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Abstract

Cardiovascular diseases remain the leading cause of mortality on a global scale, with myocardial infarction (MI) representing a critical and life-
threatening condition. Electrocardiography (ECG) is a widely utilized method for the detection of myocardial infarction (MI), and artificial
intelligence (AI) has demonstrated a promising performance in the automated ECG-based diagnosis. However, most existing studies emphasize
predictive accuracy while failing to provide substantial evidence that model decision logic aligns with clinical reasoning, thereby limiting clinical
adoption. This present study evaluates the interpretability of three rule-based machine learning classifiers—Decision Tree, RIPPER, and Rough
Set—for MI detection from ECG signals, including a comparison between models with and without feature selection. Interpretability of the
system is assessed through rule complexity analysis and a standardized qualitative clinical validation protocol involving three cardiologists,
based on contemporary AHA/ESC ECG diagnostic guidelines. The findings indicate that the Rough Set classifier attains the optimal overall
performance, with 80% of its generated rules demonstrating clinically aligned, thereby outperforming the other models regarding interpretability.

The findings demonstrate the benefit of guideline-based clinical validation for advancing trustworthy ECG-based MI diagnostic systems.
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1. Introduction

Cardiovascular disease, as released by the World Heart
Federation in 2023, remains one of the leading causes of
mortality on a global scale [1]. In Indonesia, these diseases are
the leading cause of annual deaths, with a total of 651,481
fatalities each year. While, coronary heart disease is the second
most prevalent cause of death after stroke [2]. Among its most
critical manifestations is myocardial infarction (MI), which
results from partial or complete occlusion of the coronary
arteries due to atherosclerotic plaque formation, leading to
myocardial ischemia and necrosis [3]. The early and accurate
detection of MI is essential to prevent severe complications,
including sudden cardiac death, and to enable timely clinical
intervention [4].

Electrocardiography (ECG) is a non-invasive, cost-
effective, and widely available diagnostic modality routinely
used for the detection of MI through the analysis of cardiac
electrical activity [5]. In clinical practice, ECG interpretation
relies on cardiologists’ expertise in identifying characteristic
waveform abnormalities, such as pathological Q waves, ST-
segment deviations, and T-wave changes [6].
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In recent years, advances in artificial intelligence (Al),
particularly in the realm of machine learning and deep learning,
have demonstrated substantial potential for automating the
detection and classification of MI from ECG signals, Numerous
studies have reported high predictive performance, indicating
the promising capabilities of Al-based systems in this field.

Deep learning-based approaches have achieved particularly
notable results in automated disease detection tasks. For
instance, convolutional neural network—based models have
reported very high classification accuracy in several diagnostic
applications [7], while hybrid architectures with the
combination of Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) have also demonstrated
robust predictive performance [8]. Conventional machine
learning methods, including Support Vector Machines (SVM)
and Multilayer Perceptron (MLP), have similarly been
extensively applied, frequently achieving competitive accuracy
[9]. Parallel to this, intelligent systems based on fuzzy logic
have been developed for the diagnosis of cardiovascular
disease, including coronary artery disease. These system
encode expert knowledge to support decision-making under
uncertainty [10]. Despite these promising results across

different diagnostic  settings, most existing studies
predominantly emphasize predictive performance, while issues
related to interpretability, transparency, and clinical

trustworthiness remain relatively underexplored.
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In healthcare applications, interpretability is a critical
requirement for ensuring clinical trust, ethical accountability,
and practical usability of Al-based decision-support systems
[11,12]. It refers to the degree to which human users—
particularly clinicians—can understand and rationalize a
model’s predictions in terms of established medical knowledge
and diagnostic reasoning. High predictive accuracy alone is
inadequate for clinical adoption as long as model decisions are
not adequately explained, scrutinized, or justified within a
medical context.

