irradiation intensity is
approximately 500 W/m?. The process undergoes a series of
stages of increase until reaching 2000 W/m? at around t = 11 s,
before decreasing dramatically to approximately 500 W/m? at
around t= 13 s and returning to stability at approximately 1000
W/m? after t = 17 s. This pattern resembles fast-moving clouds
or sudden weather changes in the field, which is one of the main
challenges in MPPT system design. An increase in irradiation
raises the maximum power, while a decrease in irradiation
leads to a reduction in power. Therefore, it is imperative that
the MPPT algorithm is capable of adjusting the operating point
for each change to remain around the MPP.

As illustrated in Fig. 7(b), the temperature profile undergoes
a simultaneous change with the level of irradiation, starting
from 25°C and then returning to approximately 26°C. An
increase in irradiation is associated with an increase in

temperature. Physically, an increase in irradiation also results
in increased heating on the PV surface. However, an increase
in temperature has a detrimental effect on the V. of the PV
module. As the temperature rises, the voltage decreases,
thereby allowing the MPP point to shift towards a lower
voltage, despite the total power increasing due to the rise in
current. Thus, the combination of changes in irradiation and
temperature causes the MPP to move dynamically in the V-P
plane, which is the basis for the evaluation of the effectiveness
of the MPPT algorithm being tested.

Fig. 8 illustrates the results of the PV output power for the
four algorithms under comparison, including P&O, InC, H-
POnIC, and HI-POnIC. Within the initial time range (0—10s),
as irradiation conditions gradually increased, all four
algorithms exhibited an ability to effectively follow the power
changes, albeit with varying levels of oscillation. The most
noticeable change around the MPP point was in P&O. This is
because this method exclusively examines changes in AP and
AV, not the actual gradient. In contrast, InC exerted a more
stable response as it used a differential approach (dI/dV) to find
the MPP position. H-POnIC, a combination of the two,
facilitates a more rapid transition than pure InC. However,
minor changes were observed due to the weights in the AD,,,
and AD;,,.fusion processes were fixed.

Power (W)

P&O InC

H-POnIC e= e= e= H[-POnIC

......... P(ref,S1) eeeeeesss P(ref,S2) eeeeseses P(rcfS3) eessseese P(ref,S4)

Fig. 8. Results of the real-time dynamic testing on the PV module

During the period of sharp decrease in irradiance (t=13s),
both P&O and H-POnIC exhibited substantial transient
deviations, with some samples even producing momentary
negative power values. It should be emphasized that this
negative power is atypical in the context of PV operation and is
not interpreted as the physical behavior of the module
absorbing power. This phenomenon is more consistent with a
computational artifact resulting from the asynchrony of voltage
and current sampling at microsecond time resolution, as well as
DC-DC converter transients when the duty cycle changes
rapidly. Under rapid change conditions, V and I may be
sampled at different effective times (sample skew), resulting in
the instantaneous power multiplication (P = V -I) not
representing a physically coherent pair of V and I. Furthermore,
switching transients can also cause temporary overshoot or
undershoot prior to the system attaining a new steady state.

HI-POnIC algorithm exhibits optimal performance,
characterized by rapid convergence, minimal overshoot, and
rapid adaptation following substantial irradiation changes at



406 Handaya et al. / Communications in Science and Technology 10(2) (2025) 399410

approximately t = 13 s. This phenomenon arises because, in the
HI-POnIC algorithm, the combination weights w,, and w;;,,
are calculated adaptively based on Eq. (14) and (15). This
enables the system to adjust the contribution of both methods
in accordance with changing conditions. It demonstrates the
improved transient response and adaptive stability that are
fundamental to the novelty of this method. It is supported by
the fact that every design in reasonable adaptive control will
produce a faster response, higher stability, consideration of
transient limits, and adaptive system stability [32—34]. Travis
et al. and Yang et al. revealed that adaptive control is capable
of improving both the stability and transient performance of the
system [35,36]. Wang also emphasized that the aspects of fast
response and adaptive stability are fundamental [37].

