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Abstract 

Electricity generation remains dominated by fossil fuel–based sources, underscoring the necessity to optimize the utilization of solar energy 
through photovoltaic (PV) systems in support of the Sustainable Development Goals (SDGs). Variations in solar irradiance and temperature 
significantly influence PV performance, necessitating effective Maximum Power Point Tracking (MPPT) methods. This present study proposes 
HI-POnIC as an adaptive development of conventional MPPT algorithms using a deterministic, feature-based decision mechanism. The method 
employed dynamic weighting and adaptive step adjustment to modify the control response to changes in PV operating characteristics, without 
any reliance on learning processes. Performance of the system was evaluated through convergence analysis, energy and power tracking 
efficiency, and spatial accuracy assessment. The findings from the simulation demonstrated that HI-POnIC achieved faster convergence and 
enhanced stability around the maximum power point when compared with conventional methods. Its lightweight and easily implementable 
adaptive structure has rendered HI-POnIC suitable for PV systems operating under dynamically varying environmental conditions. 
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1. Introduction  

Electricity is regarded as one of the most pivotal sources of 

energy used in many aspects of daily life, including lighting, 

transportation and industrial processes.  It is an important 

energy source that propel economic and social growth on a 

global basis.  In 2019, the International Energy Agency (IEA) 

released data concerning the global generation of electricity 

based on the types of energy used. Most electricity is still 

generated from conventional sources, such as coal (36.7%), 

natural gas (23.6%), hydropower (15.7%), nuclear (10.7%), 

non-hydro renewable energy and waste (10.8%), and oil (2.8%) 

[1]. From this data, despite the finite nature of coal as an energy 

source and its environmental impacts, it continues to 

predominate global electricity generation. Coal combustion 

produces elevated carbon emissions that contribute to global 

warming and air pollution [2]. As these natural resources are 

limited and detrimental to the environment, there is a need for 

alternative solutions that are both cleaner and more sustainable 

to meet the requirement of future electricity.  Renewable 

energy, particularly solar power from natural sources, is a better 

alternative for the environment [3]. The transition to renewable 

energy is dependent upon the realization of "Affordable and 

Clean Energy," in line with the Sustainable Development Goals 

(SDGs) aimed at ensuring universal access to  affordable, 

accessible, and long-lasting energy in both developed and 

developing countries [4]. 

Solar energy is one of the most promising types of 

renewable energy.  The process of its conversion into electrical 

energy is performed through photovoltaic effect using 

photovoltaics (PV) [5,6]. In PV systems, electricity is generated 

when light hits semiconductor materials such as silicon.  In this 

process, the photons in the light make an electric current by 

hitting electrons out of the atoms in the semiconductor material. 

Many studies have been conducted on the subject of PV 

systems. Lüer L. et al. examined sophisticated photovoltaic 

architectures, including multi-junction cells and multi-

excitation generation, to surpass the efficiency constraints of 

individual cells and attain enhanced power conversion 

efficiency [7]. Dada M. et al. examined the latest  developments 

in solar photovoltaic materials and systems for multi-
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generation applications, with an emphasis on the enhancement 

of the performance and efficiency of PV systems [8]. Hossain 

et al. conducted a study into the management of photons in 

silicon photovoltaic cells to reduce optical losses and enhance 

the efficiency of the power conversion process. The study 

examined surface texture and nanostructure as potential 

solutions [9]. Mulda et al. highlighted that enhancements in 

solar cell efficiency remain predominantly influenced by the 

capacity of system to optimally extract available electrical 

energy [10]. 

Rihani A.T. and Ghandchi M. suggested a solution using 

methods to monitor the energy requirement for PV systems to 

function optimally [11]. The method employed in this study is 

unique since the proposed algorithm has been designed to 

generate electrical energy that can be utilized to track processes 

that are like those of PV modules.  

Maximum Power Point Tracking (MPPT) is a technique 

employed in photovoltaic systems to ensure that solar power 

systems operate at maximum power points under various 

environmental conditions. This technique is employed to 

optimize the conversion of solar energy from solar panels into 

electrical energy [12]. The MPPT method utilizes a voltage-

current (V-I) curve to maximize electrical power output.  

Haque A. proposed a solution for the MPPT scheme to enhance 

the speed and accuracy of maximum power tracking in stand-

alone and grid-connected photovoltaic systems, particularly in 

areas with rapid changes in solar radiation [13]. Samosir A.S. 

and others utilized a number of hybrid methods, including  

fuzzy-neural MPPT optimized with genetic algorithms, to 

examine the efficacy of Maximum Power Point (MPP) tracking 

in different atmospheric and load conditions for the 

enhancement of performance [14]. Ali A. et al. introduced a 

hybrid approach that integrates a conventional MPPT, 

specifically the Perturbation and Observation (P&O) method, 

with fuzzy logic controllers.  The results of the simulation 

demonstrated that the output voltage could stably be reversed 

[15]. 

The P&O and Incremental Conductance (InC) are 

foundational MPPT methods for PV modules, frequently 

conducted in combination with other methods [12,13,15,16]. 

Yuksek et al. created a hybrid algorithm utilizing different step 

sizes to reduce oscillations and speed up MPP tracking [17]. 

Bhat et al. integrated P&O and InC employing Fibonacci theory 

and the golden ratio, resulting in an enhanced performance 

under partial shading and varying environmental conditions 

[18]. Neeraj et al. proposed a novel integration of a Cuk–SEPIC 

hybrid converter with a gravitational search algorithm-particle 

swarm optimization (GSA–PSO) hybrid MPPT algorithm in a 

photovoltaic system for water pumps [19]. 

The P&O and InC methods are characterized by ease of 

implementation, owing to their independence from complex 

computational requirements. The MPPT method, in common 

with many researchers, is frequently implemented in 

conjunction with the algorithms of artificial intelligence (AI).   

However, the implementation of MPPT method, when applied 

with AI algorithms, requires complex computations. Therefore, 

development is required to ensure that the P&O and InC 

algorithms can still be utilized, with results that can still track 

the maximum power point. 

This present study proposes an algorithm for the 

development of a combination of the P&O and InC algorithms. 

