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Abstract 

Cardiovascular diseases remain the leading cause of mortality on a global scale, with myocardial infarction (MI) representing a critical and life-

threatening condition. Electrocardiography (ECG) is a widely utilized method for the detection of myocardial infarction (MI), and artificial 

intelligence (AI) has demonstrated a promising performance in the automated ECG-based diagnosis. However, most existing studies emphasize 

predictive accuracy while failing to provide substantial evidence that model decision logic aligns with clinical reasoning, thereby limiting clinical 

adoption. This present study evaluates the interpretability of three rule-based machine learning classifiers—Decision Tree, RIPPER, and Rough 

Set—for MI detection from ECG signals, including a comparison between models with and without feature selection. Interpretability of the 

system is assessed through rule complexity analysis and a standardized qualitative clinical validation protocol involving three cardiologists, 

based on contemporary AHA/ESC ECG diagnostic guidelines. The findings indicate that the Rough Set classifier attains the optimal overall 

performance, with 80% of its generated rules demonstrating clinically aligned, thereby outperforming the other models regarding interpretability. 

The findings demonstrate the benefit of guideline-based clinical validation for advancing trustworthy ECG-based MI diagnostic systems. 
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1. Introduction 

Cardiovascular disease, as released by the World Heart 

Federation in 2023, remains one of the leading causes of 

mortality on a global scale [1]. In Indonesia, these diseases are 

the leading cause of annual deaths, with a total of 651,481 

fatalities each year. While, coronary heart disease is the second 

most prevalent cause of death after stroke [2]. Among its most 

critical manifestations is myocardial infarction (MI), which 

results from partial or complete occlusion of the coronary 

arteries due to atherosclerotic plaque formation, leading to 

myocardial ischemia and necrosis [3]. The early and accurate 

detection of MI is essential to prevent severe complications, 

including sudden cardiac death, and to enable timely clinical 

intervention [4]. 

Electrocardiography (ECG) is a non-invasive, cost-

effective, and widely available diagnostic modality routinely 

used for the detection of MI through the analysis of cardiac 

electrical activity [5]. In clinical practice, ECG interpretation 

relies on cardiologists’ expertise in identifying characteristic 

waveform abnormalities, such as pathological Q waves, ST-

segment deviations, and T-wave changes [6]. 

In recent years, advances in artificial intelligence (AI), 

particularly in the realm of machine learning and deep learning, 

have demonstrated substantial potential for automating the 

detection and classification of MI from ECG signals, Numerous 

studies have reported high predictive performance, indicating 

the promising capabilities of AI-based systems in this field. 

Deep learning-based approaches have achieved particularly 
notable results in automated disease detection tasks. For 

instance, convolutional neural network–based models have 

reported very high classification accuracy in several diagnostic 

applications [7], while hybrid architectures with the 

combination of Convolutional Neural Networks (CNN) and 

Recurrent Neural Networks (RNN) have also demonstrated 

robust predictive performance [8]. Conventional machine 

learning methods, including Support Vector Machines (SVM) 

and Multilayer Perceptron (MLP), have similarly been 

extensively applied, frequently achieving competitive accuracy 

[9]. Parallel to this, intelligent systems based on fuzzy logic 

have been developed for the diagnosis of cardiovascular 

disease, including coronary artery disease. These system 

encode expert knowledge to support decision-making under 

uncertainty [10]. Despite these promising results across 

different diagnostic settings, most existing studies 

predominantly emphasize predictive performance, while issues 

related to interpretability, transparency, and clinical 

trustworthiness remain relatively underexplored. 
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In healthcare applications, interpretability is a critical 

requirement for ensuring clinical trust, ethical accountability, 

and practical usability of AI-based decision-support systems 

[11,12]. It refers to the degree to which human users—

particularly clinicians—can understand and rationalize a 

model’s predictions in terms of established medical knowledge 

and diagnostic reasoning. High predictive accuracy alone is 

inadequate for clinical adoption as long as model decisions are 

not adequately explained, scrutinized, or justified within a 
medical context. 