3.2. Tracking efficiency and power loss

Tracking efficiency in this study is defined based on
integrated energy throughout the testing interval. This is
measured as the ratio between the energy generated by the
MPPT algorithm (E,) and the maximum reference energy from
the MPP model (E}..f) at the same irradiance and temperature
profiles. This energy-based approach assesses performance
more realistically under dynamic conditions as it directly
quantifies the impact of oscillations and response delays on the
total energy that is successfully extracted. Integrated energy
efficiency measurements aim to reveal aspects of operational
efficiency and energy optimization [38]. The following

equation demonstrates integrated energy-based output
efficiency (7).
n=—=2x100% 1)
Eref

Meanwhile, energy loss (L) is the area between the reference
power (P,f(t)) and the algorithm power (P,;4(t)) and can be
defined as follows.

L= [ max (0, Prop(£) = Pyyg() ) dt (22)

Under STC conditions, as depicted in Table 2, HI-POnIC
produces the highest energy tracking efficiency and lowest
energy loss in comparison to the other algorithms. This
interpretation is consistent with the adaptive weighting
mechanism and correction steps that enable balancing transient
convergence speed and steady-state stability [24]. The adaptive
weighting component based on dynamic indicators in HI-
POnIC provides significant advantages in damping oscillations
and accelerating system stability.

Table 2. Power efficiency in STC environments

Algorithm Transient Phase (t < 6.55) Steady-State Phase (t > 6.5s)
Eo() n%) L) Eo () n®») L@
P&O 60.43 80.49 14.781 70.12 93.33 4.97
InC 62.82 83.67 12.399 72.99 97.19 2.10
H-POnIC 60.46 80.52 14.757 71.08 94.66 4.01
HI-POnIC 72.89 97.07 2.196 74.28 98.93 0.81

Further analysis in Tables 3 and 4 demonstrates the

system’s response to dynamic conditions representing
variations in irradiance and temperature. npgg and Lpgg
representing efficiency and power loss, respectively, are
measured using the P&O method. ny,¢c and Ly, are analyzed
using the InC method, ny_ponic and Ly_ponic are evaluated
using the H-POnlIC method. Finally, ny;_ponic and Lyi_ponic
are evaluated using the HI-POnIC method. The measurement
results of  and L indicate that HI-POnIC can maintain an
average efficiency of 97.52% with a power loss of 2.48 J. This
suggests that its adaptive mechanism can adapt in real-time to
environmental changes without causing significant deviations.
In contrast, the P&O and InC algorithms exhibit a decrease in
efficiency to 63-71%, particularly during high irradiation
fluctuations (S3), due to oscillatory responses and errors in
power gradient direction. This finding demonstrates that the
superiority of HI-POnIC is not only nominal, but also that its
structure is capable of simultaneously balancing
responsiveness and stability. The identification of energy
losses is of crucial as part of energy efficiency efforts in the
power generation and distribution industry [39]. Accurate
measurement of losses is also necessary in PV system design
to achieve optimal electrical power [40].

Table 3. Power efficiency when applied in real-time

Time Mp&o Minc TTH-PONIC MHI-PONIC
Segment (%) (%) (%) (%)
S1 (0-10s) 63.88 70.02 63.90 94.21
S2 (10-13s) 75.81 71.52 75.98 97.78
S3 (13-16.5s) 37.57 42.62 37.62 66.27
S4 (16.5-20s) 61.79 67.79 61.84 92.60

Table 4. Power loss when real-time is applied

Time Lpgo Linc Ly—ponic Lyi—ponic
Segment ) ) ) )
S1 (0-10s) 19.85 16.44 19.84 5.79
S2 (10-13s) 13.03 12.73 12.95 2.22
S3 (13-16.5s) 14.23 13.09 14.22 33.73
S4 (16.5-20s) 14.46 12.22 14.44 7.40