Rule-based classifiers, characterized by explicit if-then
decision structures, are widely regarded as intrinsically
interpretable in view of their transparent reasoning mechanisms
[13,14]. Consequently, such models are frequently considered
suitable for clinical applications where explainability is
essential. Interpretability evaluation methods are generally
categorized into two distinct approaches: quantitative
(machine-level) assessments, which include metrics such as
rule count, rule length, or statistical support and qualitative
(human-level) validation. While most of prior research on
interpretable machine learning models has largely focused on
quantitative indicators, qualitative validation involving domain
experts, particularly cardiologists, remains limited [15—17]. In
the context of medical practice, such qualitative validation is
crucial to ensure that model-generated rules are not only
syntactically interpretable but also clinically meaningful and
aligned with established diagnostic standards.

Based on this gap, this present study evaluates the
interpretability of three rule-based classifiers—Decision Tree,
RIPPER, and Rough Set—for ECG-based myocardial
infarction detection. It emphasizes formal qualitative clinical
validation by multiple cardiologists rather than solely rule
structure or quantitative metrics. The present work is grounded
in expert judgment and contemporary ECG guidelines, and
offers a clinically oriented perspective on interpretability
assessment.

2. Materials and Methods

This present study applied systematic workflow for ECG-
based myocardial infarction classification using the PTB-XL
dataset. The workflow included signal preprocessing, feature
extraction and discretization, performance evaluation, and
clinical validation to evaluate rule interpretability and clinical
relevance.

2.1. Dataset

This present study utilized the PTB-XL ECG dataset [17]
from PhysioNet, which consists of 12-lead ECG recordings,
each with a duration of 10 seconds, validated according to the
SCP-ECG standard. The dataset comprises a total of 5,310
records, including 1,388 Anterior Myocardial Infarction
(AMI), 1,267 Inferior Myocardial Infarction (IMI), and 2,655
normal recordings.

2.2. Signal filtering

To enhance the clarity and reliability of ECG signal,
preprocessing was applied purposely to reduce noise from
powerline interference, electrode artifacts, and baseline
wander, all of which have the potential to obscure diagnostic

information. In this study, an Adaptive Mean Filter was applied
to effectively remove baseline wander [18]. Subsequently,
Discrete Wavelet Transform (DWT) was implemented by
means of the Daubechies6 (db6) mother wavelet at level 8 as
the final filtering step [19].

2.3. Feature extraction

In this study, ECG feature extraction targets MIl-related
abnormalities, including pathological Q waves, ST-segment
elevation, T wave inversion, and elevated T wave.
Accordingly, Q wave, T wave, and J-point amplitude were
extracted as key features due to their direct correlation with ST-
segment changes and MI detection.

The feature extraction process involves the segmentation of
each ECG lead into individual P-QRS-T complexes through
the detection of R peaks and definition of RR intervals. The
analysis of heartbeat is conducted by delineating each heartbeat
from the midpoint of one RR interval to the next. The
identification of R peaks is facilitated by the Two-Average
algorithm due to its reliable detection accuracy [20]. After
segmentation, features extraction is achieved through the
implementation of a windowing technique [21], incorporating
the following point detection adjustment algorithm:

A. R-Peak Detection: The Two-Average algorithm is
employed to detect the R-peak. Once identified, a window
0of 2% of the sampling frequency is applied to examine any
higher amplitude within the window. This adjustment has
been demonstrated to enhance the accuracy of R-peak
detection, particularly in cases where the Two-Average
algorithm detects only the QRS complex.

B. Q-Peak Detection: The Q-peak is identified as the first
negative deflection or zero crossing within the window
preceding the R-peak.

C. S-Peak Detection: The S-peak is determined as the first
negative deflection or zero crossing following the R-peak.
D. J-Point Detection: The J-point is detected as the
subsequent deflection following the S-peak, marking the
transition between the QRS complex and the ST segment.

E. T-Peak Detection: The T-peak is identified as the absolute
maximum amplitude (positive or negative) within the
window extending from the J-point to the end of the
segment.