It is expected to yield results that can achieve the maximum 

power point. The proposed algorithm will not utilize AI 

algorithm integration, but it will create an AI-inspired 

algorithm that can adapt effectively to both static and dynamic 

environments. The algorithm will be analyzed based on its 

convergence capability in tracking the maximum power point 

(MPP), tracking efficiency, and power loss, as well as spatial 

and statistical analysis of power tracking accuracy. 

2. Materials and Methods 

PV modules refer to a system utilized as a source of 

renewable energy. The utilization of sunlight, when naturally 

generated, has the potential to produce electrical energy. The 

widespread utilization of electrical energy processed from 

environmentally unfriendly and finite energy sources is 

undoubtedly a serious concern, thus rendering it one of the 

SDGs goals. 

MPPT, a method for maximizing energy efficiency, is 

expected to contribute to the realization of the SDGs. The P&O 

and InC methods are commonly used due to their ease of 

application in PV systems. However, these methods still have 

weaknesses, particularly in terms of the determining factors of 

energy produced by PV, namely solar irradiation and 

temperature.  

The PV system can be modeled using an equivalent circuit 

consisting of a current source, diodes, and resistors connected 

in series and parallel. The output current (I) from the solar cell 

is shown in Eq. (1) [20]. 

 𝐼 = 𝐼𝑝ℎ − 𝐼𝑠(𝑒

𝑉+𝐼𝑅𝑠

𝑛
𝑘𝑇
𝑞 − 1) −

𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
 (1) 

where Iph is the photogenerated current that depends on 

irradiance (𝐺) and temperature (𝑇). The diode current follows 

the Shockley equation to describe the current and voltage 

characteristics of semiconductor diodes, including photovoltaic 

diodes [21]. 𝐼𝑠 is defined as the reverse saturation current, 

which is the current that flows through the diode when the 

voltage is applied in the opposite direction (reverse bias). The 

solar cell creates V, which is defined as the voltage. n is the 

ideality factor, which is a measure of the energy changes and 

the functionality of semiconductor devices system. Number n 

is typically situated within the range of 1 and 2. A value of 1 

indicates a perfect system. Higher values mean that greater 

number of losses in the system. The Boltzmann constant, 𝑘, 

equals 1.38 × 10⁻²³ J/K.   It demonstrates a correlation of 

temperature and energy on a small scale, like in semiconductor 

systems. The solar cell works at a temperature of 𝑇, and the 

charge of the electron is 𝑞 (1.602 × 10⁻¹⁹ C). Meanwhile, Rs 

represents the series resistance, and Rsh represents the shunt 

resistor, which determines the current path through the lower 

resistance rather than through the main load. The MPPT will 

process all quantities that yield an output current from the PV. 

2.1. Maximum Power Point Tracking (MPPT) Algorithm 

MPPT controls current and voltage to obtain maximum 
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power output. The P&O algorithm is responsible for the 

monitoring of the power generated by the system by adjusting 

the output voltage of the PV panel in small increments. If the 

power increases because of the alteration, the modification will 

continue in the same direction; otherwise, the direction of the 

change will be reversed. This cyclic process enables the system 

to reach its maximum power point. 

P&O utilizes Eq. (2-4) for voltage distortion. The difference 

is attributed to variations in step size associated with either 

fixed or variable duty cycle settings. After monitoring the PV 

power (𝑃(𝑡)), the power difference (∆𝑃𝑉) is obtained by 

comparing it with the previous maximum power (𝑃(𝑡 − 1)). 

The ∆𝑃𝑉 is utilized to calculate the duty ratio, which, in turn, 

regulates the converter to increase or decrease the voltage 

(𝑉(𝑡)) depending on the voltage difference (∆𝑉) [22]. 

 P(t)=V(t) x I(t) (2) 

 ∆PV=P(t) - P(t-1) (3) 

 V(t)=V(t-1) ± ∆V (4) 

Meanwhile, the InC algorithm continuously monitors and 

analyzes voltage and current values to obtain the maximum 

power that can be generated by the panel. This is because the 

slope of the PV array power curve is zero at the maximum point 

(MPP). In the InC MPPT algorithm, the terminal voltage 

system is constantly set to the PV voltage at the MPP. It is based 

on the increase in conductivity of the PV array. The operation 

of the InC MPPT technique is predicated on the premise that 

the derivative of power with respect to voltage is zero at the 

MPP, as expressed in Eq. (5). 

 
𝑑𝑃

𝑑𝑉
= 𝐼 + 𝑉

𝑑𝐼

𝑑𝑉
 (5) 

When the derivative of power with respect to voltage is zero 

at the maximum power point, i.e., dP/dV=0, Eq. (5) can also be 

expressed as follows. 

 𝐼 + 𝑉
𝑑𝐼

𝑑𝑉
 = 0 (6) 

Equivalently, Eq. (6) can be written as follows [23]. 

 
𝑑𝐼

𝑑𝑉
= −

𝐼

𝑉
 (7) 

In this context, dI/dV signifies the additional conductivity, 

while I/V represents the instantaneous conductivity. 

P&O is fast in processing its algorithm towards stability, yet 

it is not readily stable. In contrast, InC can be more accurate in 

terms of stability, though its responsiveness is not as 

expeditious as that of P&O, thereby leading to the identification 

of weaknesses in both algorithms. For this reason, this study 

will combine P&O and InC into Hybrid P&O and InC (H-

POnIC). The H-POnIC algorithm used in this study does not 

merely combine the two. The H-POnIC algorithm does not 

employ ON/OFF logic, where one is turned on and the other is 

turned off. 

In the H-POnIC algorithm, changes in the duty cycle of the 

converter are determined by considering the contributions of 

P&O and InC. The primary objective of this approach is to 

utilize the fast response advantage of P&O while maintaining 

the stability and accuracy of InC around MPP. Changes in the 

duty cycle (∆𝐷) are formulated as a weighted combination of 

two correction signals generated by the P&O and InC 

algorithms. 