Most MPPT literature evaluates tracking efficiency based on
the power generated under steady-state conditions around the
maximum power point [18,19,41-44]. To facilitate a fair
comparison with these comparative methods, this study also
presents a steady-state power efficiency analysis calculated at
specific time intervals when the system has reached steady-
state conditions. As demonstrated in Fig. 8, steady-state
conditions are identified in four times segments, which are S1
(8.7-9.9 ), S2 (11.9-12.9 s), S3 (1516 s), and S4 (18-20 s).
The power efficiency value is calculated as the average power
in each of these time segments and is used as the basis for
comparing steady-state power efficiency between algorithms.

These measurement results are summarized in Table 5,
where 7)45 represents steady-state power efficiency, while 7)44;
indicates power efficiency in each time segment (S;). To
observe the clarity of power efficiency in each time segment in
the HI-POnIC algorithm, the 7 values are displayed
sequentially from S1 to S4 to ascertain the consistency of
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power efficiency under various steady-state operating

conditions.

Table 5. Sum. of power efficiency and energy loss when real-time is applied

Algorithm Nss (%) Nssi(%0)

99.84

HI-POnIC 98.69 7905
95.46
99.83

Hybrid P&O and InC [18] 85.60

GSA-PSO Based MPPT [19] 95.50

P&O with SEPIC Topolgy [41] 95

ANN-PSO[42] 67

InC with Constant Irradiance [43] 97

PnO with Constant Irradiance [43] 94

ABC [44] 97.68

As illustrated in Table 5, the steady-state power efficiency
of various MPPT methods is highly dependent on the employed
control mechanism, the sensitivity to changes in operating
conditions, and the characteristics of the utilized converter.
Conventional methods, such as P&O with SEPIC topology and
P&O/InC, can achieve relatively high efficiency (94-97%)
under constant irradiance conditions. However, these results
are largely obtained under ideal steady-state conditions and are
sensitive to residual oscillations around the MPP [41,43]. It is
in line with the basic characteristics of P&O and InC, which
employ fixed perturbation steps or local gradient estimation.
Consequently, when confronted with more complex irradiance
dynamics, the system exhibits a decreased performance.

Artificial intelligence-based approaches and global
optimization, such as ANN-PSO and GSA-PSO-based MPPT,
exhibit wider efficiency variations [19,42]. While these
methods are theoretically capable of identifying the global
maximum power point, steady-state performance is
significantly influenced by the quality of training, optimization
parameters, and computational complexity. In practice,
dependence on the learning process and global iterations can
result in efficiency degradation when operating conditions
deviate from those assumed during the design or training
stages, as reflected in lower 7155 values [42].

Conventional hybrid methods, such as Hybrid P&O-InC,
have successfully enhanced efficiency when compared to
single methods by combining the response speed of P&O with
the sensitivity of InC gradients. However, this approach
generally relies on a static control structure, which limits its
ability to adaptively balance transient response and steady-state
stability across the entire range of operating conditions.
Consequently, the efficiency achieved is in the mid-range (85—
95%) and still exhibits power oscillations around the MPP [18].

In this context, the proposed HI-POnIC algorithm achieves
the highest steady-state efficiency (98.69%) with consistently
high efficiency values across all time segments. This advantage
does not stem from an increase in instantaneous power; rather,
it is the result of the algorithm's ability to maintain stable
operation near the MPP during steady-state intervals. This is
achieved through an adaptive weighting mechanism and

variable control steps based on local dynamic indicators. In
contrast to Al-based or metaheuristic methods, HI-POnIC does
not rely on data learning or global search processes. Instead, it
applies deterministic decision rules that adjust the contribution
of P&O and InC contextually. This approach allows high
efficiency to be achieved with low computational complexity
and greater stability, making it more relevant for real-time
implementation in PV systems.