Rule-based classifiers, characterized by explicit if–then 

decision structures, are widely regarded as intrinsically 

interpretable in view of their transparent reasoning mechanisms 

[13,14]. Consequently, such models are frequently considered 

suitable for clinical applications where explainability is 

essential. Interpretability evaluation methods are generally 

categorized into two distinct approaches: quantitative 

(machine-level) assessments, which include metrics such as 

rule count, rule length, or statistical support and qualitative 

(human-level) validation. While most of prior research on 

interpretable machine learning models has largely focused on 

quantitative indicators, qualitative validation involving domain 

experts, particularly cardiologists, remains limited [15 – 17]. In 

the context of medical practice, such qualitative validation is 

crucial to ensure that model-generated rules are not only 

syntactically interpretable but also clinically meaningful and 

aligned with established diagnostic standards. 

Based on this gap, this present study evaluates the 

interpretability of three rule-based classifiers—Decision Tree, 

RIPPER, and Rough Set—for ECG-based myocardial 

infarction detection. It emphasizes formal qualitative clinical 

validation by multiple cardiologists rather than solely rule 

structure or quantitative metrics. The present work is grounded 

in expert judgment and contemporary ECG guidelines, and 

offers a clinically oriented perspective on interpretability 

assessment. 

2. Materials and Methods 

This present study applied systematic workflow for ECG-

based myocardial infarction classification using the PTB-XL 

dataset. The workflow included signal preprocessing, feature 

extraction and discretization, performance evaluation, and 

clinical validation to evaluate rule interpretability and clinical 

relevance. 

2.1. Dataset 

This present study utilized the PTB-XL ECG dataset [17] 

from PhysioNet, which consists of 12-lead ECG recordings, 

each with a duration of 10 seconds, validated according to the 

SCP-ECG standard. The dataset comprises a total of 5,310 

records, including 1,388 Anterior Myocardial Infarction 

(AMI), 1,267 Inferior Myocardial Infarction (IMI), and 2,655 

normal recordings. 

2.2. Signal filtering 

To enhance the clarity and reliability of ECG signal, 

preprocessing was applied purposely to reduce noise from 

powerline interference, electrode artifacts, and baseline 

wander, all of which have the potential to obscure diagnostic 

information. In this study, an Adaptive Mean Filter was applied 

to effectively remove baseline wander [18]. Subsequently, 

Discrete Wavelet Transform (DWT) was implemented by 

means of the Daubechies6 (db6) mother wavelet at level 8 as 

the final filtering step [19]. 

2.3. Feature extraction 

In this study, ECG feature extraction targets MI-related 

abnormalities, including pathological Q waves, ST-segment 

elevation, T wave inversion, and elevated T wave. 

Accordingly, Q wave, T wave, and J-point amplitude were 

extracted as key features due to their direct correlation with ST-

segment changes and MI detection. 

The feature extraction process involves the segmentation of 

each ECG lead into individual P–QRS–T complexes through 

the detection of R peaks and definition of RR intervals. The 

analysis of heartbeat is conducted by delineating each heartbeat 

from the midpoint of one RR interval to the next. The 

identification of R peaks is facilitated by the Two-Average 

algorithm due to its reliable detection accuracy [20]. After 

segmentation, features extraction is achieved through the 

implementation of  a windowing technique [21], incorporating 

the following point detection adjustment algorithm: 

A. R-Peak Detection: The Two-Average algorithm is 

employed to detect the R-peak. Once identified, a window 

of 2% of the sampling frequency is applied to examine any 

higher amplitude within the window. This adjustment has 

been demonstrated to enhance the accuracy of R-peak 

detection, particularly in cases where the Two-Average 

algorithm detects only the QRS complex. 

B. Q-Peak Detection: The Q-peak is identified as the first 
negative deflection or zero crossing within the window 

preceding the R-peak. 

C. S-Peak Detection: The S-peak is determined as the first 

negative deflection or zero crossing following the R-peak. 

D. J-Point Detection: The J-point is detected as the 

subsequent deflection following the S-peak, marking the 

transition between the QRS complex and the ST segment. 