 ∆D = 𝜔𝑝𝑜∆𝐷𝑝𝑜 + 𝜔𝑖𝑛𝑐∆𝐷𝑖𝑛𝑐 (8) 

 The weight values of the P&O (𝜔𝑝𝑜) and InC (𝜔𝑖𝑛𝑐) algorithms 

are adaptively determined based on the strength of information 

provided by each method. The P&O method provides 

information through the power gradient with respect to voltage, 

while the InC method provides information through the 

incremental error between dI/dV and -I/V. Both demonstrate 

the sensitivity of the system to the operating position relative to 

the MPP point. 

The weight 𝜔𝑝𝑜 is calculated using the following equation. 

 𝜔𝑝𝑜 =
|dP 𝑑𝑉⁄ |

|dP 𝑑𝑉⁄ |+|(dI 𝑑𝑉⁄ )+𝐼 𝑉⁄ |
 (9) 

The 𝜔𝑝𝑜 weight is indicative of the change in power relative 

to the voltage applied, which is utilized to evaluate the 

dominant dynamics and incremental errors. When the P&O 

gradient increases due to rapid changes in solar irradiation or 

temperature, the 𝜔𝑖𝑛𝑐 weight will increase, rendering the 

algorithm more responsive to changes. Conversely, when the 

system is near MPP, the weight 𝜔𝑝𝑜 will be greater, causing the 

system to be more stable and reducing oscillations around the 

optimal operating point, which can be expressed as follows. 

 𝜔𝑖𝑛𝑐 = 1 − 𝜔𝑝𝑜 (10) 

The H-POnIC algorithm can be developed to facilitate not 

only the examination of the gradient magnitude but also the 

rapid calculation of the power change. It can anticipate rapid 

changes in solar irradiation or temperature. If light conditions 

change quickly, the P&O weight automatically increases. 

Conversely, if conditions remain stable, the InC weight will 

increase. In essence, the H-POnIC algorithm also needs to 

adapt quickly. For the adjustment of an algorithm, additional 

intelligent methods, in general, are required. However, in this 

study, the HI-POnIC algorithm is an H-POnIC algorithm with 

an adaptive weighting mechanism inspired by several AI 

methods without using fuzzy logic, neural networks, PSO, or 

other AI methods. The adaptive weighting mechanism in HI-

POnIC is a feature-based deterministic decision rule that 

adjusts the contribution of P&O and InC contextually. Since 

this approach does not involve data-based learning, it is more 

appropriately classified as an AI-inspired adaptive mechanism 

or heuristic inference layer. The concept of the weighting 

mechanism can change contextually based on local data 

characteristics, with the aim of enhancing accuracy and 

computational efficiency without the necessity of data-based 

learning [24]. 

In HI-POnIC, the 𝜔𝑝𝑜 and 𝜔𝑖𝑛𝑐 weights are no longer 

dependent solely on the gradient magnitude, but also on the 

sensitivity function to map the system's dynamic level, as 

expressed in the following equation. Each variable has an 𝜀𝑉 as 

a tolerance threshold to prevent division by zero or minimal 

values in the variables 𝑉 or 𝛥𝑉. ∅3 is also limited to a maximum 
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of 1.0; therefore, when its value is elevated, it is restricted to 

the range of 0 to 1. 

 𝜙1 =
|𝑑𝑃|

|𝑑𝑉|+𝜀𝑉
 (11) 

 𝜙2 = |𝑒𝑖𝑛𝑐| =
𝑑𝐼

|𝑑𝑉|+𝜀𝑉
+

𝐼

𝑉
 (12) 

 𝜙3 = 𝑚𝑖𝑛
|𝑑𝑃|

|𝑃|+10−12 , 1.0 (13) 

Each represents the sensitivity of the power-voltage 

gradient, the distance to the MPP, and the relative change in 

power. All three are used to calculate adaptive weight: 

 𝜔𝑝𝑜 =
∅1

∅1+∅2+∅3
 (14) 

 𝜔𝑖𝑛𝑐 =
∅2

∅1+∅2+∅3
 (15) 

In addition to the dynamic gain factor 𝑔 = ∅3, the duty cycle 

change step is automatically adjusted using the following 

equation. 

 𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝𝑚𝑖𝑛 + 𝑔(𝑠𝑡𝑒𝑝𝑚𝑎𝑥 − 𝑠𝑡𝑒𝑝𝑚𝑖𝑛) (16) 

Subsequently, the combined voltage command (𝑉𝑐𝑚𝑑) is 

calculated as follows. 

 𝑉𝑐𝑚𝑑 = 𝜔𝑝𝑜𝑉𝑝𝑜 + 𝜔𝑖𝑛𝑐𝑉𝑖𝑛𝑐 (17) 

Based on the flow described above, the HI-POnIC algorithm 

can be formed with the flowchart as presented in Fig. 1. 

2.2. Research Methodology 

HI-POnIC algorithm, as proposed in this study, will undergo 

evaluation in a static environment with solar irradiation and 

temperature inputs in accordance with the Standard Test 

Conditions (STC) commonly used in PV modules, namely 

1000 W/m² and 25°C. The PV module employed in this study 

is of the monocrystalline variety and its specifications are 

outlined in Table 1 [25]. 

Table 1. PV module specifications 

Specification Value 

Nominal Maximum Power 375.43W 

Optimum Operating Voltage (𝑉𝑚𝑝) 39.77V 

Optimum Operating Current (𝐼𝑚𝑝) 9.44A 

Open Circuit Voltage (𝑉𝑜𝑐) 48.45V 

Short Circuit Current (𝐼𝑠𝑐) 9.96A 

To observe the response of PV under real conditions, 

dynamic testing was conducted using a PT100 RTD 

temperature sensor and a pyranometer solar irradiation sensor. 

Real-time condition testing can provide sufficient operational 

understanding to detect inefficiencies due to environmental 

factors such as clouds or weather variations [26,27].  
As demonstrated in Fig. 2, the temperature sensor was 

attached to the PV, given that PV performance is also 

influenced by temperature [28–31]. In conditions of elevated 

temperature, for example, on a particularly hot day, the 

efficiency of the PV system can be significantly reduced. The 

pyranometer sensor was placed close to the PV module. 

Dynamic testing was carried out for approximately 33 minutes, 

and the results will be plotted in a graph for 20 seconds. Every 

1 second represents hundreds of real conditions. 