3.3. Spatial analysis and power tracking accuracy statistics

Spatial and statistical analyses are presented to assess the
algorithm's ability to follow the maximum power point under
various environmental conditions. To compare the proposed
algorithm to conventional methods, three-dimensional
visualization and error distribution are utilized to ascertain the
accuracy and consistency of the former.

3.3.1. HI-POnlIC algorithm performance

To assess the performance of the proposed algorithm in
greater depth, a visual analysis was conducted on the
relationship between irradiance, temperature, and output
power. The subsequent four panels provide a comprehensive
depiction of the HI-POnIC algorithm.

Fig. 9 illustrates the mapping of the relationship between
irradiance, temperature, and the power output of the PV system
controlled by the HI-POnIC algorithm. This is compared to the
MPP reference model. The upper left panel displays the
reference power surface, which demonstrates that an increase
in irradiance consistently increases the maximum power.
Conversely, a modest increase in temperature results in a
decrease in output, as elevated temperatures have a negative
effect on the efficiency of PV cells. The upper right panel
displays the empirical surface of the HI-POnIC algorithm.
While a parallel trend is evident, disparities emerge in the areas
characterized by elevated irradiance and medium temperature.
The bottom left panel displays an error surface map that
illustrates the power difference between reference and
algorithm results. This difference is examined more closely.
The presence of smooth gradient color pattern indicates that the
error is minimal and consistent under most operating
conditions. The presence of small positive values in the low
irradiance region indicates the algorithm can respond
immediately to changes in light intensity. The bottom right
panel displays an overlay between the reference model and the
algorithm results, showing that the two surfaces almost overlap.
This finding indicates that the HI-POnIC algorithm can
replicate the characteristics of the reference model with
minimal deviation.

3.3.2. Error performance evaluation

As a quantitative performance evaluation measure, Error
Surface analysis is utilized to evaluate the capacity of each
algorithm to follow the reference maximum power model under
various combinations of irradiance and temperature. In
addition, it is employed to map the distribution of power
deviation from the ideal MPP conditions.

As depicted in Fig. 10, all algorithms demonstrate a
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tendency for error to decrease as irradiance increases, albeit
with varying degrees of stability. The P&O and InC algorithms
demonstrate more uneven color variations, indicating error
fluctuations within the medium irradiance range. The
conventional P&O and InC algorithms demonstrate a greater
variability in errors with uneven gradations, suggesting
fluctuations in deviation from high irradiance conditions.
However, H-POnIC can show a stable and concentrated error
distribution in the low range. This finding indicates that H-
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POnIC is regarded capable of tracking MPP stably and
consistently. In contrast, the HI-POnIC algorithm yields the
optimal results. The analysis reveals that blue is the
predominant color in the G-T range, indicating that power
deviation is low below 50 W. This observation confirms the
efficacy of the Al-inspired adaptation mechanism in HI-POnIC
in suppressing error fluctuations, enhancing tracking accuracy,
and strengthening the system's resilience to environmental
variations.
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Fig. 9. Spatial analysis of HI-POnIC algorithm performance
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Fig. 10. Error performance analysis
3.3.3. Power error distribution

To examine the deviations of each algorithm from the MPP
reference model, the power error distribution measure is
employed. This measure helps to illustrate the statistical aspects
associated with the stability and consistency of each algorithm's
accuracy in tracking power under various environmental
conditions.
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Fig. 11. Power error distribution analysis

As illustrated in Fig. 11, the P&O and InC algorithms exhibit
a broader spectrum of errors. This results in a more dispersed
distribution of errors, leading to a diminished stability of the
tracking response when the temperature and irradiance change.
In contrast, the H-POnIC algorithm demonstrates a narrower
distribution with a peak around AP=80-100 W, indicating better
accuracy when compared to conventional methods. The HI-
POnIC error distribution is even more centered and
symmetrical with a higher density peak, indicating minor and
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more consistent power errors. It is also supported by the fact
that errors symmetrical about zero and with a mode near zero
indicate that the difference between the predicted value and the
actual value is close to zero, thereby signifying high degree of
model accuracy [45,46]. The Probability Density Function
(PDF) scale is utilized to indicate the frequency or likelihood
of the error occurring.