F. T-Onset Detection: Similar to Q-peak detection, the T-
onset is determined by locating the first negative deflection
or zero crossing before the T-peak, referenced relative to
the R-peak.

This feature extraction approach enables accurate
identification of Ml-related ECG key points and provides
relevant features as inputs for effective classification of
myocardial infarction abnormalities.

2.4. Data discretization

Data discretization is implemented through the
categorization of feature values into predefined ranges in
accordance with clinical guidelines and medical relevance [22
— 24]. In this study, each feature was discretized according to
the threshold values as specified in Table 1.
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Table 1. Discretization category

Feature Lead Threshold Condition Category
Q Peak All <-0,2mV Pathologic
Amplitude Else Normal

V1-Vé6 >0,2mV
L I0, III, aVL, High
aVR, aVF >0.1mV
V1-Veé6 <-0,2mV
5 Peak I, I0, 11, aVL Low
Amplitude > 1L ML avLk, -
P aVR, aVF <-0,ImVv
V1-V6 -0,2 <S peak <0,2 mV
I, 1L, 111, aVL, Normal
aVR, aVF -0,1< S peak < 0,1 mV
All >0,2mV High
T Onset
Amplitude All <-0,2mV Low
All -0,2<S<0,2mV Normal
Except aVR, V1 <-0,l mV Inverted
T Peak All -0,05 <T<0,05 Undetected
Amplitude All 0,1<T<1,0mV Normal
All -,0>T>1,0mV Hyperacute

2.5. Classification

This present study compared three intrinsically interpretable
classifiers: Decision Tree, RIPPER, and Rough Set. The
Decision Tree classifier constructs rules based on a hierarchical
branching structure, generated through recursive partitioning of
data attributes [25]. Each path from the root to a leaf node
represents a distinct rule, encapsulating specific patterns within
the data [26]. RIPPER (Repeated Incremental Pruning to
Produce Error Reduction) is a rule-based algorithm that
iteratively refines its rules to enhance classification accuracy.
Initially, rules are generated from the training data, followed by
a pruning process to mitigate overfitting [27]. Rough Set
Theory (RST), introduced by Pawlak in 1982, provides a
mathematical framework for managing uncertainty and
incomplete information by defining upper and lower
approximations of data classes [28]. These approximations
serve as the basis for rule generation within the classifier.

The Decision Tree and RIPPER classifiers were
implemented in Python using Visual Studio Code, while the
Rough Set classifier was executed in RSES2. The evaluation of
all models was conducted with and without feature selection,
employing stratified 10-fold cross-validation to ensure
balanced class representation.

2.6. Evaluation

The model evaluation process involved a comparison of
classification performance with and without feature selection.
This was conducted by means of confusion matrix—based
metrics (i.e. accuracy, precision, recall, and F1-score) and the
Area Under the ROC Curve (AUC) to assess overall ranking
performance [29].

For experiments involving feature selection, different
strategies were applied with the selection of strategy dependent
upon the classifier. The Recursive Feature Elimination (RFE)
[30] was employed for the Decision Tree and RIPPER
classifiers, where features were iteratively ranked and removed
based on importance scores derived from estimator, purposely

to retain the most informative subset. In contrast, the feature
selection process for the Rough Set classifier was performed
through the utilization of the reduct mechanism implemented
in the Rough Set Exploratory System 2 (RSES2). This
mechanism is designed to identify minimal attribute subsets
that preserve decision class discernibility in accordance with
the principles of rough set theory.

Subsequently, interpretability evaluation was performed
based on two complementary criteria: model complexity and
clinical qualitative validation. The complexity of the model was
quantified by the analysis of the total number of rules generated
by each classifier and the average number of features involved
per rule.