In addition to the measurements of temperature and solar 

radiation, electrical measurements are also taken using a 

PZEM-017 sensor. The ESP32 acquires data from the sensor 

and then transmits it via the Message Queue Telemetry 

Transport (MQTT) protocol to the server. The monitoring 

dashboard will display the data that is stored on the database 

server. This will enable users to observe the PV measurement 

conditions in real time, as illustrated in Fig. 3. 

 Researchers can use this monitoring dashboard to oversee 

how PV modules system works. The system displays solar 

irradiation and module temperature inputs, as well as module 

current and voltage outputs.  The monitoring dashboard also 

has graphs that describe the performance of the PV modules, 

thereby facilitating the determination of the PV system’s 

operational functionality. 

To simplify the analysis process, a series of tests were 

conducted in the MATLAB environment. All tests were 

subsequently compared to determine the output power 

generated by all MPPT algorithms designed according to Fig. 

4. The data obtained from the pyranometer and the RTD PT-

100 were entered into the PV module. DC Chopper is a device 

that facilitates the conversion of the output of the PV module 

into a power converter. It is a power regulator that receives a 

control loop from the MPPT algorithm, allowing it to produce 

maximum power points. Subsequent to this, the MPPT 

algorithm will provide a control loop to the DC Chopper by 

processing the duty cycle (D) during a specific pulse period (P). 

The control loop is created using a Pulse Width Modulation 

(PWM) generator. 

In this study, the PV module is constructed with one series 

(𝑁𝑆) and two parallel (𝑁𝑝) modules, enabling the total voltage 

(𝑉𝑇𝑜𝑡𝑎𝑙) to be calculated using equation below.  

 𝑉𝑇𝑜𝑡𝑎𝑙 = 𝑁𝑆𝑥𝑉𝑚𝑝 = 1 𝑥 39.77 = 39.77𝑉 (18) 

Eq. (19) yields the total current (𝐼𝑇𝑜𝑡𝑎𝑙) from two parallel 

modules as follows. 

 𝐼𝑇𝑜𝑡𝑎𝑙 = 𝑁𝑝𝑥𝐼𝑚𝑝 = 2 𝑥 9.44 = 18.88𝐴 (19) 

From Eq. (18) and (19), the following total power (𝑃𝑇𝑜𝑡𝑎𝑙) 

equation is derived. 

 𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑉𝑇𝑜𝑡𝑎𝑙𝑥𝐼𝑇𝑜𝑡𝑎𝑙 = 39.77 𝑥 18.88 = 750.8576 (20) 

Eq. (20) demonstrates the total power that can be extracted 

from the PV module when controlled by the MPPT algorithm. 
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Fig. 1. Flowchart of the HI-POnIC algorithm  

 

Fig. 2. Installation of PT100 RTD on PV module 

 
 

Fig. 3. PV module real-time monitoring system 

 

Fig. 4. Block diagram of MPPT algorithm testing on PV modules 

3. Results and Discussion 

The test results obtained from the four algorithms will be 

evaluated to assess the system's ability to quickly, efficiently, 

and accurately attain the maximum power point under various 

operating conditions. The analysis includes convergence 

response to environmental changes, tracking efficiency and 

power loss, as well as spatial and statistical mapping that shows 

the consistency and precision of the algorithm in following the 

maximum power point. 

3.1. Power tracking dynamics/convergence 

3.1.1. Static testing in the STC environment 

Static testing is performed to assess the algorithm's capacity 

to attain the maximum power point under STC conditions. In 

accordance with the MPPT algorithm test design block as 
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depicted in Fig. 4, the control loop will continue to operate until 

attains the maximum power value, as indicated by the Voltage-

Current (V-I) and Voltage-Power (V-P) curves as depicted in 

Fig. 5.  

Test results under STC conditions demonstrate the transient 

and steady-state behavior of four algorithms: P&O, InC, H-

POnIC, and HI-POnIC. The reference line of 750.8576 W is 

employed as the model-based maximum power reference, 

obtained from the PV characteristic calculation in Eq. (20), also 

illustrated in Fig. 5, and calibrated against the datasheet 

parameters (𝑉𝑜𝑐, 𝐼𝑠𝑐, 𝑉𝑚𝑝, 𝐼𝑚𝑝) shown in Table 1. Accordingly, 

this reference value represents the computational upper limit 

for the purpose of simulation benchmarking, not empirical 

verification that the physical module necessarily achieves this 

value at STC.  

 

Fig. 5. V-I and V-P curves on the PV module 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Results of static testing in an STC environment  

In the initial phase (t<4s), all algorithms demonstrate the 

oscillatory response that is characteristic of the P&O and InC 

methods. This is because they are searching for the direction of 

the power increase. However, when steady state conditions are 

reached, differences start to show up. It is important to consider 

the broader context in Fig. 6. The HI-POnIC curve clearly 

reaches the maximum power band with the greatest rapidity, 

while also exhibiting stability (t≈4.4s). InC is the next element 

to be considered, and P&O and H-POnIC require a longer time 

(t≈6.4s) to reach a stable state. InC, on the other hand, 

demonstrated an initial stability, subsequently exhibiting 

fluctuations at several t values prior to attain a stable state at 

t≈6.9s. 

The HI-POnIC curve attains the maximum power band and 

demonstrates stability more rapidly, followed by InC. P&O and 

H-POnIC require longer periods to attain a stable state. This 

phenomenon is consistent with the core principle that adaptive 

step adjustments in HI-POnIC diminish the amplitude of 

oscillations as the power gradient relative to voltage (|ΔP|/|P|) 

declines. Thus, the step adaptation that HI-POnIC must 

perform accelerates the transition from the exploration phase to 

the stabilization phase. 

Theoretically, the MPP condition can be expressed as the 

derivative of power with respect to voltage, dP/dV = 0, which 

can be decomposed into incremental conductance and 

instantaneous conductance. This relationship explains why 

power gradient-based and conductance-based decision 

directions can be consistent in determining the operating side 

relative to the MPP. However, the equivalence of these sign 

directions is inadequate to fully explain the similarity of 

dynamic responses. In the tests conducted, H-POnIC employed 

a combination of P&O and InC with relatively static/limited 

weight changes, and the test profile did not involve partial 

shading or truly extreme irradiance changes. Under conditions 

of smooth gradient changes and low measurement noise, the 

P&O component tends to dominate the correction decision, 

resulting in the transient response of H-POnIC appearing 

almost identical to P&O.  