Quantitatively, the error distribution can be illustrated
through the Mean Absolute Error (MAE) statistical value,
which represents the average absolute error between the Pr.rand
P,, values, as shown in the following Eq. (23) [47]. MAE
serves to evaluate the overall accuracy of the algorithm without
overemphasizing significant errors.

1
MAE = =3 |Prefi = Pa (23)

tg.l

The error distribution can also be illustrated through the
Mean Squared Error (MSE) using the Root Mean Squared Error
(RMSE) formula, as demonstrated in the following Eq. (24)
[47]. In contrast to MAE, RMSE is more sensitive to significant
errors, because the errors are squared before being summed.
The RMSE function is used to check a stable system and to
show the significant changes affecting it.

1 2

RMSE = (L5, (Propi — Pag)® 29

To normalize the MAE and RMSE values against the

reference, Normalized MAE (nMAE) and nRMSE are formed
using the following Eq. (25-26).

nMAE = 225 %100% (25)
ref,max

nMRSE = =2 3100% (26)
ref,max

nMAE is formed to facilitate comparisons between
algorithms in PV systems with different power scales.
Concurrently, nRMSE is employed to demonstrate the relative
stability of the algorithm in percentage form under operating
conditions. The results of the calculations in Eq. (23-26) are
presented in Table 6.

Table 6. Error distribution statistics against reference power values

Algorithm MAE (W) RMSE(W) nMAE (%) nRMSE (%)
P&O 95.695 105.063 10.03 11.01
InC 74.162 89.049 7.77 9.33
H-POnIC 95.828 105.188 10.04 11.02
HI-POnIC  52.965 60.802 3.45 3.96

As depicted in Table 6 the MAE and RMSE values for the
P&O and InC methods remain reasonably high. This indicates
that they are not operating at their maximum power point. It is
evident that H-POnIC has not had significant enhancement, as
its adjustment weights remain unaltered. In contrast, the HI-
POnIC algorithm exhibits the most significant decline in error,
with a nMAE of 3.45% and a nRMSE of 3.96%. This
demonstrates that adaptive mechanisms, akin to Al, can ensure
the accuracy and stability of power tracking, even in fluctuating

temperature and irradiance. The MAE and RMSE numbers are
more reliable because they are easily comprehensible and can
be applied in real life scenarios. This renders them more
beneficial for those endeavoring to conceptualize and design a
system [48].

4. Conclusion

This study effectively introduced the HI-POnIC algorithm
as an adaptive evolution of the integration of the P&O and InC
methodologies. The HI-POnIC algorithm is designed without
involving learning models or training processes. Instead, it
utilizes a deterministic adaptive decision mechanism based on
system features. This mechanism allows control responses to
be adjusted in accordance with changes in the operating
characteristics of photovoltaic modules. The findings of the test
demonstrated that HI-POnIC exerted faster convergence time
and enhanced stability around the maximum power point when
compared to conventional methods. The employment of
dynamic weighting and adaptive steps enabled HI-POnIC to
balance transient response and steady-state stability, thereby
suppressing oscillations and power loss without increasing
computational complexity or dependence on training
parameters.

Integrated assessments of energy efficiency and power
efficiency under steady-state conditions exhibited uniform
performance across a broad spectrum of irradiance and
temperature  fluctuations. The lightweight and fully
deterministic implementation characteristics of this approach
have the potential to be further developed for more complex PV
systems and multi-input renewable energy systems. This would
improve the flexibility and performance of maximum power
tracking in increasingly diverse environmental conditions.
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