The objective of this present study was to undertake clinical
qualitative validation to assess the extent to which model-
generated decision rules align with established clinical
diagnostic reasoning for myocardial infarction. The validation
protocol was grounded in the Fourth Universal Definition of
Myocardial Infarction, as endorsed by the European Society of
Cardiology (ESC) [31], American College of Cardiology
(ACC), and American Heart Association (AHA) [32]. In
accordance with these guidelines, electrocardiographic
evidence of MI is characterized by pathological Q-waves, ST-
segment elevation at the J-point, or T-wave abnormalities.
These abnormalities must occur in a minimum of two
anatomically contiguous ECG leads corresponding to the same
myocardial territory (e.g., anterior or inferior regions).

Three independent cardiologists served as clinical
validators. For each classifier, five representative rules per
class (NORMAL, AMI, and IMI) were selected based on the
highest support values and compiled into structured validation
sheets for independent review.

A rule was considered clinically aligned if it satisfied the
following operational criteria: (1) involvement of ECG features
corresponding to recognized ischemic abnormalities (i.e.
pathological Q-wave, ST-segment deviation at the J-point, or
T-wave inversion/hyperacute T-wave), and (2) manifestation
of these abnormalities across two or more contiguous leads
consistent with guideline-based myocardial territory
definitions.

The aggregation of clinical judgments was achieved through
a consensus-based approach, whereby a rule was deemed
aligned if it received concurrence from at least two of the three
cardiologists. This aimed to minimize subjectivity and enhance
validation robustness.

3. Results and Discussion
3.1. Classification result

The classification was performed hierarchically,
encompassing binary NORMAL-MI classification followed by
AMI-IMI subclass classification.

3.1.1. NORMAL — MI classification

Table 2 depicts the summary of the -classification
performance for the NORMAL-MI task. The Rough Set
classifier demonstrated highest overall performance across
most metrics, including accuracy, Fl-score, and AUC, both
with and without feature selection. This is likely attributable to
its capacity o derive decision rules from multiple feature
combinations while managing data uncertainty.
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Based on a paired t-test, the performance of models with and
without feature selection was found only marginally different
and not statistically significant. This indicates that
discriminative information was relatively evenly distributed
across ECG features. Clinically, this suggests that global
ischemic patterns that distinguish normal and MI ECGs can be
reliably captured without reliance on a narrowly selected
feature subset.

Table 2. Class classification (Normal — MI) result

Evaluation Decision Tree RIPPER Rough Set
Metrics Feature Selection
X N x N X V
Accuracy  0.8064 0.8122 0.7851 0.7836  0.8363 0.8312
Precision ~ 0.7835 0.7995 0.8242 0.8154 0.8377 0.8348
Recall 0.8471 0.8342 0.7262 0.7382  0.8363  0.8312
Fl-Score  0.8138 0.8162 0.7712 0.7718 0.8366  0.8315
AUC 0.8707 0.8757 0.7949 0.7969  0.832  0.8335

x = without feature selection; v = with feature selection

3.1.2. AMI — IMI subclass classification

Table 3 presents the performance of the AMI-IMI subclass
classification. Consistent with the binary task, the Rough Set
classifier attained the maximum accuracy and Fl-score.
Contrasting to the NORMAL-MI task, feature selection
demonstrated a statistically significant effect on the Rough Set
model, while no significant impact was observed for the
Decision Tree and RIPPER classifiers.

This effect can be attributed to the Rough Set rule induction
mechanism. Without feature selection, LEM2 induces
compact, high-precision rules with limited coverage, leaving
some instances unclassified and inflating apparent accuracy.
The application of feature selection via Genetic Algorithm—
based reduction produces a larger rule set that enhances
coverage at the cost of slightly reduced accuracy. This behavior
reflects a core principle of Rough Set theory, in which uncertain
instances are assigned to the boundary region rather than
forcibly classified, thus favoring error avoidance over
exhaustive prediction—an important consideration in clinical
decision-making.