E. T-Peak Detection: The T-peak is identified as the absolute 

maximum amplitude (positive or negative) within the 
window extending from the J-point to the end of the 

segment. 

F. T-Onset Detection: Similar to Q-peak detection, the T-

onset is determined by locating the first negative deflection 

or zero crossing before the T-peak, referenced relative to 

the R-peak. 

This feature extraction approach enables accurate 

identification of MI-related ECG key points and provides 

relevant features as inputs for effective classification of 

myocardial infarction abnormalities. 

2.4. Data discretization 

Data discretization is implemented through the 

categorization of feature values into predefined ranges in 

accordance with clinical guidelines and medical relevance [22 

– 24]. In this study, each feature was discretized according to 

the threshold values as specified in Table 1. 
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Table 1. Discretization category 

Feature Lead Threshold Condition Category 

Q Peak 
Amplitude 

All 
≤ -0,2 mV Pathologic 

Else Normal 

S Peak 
Amplitude 

V1 – V6 > 0,2 mV 

High I, II, III, aVL, 
aVR, aVF 

> 0,1 mV 

V1 – V6 < -0,2 mV 

Low I, II, III, aVL, 
aVR, aVF 

< -0,1 mV 

V1 – V6 -0,2 < S peak < 0,2 mV 

Normal I, II, III, aVL, 
aVR, aVF 

-0,1< S peak < 0,1 mV 

T Onset 
Amplitude 

All > 0,2 mV High 

All < -0,2 mV Low 

All -0,2 < S < 0,2 mV Normal 

T Peak 
Amplitude 

Except aVR, V1 ≤ -0,1 mV Inverted 

All -0,05 < T < 0,05 Undetected 

All 0,1 ≤ T ≤ 1,0 mV Normal 

All -1,0 > T > 1,0 mV Hyperacute 

2.5. Classification 

This present study compared three intrinsically interpretable 

classifiers: Decision Tree, RIPPER, and Rough Set. The 

Decision Tree classifier constructs rules based on a hierarchical 

branching structure, generated through recursive partitioning of 

data attributes [25]. Each path from the root to a leaf node 

represents a distinct rule, encapsulating specific patterns within 

the data [26]. RIPPER (Repeated Incremental Pruning to 

Produce Error Reduction) is a rule-based algorithm that 

iteratively refines its rules to enhance classification accuracy. 

Initially, rules are generated from the training data, followed by 

a pruning process to mitigate overfitting [27]. Rough Set 

Theory (RST), introduced by Pawlak in 1982, provides a 

mathematical framework for managing uncertainty and 

incomplete information by defining upper and lower 

approximations of data classes [28]. These approximations 

serve as the basis for rule generation within the classifier. 

The Decision Tree and RIPPER classifiers were 

implemented in Python using Visual Studio Code, while the 

Rough Set classifier was executed in RSES2. The evaluation of 

all models was conducted with and without feature selection, 

employing stratified 10-fold cross-validation to ensure 

balanced class representation. 

2.6. Evaluation 

The model evaluation process involved a comparison of 

classification performance with and without feature selection. 

This was conducted by means of confusion matrix–based 

metrics (i.e. accuracy, precision, recall, and F1-score) and the 

Area Under the ROC Curve (AUC) to assess overall ranking 

performance [29].   

For experiments involving feature selection, different 

strategies were applied with the selection of strategy dependent 

upon the classifier. The Recursive Feature Elimination (RFE) 

[30] was employed for the Decision Tree and RIPPER 

classifiers, where features were iteratively ranked and removed 

based on importance scores derived from estimator, purposely 

to retain the most informative subset. In contrast, the feature 
selection process for the Rough Set classifier was performed 

through the utilization of the reduct mechanism implemented 

in the Rough Set Exploratory System 2 (RSES2). This 

mechanism is designed to identify minimal attribute subsets 

that preserve decision class discernibility in accordance with 

the principles of rough set theory. 

Subsequently, interpretability evaluation was performed 

based on two complementary criteria: model complexity and 

clinical qualitative validation. The complexity of the model was 

quantified by the analysis of the total number of rules generated 

by each classifier and the average number of features involved 

per rule. 