The practical consequence is that, while the direction of the 

mathematically derived sign may indicate a similar direction of 

correction around the MPP, the real-time response is 

determined by the discrete implementation, the perturbation 

step size, and the quality of the gradient estimation. P&O 

causes oscillations because of continuous fixed perturbations 

that reverse direction around the power peak. At the same time, 

InC is contingent on the ΔI/ΔV ratio, consequently rendering 

its performance susceptible to measurement noise and minor 

ΔV conditions. In this study, the combined strategy in H-

POnIC does not significantly alter the perturbation step 

mechanism under STC conditions, so the oscillation pattern and 

settling time follow the characteristics of P&O.  

Conversely, the similarity between InC and HI-POnIC 

occurs because the adaptive weighting mechanism in HI-

POnIC tends to increase the contribution of the InC branch 

when the conductance error indicator is in a small range (i.e., 

the system is approaching a dP/dV ≈ 0 condition), so that the 

correction decision follows the character of InC. The 

distinguishing feature of HI-POnIC is its ability to enhance the 

signal-to-noise ratio in addition to increasing the gain. Instead, 

it adjusts the contribution of each branch contextually based on 

dynamic indicators such as |dP/dV|, |einc|, and relative power 

change |dP/P|. Therefore, residual oscillations around the MPP 

can be suppressed without eliminating the sensitivity of InC to 

changes in operating conditions.  

The momentary instability in the InC curve after 

approximately 6 s can be attributed to the approach of ΔV to 

zero. This results in a heightened sensitivity of the ΔI/ΔV ratio 

to noise and quantization, thereby causing the I–V slope 

estimates to oscillate and reverse the duty cycle decision, 
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despite the actual operating conditions already close to MPP. 

HI-POnIC mitigates the effects of instability because adaptive 

weighting reduces the contribution of the InC branch when the 

gradient indicator is unreliable (e.g., ΔV is very small or power 

fluctuations are relatively high) and increases the role of the 

P&O branch, which is more stable against noise. As a result, 

the combined decision signal remains smooth and is not easily 

reversed. 

Testing under real-time conditions is necessary, given the 

assumption that the system was stable under STC conditions. 

This is also evident from the V-I and V-P curves as depicted in 

Fig. 5, which demonstrate that both solar irradiation and 

temperature affect the maximum power output of the PV 

module. Therefore, dynamic testing is required to assess the 

robustness of the HI-POnIC algorithm in maintaining its 

maximum output. 

3.1.2. Dynamic testing in a real-time environment 

Dynamic testing was conducted under fluctuating 

conditions of sun irradiation and temperature, as illustrated in 

Figs. 7 and 8. The primary objective of this study was to assess 

the MPPT algorithm's capacity to adapt to rapid environmental 

changes and to measure the power output response of the 

photovoltaic system to these variations in input. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (a) Sun irradiance and (b) PV temperature input in the real-time system 

In depicted in Fig. 7(a), the initial irradiation intensity is 

approximately 500 W/m². The process undergoes a series of 

stages of increase until reaching 2000 W/m² at around t = 11 s, 

before decreasing dramatically to approximately 500 W/m² at 

around t = 13 s and returning to stability at approximately 1000 

W/m² after t = 17 s. This pattern resembles fast-moving clouds 

or sudden weather changes in the field, which is one of the main 

challenges in MPPT system design. An increase in irradiation 

raises the maximum power, while a decrease in irradiation 

leads to a reduction in power. Therefore, it is imperative that 

the MPPT algorithm is capable of adjusting the operating point 

for each change to remain around the MPP. 

As illustrated in Fig. 7(b), the temperature profile undergoes 

a simultaneous change with the level of irradiation, starting 

from 25°C and then returning to approximately 26°C. An 

increase in irradiation is associated with an increase in 

temperature. Physically, an increase in irradiation also results 

in increased heating on the PV surface. However, an increase 

in temperature has a detrimental effect on the Voc of the PV 

module. As the temperature rises, the voltage decreases, 

thereby allowing the MPP point to shift towards a lower 

voltage, despite the total power increasing due to the rise in 

current. Thus, the combination of changes in irradiation and 

temperature causes the MPP to move dynamically in the V–P 

plane, which is the basis for the evaluation of the effectiveness 

of the MPPT algorithm being tested. 

Fig. 8 illustrates the results of the PV output power for the 

four algorithms under comparison, including P&O, InC, H-

POnIC, and HI-POnIC. Within the initial time range (0–10s), 

as irradiation conditions gradually increased, all four 

algorithms exhibited an ability to effectively follow the power 

changes, albeit with varying levels of oscillation. The most 

noticeable change around the MPP point was in P&O. This is 

because this method exclusively examines changes in ΔP and 

ΔV, not the actual gradient. In contrast, InC exerted a more 

stable response as it used a differential approach (dI/dV) to find 

the MPP position. H-POnIC, a combination of the two, 

facilitates a more rapid transition than pure InC. However, 

minor changes were observed due to the weights in the ∆𝐷𝑝𝑜 

and ∆𝐷𝑖𝑛𝑐fusion processes were fixed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Results of the real-time dynamic testing on the PV module 

During the period of sharp decrease in irradiance (t≈13s), 

both P&O and H-POnIC exhibited substantial transient 

deviations, with some samples even producing momentary 

negative power values. It should be emphasized that this 

negative power is atypical in the context of PV operation and is 

not interpreted as the physical behavior of the module 

absorbing power. This phenomenon is more consistent with a 

computational artifact resulting from the asynchrony of voltage 

and current sampling at microsecond time resolution, as well as 

DC–DC converter transients when the duty cycle changes 

rapidly. Under rapid change conditions, 𝑉 and 𝐼 may be 

sampled at different effective times (sample skew), resulting in 

the instantaneous power multiplication (𝑃 =  𝑉 · 𝐼) not 

representing a physically coherent pair of V and I. Furthermore, 

switching transients can also cause temporary overshoot or 

undershoot prior to the system attaining a new steady state. 