Table 3. Subclass Classification (AMI — IMI) Result

Evaluation Decision Tree RIPPER Rough Set
Metric Feature Selection

X N X N X N
Accuracy 0.8210 0.8222  0.8007 0.8000 0.8535  0.8259
Precision 0.8383 0.8395 0.8582 0.8539 0.8566 0.8269
Recall 0.7765 0.7781 0.7001 0.7024 0.8535  0.8259
F1-Score 0.8049 0.8062 0.7690 0.7690 0.8533  0.8261
AUC 0.8812 0.8821 0.8057 0.8087 0.854  0.8265

x = without feature selection; v = with feature selection
3.2. Interpretability evaluation

Interpretability was assessed using two complementary
dimensions: quantitative rule complexity and qualitative
clinical validation based on established myocardial infarction
diagnostic criteria.

3.2.1. Rule complexity

Fig. 1 illustrates the number of rules generated by each
classifier, while Fig. 2 presents the average number of features
per rule.

Number of Rules

30000
26066
25000
20000
14843
15000
10000
5000
1890
24504 86574 39293822 39248
All Features Selected All Features Selected
Features Features

Class (NORMAL-MI) Subclass (AMI-IMI)

® Decision Tree ® RIPPER Rough Set

Fig. 1. Number of rules extracted

The Rough Set classifier produced the most complex
models, with a higher number of rules and features per rule due
to its exhaustive rule-generation strategy, which captures fine-
grained ECG feature relationships but increases the
interpretative burden.

RIPPER demonstrated moderate complexity, which was
consistent with its incremental learning strategy. Feature
selection increased rule counts in the NORMAL-MI task to
compensate for reduced feature diversity, but simplified rules
in the AMI-IMI task. This indicated sufficient retained features
for infarction localization.

The Decision Tree generated the fewest rules owing to its
hierarchical structure and pruning. The implementation of
feature selection increased rule complexity in the NORMAL—
MI task but it had minimal impact in the AMI-IMI task,
suggesting preserved discriminative power for subclass
differentiation.

Average Number of Feature in Rule Sample

35

29.06

9.13

4.8

0 1

RIPPER

Decision Tree Rough Set

Fig. 2. Average Number of Feature in Rule Sample
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Overall, these results obtained highlight fundamental
structural differences among the classifiers and demonstrate the
manner of feature selection interacts with each model’s rule-
generation process.

3.2.2. Clinical qualitative validation

Clinical qualitative validation in this present study was
conducted to assess the alignment between machine-generated
rules and established ECG-based diagnostic criteria for
myocardial infarction (MI). In adherence to contemporary
clinical practice and international guidelines, the diagnosis of
MI requires the presence of ischemic ECG abnormalities such
as ST-segment elevation at the J-point, pathological Q waves,
or T-wave inversion, in at least two anatomically contiguous
leads. Accordingly, the validation process focused on clinically
relevant lead groupings, including inferior (I-aVL, I[I-1II-aVF)
and anterior (V1-V2, V3-V4, V5-V6) regions.

To ensure a focused yet clinically meaningful assessment,
five representative rules per class (NORMAL, AMI, and IMI)
were selected based upon the highest support values, reflecting
rules that were most frequently activated during classification.
These rules were then evaluated by cardiologists through a
consensus-based adjudication process, where a rule was
considered clinically aligned if its feature conditions reflected
recognized ECG abnormalities across contiguous lead groups
consistent with guideline-based MI diagnosis. The comparison
of clinical validation results is presented in Fig. 3.

Clinical Validation Result

100% 100% 100%
100%
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60%
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20%
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10% 0% 0% I
0%
AMI MI

NORM 1

80% 80% 80%

60%

40%
33.339

Total

m Decision Tree ®RIPPER  ® Rough Set

Fig. 3. Clinical validation result
3.2.2.1. Rough set model

The Rough Set model demonstrated the highest clinical
agreement, with 80% of evaluated rules considered to be
clinically aligned. Valid rules commonly captured pathological
Q-wave or abnormal T-wave patterns across contiguous
inferior or anterior leads, whereas mismatches occurred
primarily in a small number of IMI rules, characterized by the
absence of paired inferior-lead involvement.