The objective of this present study was to undertake clinical 

qualitative validation to assess the extent to which model-

generated decision rules align with established clinical 

diagnostic reasoning for myocardial infarction. The validation 

protocol was grounded in the Fourth Universal Definition of 

Myocardial Infarction, as endorsed by the European Society of 

Cardiology (ESC) [31], American College of Cardiology 

(ACC), and American Heart Association (AHA) [32]. In 

accordance with these guidelines, electrocardiographic 

evidence of MI is characterized by pathological Q-waves, ST-

segment elevation at the J-point, or T-wave abnormalities. 

These abnormalities must occur in a minimum of two 

anatomically contiguous ECG leads corresponding to the same 

myocardial territory (e.g., anterior or inferior regions). 

Three independent cardiologists served as clinical 

validators. For each classifier, five representative rules per 

class (NORMAL, AMI, and IMI) were selected based on the 

highest support values and compiled into structured validation 

sheets for independent review. 

A rule was considered clinically aligned if it satisfied the 

following operational criteria: (1) involvement of ECG features 

corresponding to recognized ischemic abnormalities (i.e. 

pathological Q-wave, ST-segment deviation at the J-point, or 

T-wave inversion/hyperacute T-wave), and (2) manifestation 

of these abnormalities across two or more contiguous leads 

consistent with guideline-based myocardial territory 

definitions. 

The aggregation of clinical judgments was achieved through 

a consensus-based approach, whereby a rule was deemed 

aligned if it received concurrence from at least two of the three 

cardiologists. This aimed to minimize subjectivity and enhance 

validation robustness. 

3. Results and Discussion 

3.1. Classification result 

The classification was performed hierarchically, 

encompassing binary NORMAL–MI classification followed by 

AMI–IMI subclass classification. 

3.1.1. NORMAL – MI classification 

Table 2 depicts the summary of the classification 

performance for the NORMAL–MI task. The Rough Set 

classifier demonstrated highest overall performance across 

most metrics, including accuracy, F1-score, and AUC, both 

with and without feature selection. This is likely attributable to 

its capacity o derive decision rules from multiple feature 

combinations while managing data uncertainty. 
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Based on a paired t-test, the performance of models with and 

without feature selection was found only marginally different 

and not statistically significant. This indicates that 

discriminative information was relatively evenly distributed 

across ECG features. Clinically, this suggests that global 

ischemic patterns that distinguish normal and MI ECGs can be 

reliably captured without reliance on a narrowly selected 

feature subset. 

Table 2. Class classification (Normal – MI) result 

Evaluation 
Metrics 

Decision Tree RIPPER Rough Set 

Feature Selection 

 ⅹ √ ⅹ √ ⅹ √ 

Accuracy 0.8064 0.8122 0.7851 0.7836 0.8363 0.8312 

Precision 0.7835 0.7995 0.8242 0.8154 0.8377 0.8348 

Recall 0.8471 0.8342 0.7262 0.7382 0.8363 0.8312 

F1-Score 0.8138 0.8162 0.7712 0.7718 0.8366 0.8315 

AUC 0.8707 0.8757 0.7949 0.7969 0.832 0.8335 

ⅹ = without feature selection; √ = with feature selection 

3.1.2. AMI – IMI subclass classification 

Table 3 presents the performance of the AMI–IMI subclass 

classification. Consistent with the binary task, the Rough Set 

classifier attained the maximum accuracy and F1-score. 

Contrasting to the NORMAL–MI task, feature selection 

demonstrated a statistically significant effect on the Rough Set 

model, while no significant impact was observed for the 

Decision Tree and RIPPER classifiers. 

This effect can be attributed to the Rough Set rule induction 

mechanism. Without feature selection, LEM2 induces 
compact, high-precision rules with limited coverage, leaving 

some instances unclassified and inflating apparent accuracy. 

The application of feature selection via Genetic Algorithm–

based reduction produces a larger rule set that enhances 

coverage at the cost of slightly reduced accuracy. This behavior 

reflects a core principle of Rough Set theory, in which uncertain 

instances are assigned to the boundary region rather than 

forcibly classified, thus favoring error avoidance over 

exhaustive prediction—an important consideration in clinical 

decision-making. 