HI-POnIC algorithm exhibits optimal performance, 

characterized by rapid convergence, minimal overshoot, and 

rapid adaptation following substantial irradiation changes at 
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approximately t = 13 s. This phenomenon arises because, in the 

HI-POnIC algorithm, the combination weights 𝜔𝑝𝑜 and 𝜔𝑖𝑛𝑐 

are calculated adaptively based on Eq. (14) and (15). This 

enables the system to adjust the contribution of both methods 

in accordance with changing conditions. It demonstrates the 

improved transient response and adaptive stability that are 

fundamental to the novelty of this method. It is supported by 

the fact that every design in reasonable adaptive control will 

produce a faster response, higher stability, consideration of 

transient limits, and adaptive system stability [32–34]. Travis 

et al. and Yang et al. revealed that adaptive control is capable 

of improving both the stability and transient performance of the 

system [35,36]. Wang also emphasized that the aspects of fast 

response and adaptive stability are fundamental [37]. 

3.2. Tracking efficiency and power loss 

Tracking efficiency in this study is defined based on 

integrated energy throughout the testing interval. This is 

measured as the ratio between the energy generated by the 

MPPT algorithm (𝐸𝑜) and the maximum reference energy from 

the MPP model (𝐸𝑟𝑒𝑓) at the same irradiance and temperature 

profiles. This energy-based approach assesses performance 

more realistically under dynamic conditions as it directly 

quantifies the impact of oscillations and response delays on the 

total energy that is successfully extracted. Integrated energy 

efficiency measurements aim to reveal aspects of operational 

efficiency and energy optimization [38]. The following 

equation demonstrates integrated energy-based output 

efficiency (𝜂). 

 𝜂 =
𝐸𝑜

𝐸𝑟𝑒𝑓
𝑥100% (21) 

Meanwhile, energy loss (L) is the area between the reference 

power (𝑃𝑟𝑒𝑓(𝑡)) and the algorithm power (𝑃𝑎𝑙𝑔(𝑡)) and can be 

defined as follows. 

 𝐿 = ∫ 𝑚𝑎𝑥 (0, 𝑃𝑟𝑒𝑓(𝑡) − 𝑃𝑎𝑙𝑔(𝑡)) 𝑑𝑡 (22) 

Under STC conditions, as depicted in Table 2, HI-POnIC 

produces the highest energy tracking efficiency and lowest 

energy loss in comparison to the other algorithms. This 

interpretation is consistent with the adaptive weighting 

mechanism and correction steps that enable balancing transient 

convergence speed and steady-state stability [24]. The adaptive 

weighting component based on dynamic indicators in HI-

POnIC provides significant advantages in damping oscillations 

and accelerating system stability.  

Table 2. Power efficiency in STC environments 

Algorithm Transient Phase (𝑡 ≤ 6.5𝑠) Steady-State Phase (𝑡 > 6.5𝑠) 

Eo (J) 𝜂 (%) L (J) Eo (J) 𝜂 (%) L (J) 

P&O 60.43 80.49 14.781 70.12 93.33 4.97 

InC 62.82 83.67 12.399 72.99 97.19 2.10 

H-POnIC 60.46 80.52 14.757 71.08 94.66 4.01 

HI-POnIC 72.89 97.07 2.196 74.28 98.93 0.81 

Further analysis in Tables 3 and 4 demonstrates the 

system’s response to dynamic conditions representing 

variations in irradiance and temperature. 𝜂P&O and 𝐿P&O 

representing efficiency and power loss, respectively, are 

measured using the P&O method. 𝜂InC and 𝐿InC are analyzed 

using the InC method, 𝜂H−POnIC and 𝐿H−POnIC are evaluated 

using the H-POnIC method. Finally, 𝜂HI−POnIC and 𝐿HI−POnIC 

are evaluated using the HI-POnIC method. The measurement 

results of 𝜂 and 𝐿 indicate that HI-POnIC can maintain an 

average efficiency of 97.52% with a power loss of 2.48 J. This 

suggests that its adaptive mechanism can adapt in real-time to 

environmental changes without causing significant deviations. 

In contrast, the P&O and InC algorithms exhibit a decrease in 

efficiency to 63–71%, particularly during high irradiation 

fluctuations (S3), due to oscillatory responses and errors in 

power gradient direction. This finding demonstrates that the 

superiority of HI-POnIC is not only nominal, but also that its 

structure is capable of simultaneously balancing 

responsiveness and stability. The identification of energy 

losses is of crucial as part of energy efficiency efforts in the 

power generation and distribution industry [39]. Accurate 

measurement of losses is also necessary in PV system design 

to achieve optimal electrical power [40]. 

Table 3. Power efficiency when applied in real-time 

Time 

Segment 

 𝜂P&O 

(%) 

𝜂InC 

(%) 

𝜂H−POnIC 

(%) 

𝜂HI−POnIC 

(%) 

S1 (0-10s) 63.88 70.02 63.90 94.21 

S2 (10-13s) 75.81 71.52 75.98 97.78 

S3 (13-16.5s) 37.57 42.62 37.62 66.27 

S4 (16.5-20s) 61.79 67.79 61.84 92.60 

Table 4. Power loss when real-time is applied 

Time 

Segment 

𝐿P&O 

(J) 

𝐿InC 

(J) 

𝐿H−POnIC 

(J) 

𝐿HI−POnIC 

(J) 

S1 (0-10s) 19.85 16.44 19.84 5.79 

S2 (10-13s) 13.03 12.73 12.95 2.22 

S3 (13-16.5s) 14.23 13.09 14.22 33.73 

S4 (16.5-20s) 14.46 12.22 14.44 7.40 

 

Most MPPT literature evaluates tracking efficiency based on 

the power generated under steady-state conditions around the 

maximum power point [18,19,41–44]. To facilitate a fair 

comparison with these comparative methods, this study also 

presents a steady-state power efficiency analysis calculated at 

specific time intervals when the system has reached steady-

state conditions. As demonstrated in Fig. 8, steady-state 

conditions are identified in four times segments, which are S1 

(8.7–9.9 s), S2 (11.9–12.9 s), S3 (15–16 s), and S4 (18–20 s). 