This behavior is indicative of the underlying rule-generation
mechanisms. LEM2 produced fewer, high-precision rules with
limited coverage, while GA-based feature selection generated
a larger rule set that improved coverage and consistency.
Despite an increase in the volume of rule, interpretability was
maintained through explicit if-then rules, thereby enabling
clinicians to trace decision logic and capture multi-lead
dependencies that are central to the interpretation of MI.

3.2.2.2.  RIPPER model

The RIPPER classifier achieved moderate clinical validation
accuracy (60%), performing well for NORMAL cases but
exhibiting limitations in the discrimination of AMI and IML
Misaligned rules frequently relied on abnormalities in a single
inferior lead (e.g., pathological Q-waves in lead II) without
corroboration from contiguous leads, and some AMI rules
incorrectly emphasized inferior-lead patterns characteristic of
IML

This behavior is indicative of RIPPER’s incremental,
parsimonious rule induction strategy, which yields concise and
easily interpretable rules but does not enforce clinical
constraints on lead contiguity. Consequently, although RIPPER
rules were considered to be the easiest to understand, their
consistency with formal diagnostic criteria remained limited.
3.2.2.3.  Decision tree model

The Decision Tree classifier demonstrated the lowest
clinical validation accuracy of 33.33%. Despite its satisfactory
overall classification performance, its rules frequently failed to
capture clinically meaningful MI patterns. This occurred when
abnormalities were observed in a single lead with normal
findings in others without enforcing contiguous lead
involvement, particularly in cases of AMI and IMI.

This limitation reflects the hierarchical, locally optimized
split strategy of Decision Trees and the effects of pruning,
which simplify models but may remove subtle inter-lead
relationships that are critical for the interpretation of MI.
Consequently, despite reasonable statistical accuracy, clinical
alignment was limited.

Overall, these findings indicate that clinical interpretability
is dependent not only on rule simplicity but on the capacity to
encode multi-lead ECG patterns consistent with diagnostic
guidelines, a property more effectively captured by the Rough
Set classifier.

3.3. Comparative analysis

Several studies have explored the use of interpretable and
rule-based machine learning models for ECG-based
cardiovascular disease analysis, primarily focusing on
classification performance rather than clinical interpretability.
These studies are relevant to the present work in view of their
use of similar classification models or comparable ECG
datasets, allowing methodological comparison.

A number of comparative studies have evaluated traditional
machine learning classifiers, including Decision Tree, Naive
Bayes, Linear Discriminant Analysis (LDA), Support Vector
Machine (SVM), k-Nearest Neighbors (KNN), Random Forest,
and Convolutional Neural Networks, for ECG-based heart
disease classification tasks. These studies typically employed
publicly available ECG datasets with the purpose of evaluating
model performance using accuracy-based metrics. Within this
setting, Decision Tree classifiers were reported to achieve
moderate classification accuracy of approximately 62.86%
[33]. Despite the fact that Decision Trees provide explicit and
transparent decision structures, these studies did not include
clinical validation of the extracted rules, and interpretability
was implicitly assumed based on model form rather than
assessed in relation to myocardial infarction diagnostic
reasoning.
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Other studies have focused on arrhythmia classification
using the MIT-BIH Arrhythmia dataset, a benchmark dataset
widely utilized for the evaluation of ECG classification
algorithms. In these works, rule-based classifiers such as
Decision Tree C4.5, PART, and RIPPER were compared,
achieving reported accuracies of up to 92.48% [34]. While
these studies demonstrate the effectiveness of rule-based
models on standardized ECG data, interpretability assessment
remained limited to the presentation of induced rules. No
formal qualitative evaluation by clinical experts has been
conducted to determine whether the learned rules reflected
clinically meaningful ECG patterns or diagnostic logic.