Table 3. Subclass Classification (AMI – IMI) Result 

Evaluation 

Metric 

Decision Tree RIPPER Rough Set 

Feature Selection 

 ⅹ √ ⅹ √ ⅹ √ 

Accuracy 0.8210 0.8222 0.8007 0.8000 0.8535 0.8259 

Precision 0.8383 0.8395 0.8582 0.8539 0.8566 0.8269 

Recall 0.7765 0.7781 0.7001 0.7024 0.8535 0.8259 

F1-Score 0.8049 0.8062 0.7690 0.7690 0.8533 0.8261 

AUC 0.8812 0.8821 0.8057 0.8087 0.854 0.8265 

ⅹ = without feature selection; √ = with feature selection 

3.2. Interpretability evaluation 

Interpretability was assessed using two complementary 

dimensions: quantitative rule complexity and qualitative 
clinical validation based on established myocardial infarction 

diagnostic criteria. 

3.2.1. Rule complexity 

Fig. 1 illustrates the number of rules generated by each 

classifier, while Fig. 2 presents the average number of features 

per rule. 

 
Fig. 1. Number of rules extracted 

 

The Rough Set classifier produced the most complex 

models, with a higher number of rules and features per rule due 

to its exhaustive rule-generation strategy, which captures fine-

grained ECG feature relationships but increases the 

interpretative burden. 
RIPPER demonstrated moderate complexity, which was 

consistent with its incremental learning strategy. Feature 

selection increased rule counts in the NORMAL–MI task to 

compensate for reduced feature diversity, but simplified rules 

in the AMI–IMI task. This indicated sufficient retained features 

for infarction localization. 

The Decision Tree generated the fewest rules owing to its 

hierarchical structure and pruning. The implementation of 

feature selection increased rule complexity in the NORMAL–

MI task but it had minimal impact in the AMI–IMI task, 

suggesting preserved discriminative power for subclass 

differentiation. 

 

Fig. 2. Average Number of Feature in Rule Sample 

24 86 39 39504 574 293 248
1890

14843

822

26066

0

5000

10000

15000

20000

25000

30000

All Features Selected

Features

All Features Selected

Features

Class (NORMAL-MI) Subclass (AMI-IMI)

Number of Rules

Decision Tree RIPPER Rough Set

9.13

4.8

29.06

0

5

10

15

20

25

30

35

Decision Tree RIPPER Rough Set

Average Number of Feature in Rule Sample



464 Fityah et al. / Communications in Science and Technology 10(2) (2024) 460–466   

 

Overall, these results obtained highlight fundamental 
structural differences among the classifiers and demonstrate the 

manner of feature selection interacts with each model’s rule-

generation process. 

3.2.2. Clinical qualitative validation 

Clinical qualitative validation in this present study was 

conducted to assess the alignment between machine-generated 

rules and established ECG-based diagnostic criteria for 

myocardial infarction (MI). In adherence to contemporary 

clinical practice and international guidelines, the diagnosis of 

MI requires the presence of ischemic ECG abnormalities such 

as ST-segment elevation at the J-point, pathological Q waves, 

or T-wave inversion, in at least two anatomically contiguous 

leads. Accordingly, the validation process focused on clinically 

relevant lead groupings, including inferior (I–aVL, II–III–aVF) 

and anterior (V1–V2, V3–V4, V5–V6) regions. 

To ensure a focused yet clinically meaningful assessment, 

five representative rules per class (NORMAL, AMI, and IMI) 

were selected based upon the highest support values, reflecting 

rules that were most frequently activated during classification. 

These rules were then evaluated by cardiologists through a 

consensus-based adjudication process, where a rule was 

considered clinically aligned if its feature conditions reflected 

recognized ECG abnormalities across contiguous lead groups 

consistent with guideline-based MI diagnosis. The comparison 

of clinical validation results is presented in Fig. 3. 