The power efficiency value is calculated as the average power 

in each of these time segments and is used as the basis for 

comparing steady-state power efficiency between algorithms. 

These measurement results are summarized in Table 5, 

where 𝜂𝑠𝑠 represents steady-state power efficiency, while 𝜂𝑠𝑠𝑖 
indicates power efficiency in each time segment (𝑆𝑖). To 

observe the clarity of power efficiency in each time segment in 

the HI-POnIC algorithm, the 𝜂𝑠𝑠𝑖  values are displayed 

sequentially from S1 to S4 to ascertain the consistency of 
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power efficiency under various steady-state operating 

conditions. 

Table 5. Sum. of power efficiency and energy loss when real-time is applied 

Algorithm 𝜂𝑠𝑠 (%) 𝜂𝑠𝑠𝑖(%) 

HI-POnIC 98.69 

99.84 

99.65 

95.46 

99.83 

Hybrid P&O and InC [18] 85.60  

GSA–PSO Based MPPT [19] 95.50  

P&O with SEPIC Topolgy [41] 95  

ANN-PSO[42] 67  

InC with Constant Irradiance [43] 97  

PnO with Constant Irradiance [43] 94  

ABC [44] 97.68  

 

As illustrated in Table 5, the steady-state power efficiency 

of various MPPT methods is highly dependent on the employed 

control mechanism, the sensitivity to changes in operating 

conditions, and the characteristics of the utilized converter. 

Conventional methods, such as P&O with SEPIC topology and 

P&O/InC, can achieve relatively high efficiency (94–97%) 

under constant irradiance conditions. However, these results 

are largely obtained under ideal steady-state conditions and are 

sensitive to residual oscillations around the MPP [41,43]. It is 

in line with the basic characteristics of P&O and InC, which 

employ fixed perturbation steps or local gradient estimation. 

Consequently, when confronted with more complex irradiance 

dynamics, the system exhibits a decreased performance.  

Artificial intelligence-based approaches and global 

optimization, such as ANN-PSO and GSA–PSO-based MPPT, 

exhibit wider efficiency variations [19,42]. While these 

methods are theoretically capable of identifying the global 

maximum power point, steady-state performance is 

significantly influenced by the quality of training, optimization 

parameters, and computational complexity. In practice, 

dependence on the learning process and global iterations can 

result in efficiency degradation when operating conditions 

deviate from those assumed during the design or training 

stages, as reflected in lower 𝜂𝑠𝑠 values [42]. 

Conventional hybrid methods, such as Hybrid P&O–InC, 

have successfully enhanced efficiency when compared to 

single methods by combining the response speed of P&O with 

the sensitivity of InC gradients. However, this approach 

generally relies on a static control structure, which limits its 

ability to adaptively balance transient response and steady-state 

stability across the entire range of operating conditions. 

Consequently, the efficiency achieved is in the mid-range (85–

95%) and still exhibits power oscillations around the MPP [18]. 

In this context, the proposed HI-POnIC algorithm achieves 

the highest steady-state efficiency (98.69%) with consistently 

high efficiency values across all time segments. This advantage 

does not stem from an increase in instantaneous power; rather, 

it is the result of the algorithm's ability to maintain stable 

operation near the MPP during steady-state intervals. This is 

achieved through an adaptive weighting mechanism and 

variable control steps based on local dynamic indicators. In 

contrast to AI-based or metaheuristic methods, HI-POnIC does 

not rely on data learning or global search processes. Instead, it 

applies deterministic decision rules that adjust the contribution 

of P&O and InC contextually. This approach allows high 

efficiency to be achieved with low computational complexity 

and greater stability, making it more relevant for real-time 

implementation in PV systems. 

3.3. Spatial analysis and power tracking accuracy statistics 

Spatial and statistical analyses are presented to assess the 

algorithm's ability to follow the maximum power point under 

various environmental conditions. To compare the proposed 

algorithm to conventional methods, three-dimensional 

visualization and error distribution are utilized to ascertain the 

accuracy and consistency of the former. 

3.3.1. HI-POnIC algorithm performance 

To assess the performance of the proposed algorithm in 

greater depth, a visual analysis was conducted on the 

relationship between irradiance, temperature, and output 

power. The subsequent four panels provide a comprehensive 

depiction of the HI-POnIC algorithm. 

Fig. 9 illustrates the mapping of the relationship between 

irradiance, temperature, and the power output of the PV system 

controlled by the HI-POnIC algorithm. This is compared to the 

MPP reference model. The upper left panel displays the 

reference power surface, which demonstrates that an increase 

in irradiance consistently increases the maximum power. 

Conversely, a modest increase in temperature results in a 

decrease in output, as elevated temperatures have a negative 

effect on the efficiency of PV cells.  The upper right panel 

displays the empirical surface of the HI-POnIC algorithm. 

While a parallel trend is evident, disparities emerge in the areas 

characterized by elevated irradiance and medium temperature. 

The bottom left panel displays an error surface map that 

illustrates the power difference between reference and 

algorithm results. This difference is examined more closely. 

The presence of smooth gradient color pattern indicates that the 

error is minimal and consistent under most operating 

conditions. The presence of small positive values in the low 

irradiance region indicates the algorithm can respond 

immediately to changes in light intensity. The bottom right 

panel displays an overlay between the reference model and the 

algorithm results, showing that the two surfaces almost overlap. 

This finding indicates that the HI-POnIC algorithm can 

replicate the characteristics of the reference model with 

minimal deviation. 

3.3.2. Error performance evaluation 

As a quantitative performance evaluation measure, Error 

Surface analysis is utilized to evaluate the capacity of each 

algorithm to follow the reference maximum power model under 

various combinations of irradiance and temperature. In 

addition, it is employed to map the distribution of power 

deviation from the ideal MPP conditions. 