Further investigations employing the UCI Arrhythmia
dataset integrated statistical feature selection techniques with
rule-based classifiers. In this context, of several competing
models, RIPPER was reported to achieve the highest
classification accuracy [35]. These studies highlight the impact
of feature selection on rule induction and -classification
performance. However, the interpretability evaluation
remained confined to rule visualization and quantitative
metrics, without examining whether the selected features and
resulting rules aligned with real-world clinical reasoning or
diagnostic standards.

Rough Set Theory has been applied more directly to
myocardial infarction classification using ECG-derived
features such as ST-segment elevation, pathological Q waves,
and T-wave abnormalities. The -classification accuracies
reported in these studies range up to 99.8% [36], demonstrating
the potential of Rough Set-based rule induction for capturing
diagnostically relevant ECG characteristics. Nevertheless, the
evaluation in these works primarily focused on rule strength,
coverage, and predictive accuracy. The generated rules were
not subjected to explicit qualitative validation against
contemporary ECG interpretation guidelines or assessed by
cardiologists. Similar evaluation strategies have been observed
in other Rough Set-based approaches for heart disease
diagnosis, where interpretability is inferred from quantitative
measures with minimal involvement of medical experts [37].

These studies, taken together, demonstrate that rule-based
and interpretable machine learning models can achieve
competitive performance in a range of ECG-based
classification tasks and datasets. However, across different
problem formulations—ranging from general heart disease
classification to arrhythmia detection and myocardial infarction
diagnosis—interpretability is consistently treated as an implicit
model property. The absence of formal qualitative clinical
validation limits the extent to which the reported rules can be
considered clinically interpretable or aligned with real-world
diagnostic reasoning.

In contrast, the present study addresses this limitation by
explicitly  incorporating cardiologist-driven  qualitative
validation of model-generated rules in the context of
myocardial infarction classification. Rather than inferring
interpretability from model structure or quantitative indicators
alone, this study evaluates whether the induced decision rules
reflect established ECG interpretation principles. By grounding
interpretability assessment in expert clinical judgment, this
present study proposes a more rigorous and clinically
meaningful framework for evaluating rule-based machine
learning models for ECG-based myocardial infarction
detection.

4. Conclusion

This present study evaluated the interpretability of three
intrinsically interpretable rule-based classifiers—Decision
Tree, RIPPER, and Rough Set—for ECG-based myocardial
infarction detection, with primary emphasis on clinical
alignment rather than predictive performance alone. Despite
comparable classification accuracy across models, qualitative
validation by cardiologists revealed substantial differences in
interpretability and clinical relevance. The Rough Set classifier
demonstrated the highest clinical alignment, with numerous
rules conforming to guideline-based ECG patterns, particularly
those involving anatomically contiguous lead involvement.
Despite generating a larger rule set, its explicit if—then structure
facilitated transparent clinical reasoning. RIPPER produced
fewer, more concise rules that were easier to read, though less
consistently aligned with diagnostic criteria, reflecting
differences in rule structure rather than interpretability per se.
In contrast, the Decision Tree exhibited minimal
responsiveness to lead-level diagnostic patterns, thereby
constraining its clinical applicability despite consistent
performance. These findings highlight the potential of rule-
based models—particularly Rough Set approaches—for
interpretable ECG-based MI  detection, while also
acknowledging limitations related to amplitude-based features,
the emphasis on Q-wave MI patterns, and the scalability of
extensive rule sets. Future research should incorporate
temporal ECG features, expand evaluation to broader MI
subtypes, and address rule redundancy. Overall, this present
study demonstrates that qualitative clinical validation is
essential for assessing the real-world applicability of
interpretable machine learning in cardiology beyond
conventional performance metrics.
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