 
Fig. 3. Clinical validation result 

3.2.2.1. Rough set model 

The Rough Set model demonstrated the highest clinical 

agreement, with 80% of evaluated rules considered to be 

clinically aligned. Valid rules commonly captured pathological 

Q-wave or abnormal T-wave patterns across contiguous 

inferior or anterior leads, whereas mismatches occurred 

primarily in a small number of IMI rules, characterized by the 

absence of paired inferior-lead involvement. 

This behavior is indicative of the underlying rule-generation 

mechanisms. LEM2 produced fewer, high-precision rules with 

limited coverage, while GA-based feature selection generated 

a larger rule set that improved coverage and consistency. 

Despite an increase in the volume of rule, interpretability was 

maintained through explicit if–then rules, thereby enabling 

clinicians to trace decision logic and capture multi-lead 

dependencies that are central to the interpretation of MI. 

3.2.2.2.     RIPPER model 

The RIPPER classifier achieved moderate clinical validation 

accuracy (60%), performing well for NORMAL cases but 

exhibiting limitations in the discrimination of AMI and IMI. 

Misaligned rules frequently relied on abnormalities in a single 

inferior lead (e.g., pathological Q-waves in lead II) without 

corroboration from contiguous leads, and some AMI rules 

incorrectly emphasized inferior-lead patterns characteristic of 

IMI.  

This behavior is indicative of RIPPER’s incremental, 

parsimonious rule induction strategy, which yields concise and 

easily interpretable rules but does not enforce clinical 

constraints on lead contiguity. Consequently, although RIPPER 

rules were considered to be the easiest to understand, their 

consistency with formal diagnostic criteria remained limited. 

3.2.2.3.     Decision tree model 

The Decision Tree classifier demonstrated the lowest 

clinical validation accuracy of 33.33%. Despite its satisfactory 

overall classification performance, its rules frequently failed to 

capture clinically meaningful MI patterns. This occurred when 

abnormalities were observed in a single lead with normal 

findings in others without enforcing contiguous lead 

involvement, particularly in cases of AMI and IMI. 

This limitation reflects the hierarchical, locally optimized 

split strategy of Decision Trees and the effects of pruning, 

which simplify models but may remove subtle inter-lead 

relationships that are critical for the interpretation of MI. 

Consequently, despite reasonable statistical accuracy, clinical 

alignment was limited. 

Overall, these findings indicate that clinical interpretability 

is dependent not only on rule simplicity but on the capacity to 

encode multi-lead ECG patterns consistent with diagnostic 

guidelines, a property more effectively captured by the Rough 

Set classifier. 

3.3. Comparative analysis 

Several studies have explored the use of interpretable and 

rule-based machine learning models for ECG-based 
cardiovascular disease analysis, primarily focusing on 

classification performance rather than clinical interpretability. 

These studies are relevant to the present work in view of their 

use of similar classification models or comparable ECG 

datasets, allowing methodological comparison. 

A number of comparative studies have evaluated traditional 

machine learning classifiers, including Decision Tree, Naïve 

Bayes, Linear Discriminant Analysis (LDA), Support Vector 

Machine (SVM), k-Nearest Neighbors (KNN), Random Forest, 

and Convolutional Neural Networks, for ECG-based heart 

disease classification tasks. These studies typically employed 

publicly available ECG datasets with the purpose of evaluating 

model performance using accuracy-based metrics. Within this 

setting, Decision Tree classifiers were reported to achieve 

moderate classification accuracy of approximately 62.86% 

[33]. Despite the fact that Decision Trees provide explicit and 

transparent decision structures, these studies did not include 

clinical validation of the extracted rules, and interpretability 

was implicitly assumed based on model form rather than 

assessed in relation to myocardial infarction diagnostic 

reasoning. 
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Other studies have focused on arrhythmia classification 

using the MIT-BIH Arrhythmia dataset, a benchmark dataset 

widely utilized for the evaluation of ECG classification 

algorithms. In these works, rule-based classifiers such as 

Decision Tree C4.5, PART, and RIPPER were compared, 

achieving reported accuracies of up to 92.48% [34]. While 

these studies demonstrate the effectiveness of rule-based 

models on standardized ECG data, interpretability assessment 

remained limited to the presentation of induced rules. No 
formal qualitative evaluation by clinical experts has been 

conducted to determine whether the learned rules reflected 

clinically meaningful ECG patterns or diagnostic logic. 