As depicted in Fig. 10, all algorithms demonstrate a 
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tendency for error to decrease as irradiance increases, albeit 

with varying degrees of stability. The P&O and InC algorithms 

demonstrate more uneven color variations, indicating error 

fluctuations within the medium irradiance range. The 

conventional P&O and InC algorithms demonstrate a greater 

variability in errors with uneven gradations, suggesting 

fluctuations in deviation from high irradiance conditions. 

However, H-POnIC can show a stable and concentrated error 

distribution in the low range. This finding indicates that H-

POnIC is regarded capable of tracking MPP stably and 

consistently. In contrast, the HI-POnIC algorithm yields the 

optimal results. The analysis reveals that blue is the 

predominant color in the G–T range, indicating that power 

deviation is low below 50 W. This observation confirms the 

efficacy of the AI-inspired adaptation mechanism in HI-POnIC 

in suppressing error fluctuations, enhancing tracking accuracy, 

and strengthening the system's resilience to environmental 

variations. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Spatial analysis of HI-POnIC algorithm performance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Error performance analysis 

3.3.3. Power error distribution 

To examine the deviations of each algorithm from the MPP 

reference model, the power error distribution measure is 

employed. This measure helps to illustrate the statistical aspects 

associated with the stability and consistency of each algorithm's 

accuracy in tracking power under various environmental 

conditions.  

 

Fig. 11. Power error distribution analysis 

As illustrated in Fig. 11, the P&O and InC algorithms exhibit 

a broader spectrum of errors. This results in a more dispersed 

distribution of errors, leading to a diminished stability of the 

tracking response when the temperature and irradiance change. 

In contrast, the H-POnIC algorithm demonstrates a narrower 

distribution with a peak around ΔP≈80-100 W, indicating better 

accuracy when compared to conventional methods. The HI-

POnIC error distribution is even more centered and 

symmetrical with a higher density peak, indicating minor and 
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more consistent power errors. It is also supported by the fact 

that errors symmetrical about zero and with a mode near zero 

indicate that the difference between the predicted value and the 

actual value is close to zero, thereby signifying high degree of 

model accuracy [45,46]. The Probability Density Function 

(PDF) scale is utilized to indicate the frequency or likelihood 

of the error occurring.  

Quantitatively, the error distribution can be illustrated 

through the Mean Absolute Error (MAE) statistical value, 

which represents the average absolute error between the Pref and 

Palg values, as shown in the following Eq. (23) [47]. MAE 

serves to evaluate the overall accuracy of the algorithm without 

overemphasizing significant errors. 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑃𝑟𝑒𝑓,𝑖 − 𝑃𝑎𝑙𝑔,𝑖|𝑁

𝑖=1  (23) 

The error distribution can also be illustrated through the 

Mean Squared Error (MSE) using the Root Mean Squared Error 

(RMSE) formula, as demonstrated in the following Eq. (24) 

[47]. In contrast to MAE, RMSE is more sensitive to significant 

errors, because the errors are squared before being summed. 

The RMSE function is used to check a stable system and to 

show the significant changes affecting it. 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑃𝑟𝑒𝑓,𝑖 − 𝑃𝑎𝑙𝑔,𝑖)

2𝑁
𝑖=1  (24) 

To normalize the MAE and RMSE values against the 

reference, Normalized MAE (nMAE) and nRMSE are formed 

using the following Eq. (25-26).  

 𝑛𝑀𝐴𝐸 =
𝑀𝐴𝐸

𝑃𝑟𝑒𝑓,𝑚𝑎𝑥
𝑥100% (25) 

 𝑛𝑀𝑅𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑃𝑟𝑒𝑓,𝑚𝑎𝑥
𝑥100% (26) 

nMAE is formed to facilitate comparisons between 

algorithms in PV systems with different power scales. 

Concurrently, nRMSE is employed to demonstrate the relative 

stability of the algorithm in percentage form under operating 

conditions. The results of the calculations in Eq. (23-26) are 

presented in Table 6. 

Table 6. Error distribution statistics against reference power values 

Algorithm MAE (W) RMSE (W) nMAE (%) nRMSE (%) 

P&O 95.695 105.063 10.03 11.01 

InC 74.162 89.049 7.77 9.33 

H-POnIC 95.828 105.188 10.04 11.02 

HI-POnIC 52.965 60.802 3.45 3.96 

 

As depicted in Table 6 the MAE and RMSE values for the 

P&O and InC methods remain reasonably high. This indicates 

that they are not operating at their maximum power point. It is 

evident that H-POnIC has not had significant enhancement, as 

its adjustment weights remain unaltered. In contrast, the HI-

POnIC algorithm exhibits the most significant decline in error, 

with a nMAE of 3.45% and a nRMSE of 3.96%. This 

demonstrates that adaptive mechanisms, akin to AI, can ensure 

the accuracy and stability of power tracking, even in fluctuating 

temperature and irradiance. The MAE and RMSE numbers are 

more reliable because they are easily comprehensible and can 

be applied in real life scenarios. This renders them more 

beneficial for those endeavoring to conceptualize and design a 

system [48]. 

4. Conclusion 

This study effectively introduced the HI-POnIC algorithm 

as an adaptive evolution of the integration of the P&O and InC 

methodologies. The HI-POnIC algorithm is designed without 

involving learning models or training processes. Instead, it 

utilizes a deterministic adaptive decision mechanism based on 

system features. This mechanism allows control responses to 

be adjusted in accordance with changes in the operating 

characteristics of photovoltaic modules. The findings of the test 

demonstrated that HI-POnIC exerted faster convergence time 

and enhanced stability around the maximum power point when 

compared to conventional methods. The employment of 

dynamic weighting and adaptive steps enabled HI-POnIC to 

balance transient response and steady-state stability, thereby 

suppressing oscillations and power loss without increasing 

computational complexity or dependence on training 

parameters.  

Integrated assessments of energy efficiency and power 

efficiency under steady-state conditions exhibited uniform 

performance across a broad spectrum of irradiance and 

temperature fluctuations. The lightweight and fully 

deterministic implementation characteristics of this approach 

have the potential to be further developed for more complex PV 

systems and multi-input renewable energy systems. This would 

improve the flexibility and performance of maximum power 

tracking in increasingly diverse environmental conditions. 
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