Further investigations employing the UCI Arrhythmia 

dataset integrated statistical feature selection techniques with 

rule-based classifiers. In this context, of several competing 

models, RIPPER was reported to achieve the highest 

classification accuracy [35]. These studies highlight the impact 

of feature selection on rule induction and classification 

performance. However, the interpretability evaluation 

remained confined to rule visualization and quantitative 

metrics, without examining whether the selected features and 

resulting rules aligned with real-world clinical reasoning or 

diagnostic standards. 

Rough Set Theory has been applied more directly to 

myocardial infarction classification using ECG-derived 

features such as ST-segment elevation, pathological Q waves, 

and T-wave abnormalities. The classification accuracies 

reported in these studies range up to 99.8% [36], demonstrating 

the potential of Rough Set–based rule induction for capturing 

diagnostically relevant ECG characteristics. Nevertheless, the 

evaluation in these works primarily focused on rule strength, 

coverage, and predictive accuracy. The generated rules were 

not subjected to explicit qualitative validation against 

contemporary ECG interpretation guidelines or assessed by 

cardiologists. Similar evaluation strategies have been observed 

in other Rough Set–based approaches for heart disease 

diagnosis, where interpretability is inferred from quantitative 

measures with minimal involvement of medical experts [37]. 

These studies, taken together, demonstrate that rule-based 

and interpretable machine learning models can achieve 

competitive performance in a range of ECG-based 

classification tasks and datasets. However, across different 

problem formulations—ranging from general heart disease 

classification to arrhythmia detection and myocardial infarction 

diagnosis—interpretability is consistently treated as an implicit 

model property. The absence of formal qualitative clinical 

validation limits the extent to which the reported rules can be 

considered clinically interpretable or aligned with real-world 

diagnostic reasoning. 

In contrast, the present study addresses this limitation by 

explicitly incorporating cardiologist-driven qualitative 

validation of model-generated rules in the context of 

myocardial infarction classification. Rather than inferring 

interpretability from model structure or quantitative indicators 

alone, this study evaluates whether the induced decision rules 

reflect established ECG interpretation principles. By grounding 

interpretability assessment in expert clinical judgment, this 

present study proposes a more rigorous and clinically 

meaningful framework for evaluating rule-based machine 

learning models for ECG-based myocardial infarction 

detection. 

4. Conclusion 

This present study evaluated the interpretability of three 

intrinsically interpretable rule-based classifiers—Decision 

Tree, RIPPER, and Rough Set—for ECG-based myocardial 

infarction detection, with primary emphasis on clinical 

alignment rather than predictive performance alone. Despite 

comparable classification accuracy across models, qualitative 

validation by cardiologists revealed substantial differences in 

interpretability and clinical relevance. The Rough Set classifier 

demonstrated the highest clinical alignment, with numerous 

rules conforming to guideline-based ECG patterns, particularly 

those involving anatomically contiguous lead involvement. 

Despite generating a larger rule set, its explicit if–then structure 

facilitated transparent clinical reasoning. RIPPER produced 

fewer, more concise rules that were easier to read, though less 

consistently aligned with diagnostic criteria, reflecting 

differences in rule structure rather than interpretability per se. 

In contrast, the Decision Tree exhibited minimal 

responsiveness to lead-level diagnostic patterns, thereby 

constraining its clinical applicability despite consistent 

performance. These findings highlight the potential of rule-

based models—particularly Rough Set approaches—for 

interpretable ECG-based MI detection, while also 

acknowledging limitations related to amplitude-based features, 

the emphasis on Q-wave MI patterns, and the scalability of 

extensive rule sets. Future research should incorporate 

temporal ECG features, expand evaluation to broader MI 
subtypes, and address rule redundancy. Overall, this present 

study demonstrates that qualitative clinical validation is 

essential for assessing the real-world applicability of 

interpretable machine learning in cardiology beyond 

conventional performance metrics. 
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