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Abstract

Cumulonimbus (CB) clouds are vertically developed convective systems that are capable of producing severe weather phenomena, including
turbulence, heavy rainfall, and lightning. These phenomena pose a significant threat to aviation safety. This paper considers an automated CB
cloud detection approach using the deep learning algorithm You Only Look Once version 8 on NOAA-19 satellite imagery. The images of 640
x 640 pixels each were labeled into two classes: CB and non-CB. In general, rotation, flip, and random brightening are performed to develop a
more robust model. After 100 training epochs, the proposed model produced reliable detection performance, as evidenced by 1,694 TP (true
positives), 438 FP (false positives), and 304 FN (false negatives) cases, with a precision of 0.79, recall of 0.84, and an F1-score of 0.81. Validation
using METAR reports from the Indonesian Meteorological, Climatological, and Geophysical Agency (BMKG) confirmed the consistency of the
model with observed weather conditions. The results demonstrated that YOLOv8 could provide a rapid and reliable framework for real-time
detection and classification of CB clouds, thereby enhancing situational awareness for aviation operations and facilitating the effectiveness of

satellite-based early warning systems in convectively active tropical regions.
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1. Introduction

The Cumulonimbus (CB) clouds are towering convective
clouds formed by rapidly rising moist air into the upper
atmosphere. They are frequently associated with severe
weather such as thunderstorms, heavy rainfall, lightning, and
strong turbulence that pose a significant threat to aviation
safety, particularly in tropical regions. Conventional CB
monitoring using radar and visual observations remains
spatially limited and delayed; leading to a need for automated,
real-time detection using satellite imagery [1,2]. Previous
studies have utilized infrared thresholding to identify
overshooting tops as key indicators of CB activity [3].
Furthermore, the integration of geostationary satellite data with
radar has been employed to detect both CB and TCU clouds
[4,5]. The advancements in image processing and machine
learning have rendered deep learning—based models such as
YOLO effective instruments for cloud detection and
classification [6]. YOLOvS, the latest version, features a
lightweight architecture with a backbone, neck, and head for
multi-scale feature extraction, thus facilitating rapid and
accurate detection of small objects in complex remote sensing
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imagery [7,8,9,10]. Supported by Ultralytics’ open-source
framework, YOLOVS is applicable to a wide range of real-
world scenarios [11,12,13]

In this study, YOLOvS8 was implemented to automatically
detect CB clouds using NOAA-19 satellite imagery. The
images were manually annotated into CB and non-CB classes
using LabelMe [14,15,16] and trained with data augmentation
techniques. The performance of the model was evaluated using
precision, recall, and F1-score metrics, while the validation of
the model was performed using METAR weather reports from
BMKG. The objective of this approach is to facilitate the
development of rapid, accurate, and reliable satellite-based
early warning systems to enhance aviation safety in regions that
are prone to convective weather events [17,18,19,20].

The detection and classification of convective clouds, with
a particular focus on Cumulonimbus (CB), have long been
central to meteorological research, given their significant
impact on aviation safety. Early studies by Baum et al. [21] and
Bankert [22] introduced automated cloud classification using
multispectral satellite imagery. This work utilized fuzzy logic
and probabilistic neural networks applied to AVHRR data.
Berendes et al. [23] advanced this work with an adaptive
clustering method for classifying convective clouds, while
Donovan et al. [24] emphasized the identification of hazardous
convective cells over oceans using visible and infrared data to
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support early warning systems. Further progress in this field
was achieved by Carbajal Henken et al. [25], who integrated
cloud properties from MSG-SEVIRI with radar observations to
enhance detection accuracy, and by Mecikalski and Bedka [26],
who developed nowcasting techniques to forecast convective
initiation using GOES imagery. Rosenfeld et al. [27] further
contributed to this field by developing a microphysical
approach by retrieving vertical profiles of particle size and
thermodynamic phase to identify severe storms. Zinner et al.
[28] developed Cb-TRAM, a real-time system for tracking
convective storm life cycles from initiation to maturity. This
system is conceptually similar to modern computer vision
models such as YOLOv8. Schmetz et al. [29] and Levizzani
and Setvak [30] highlighted the value of Meteosat and high-
resolution multispectral data in identifying overshooting tops
and fine storm-top structures. Building on these foundations,
this present study employed the deep learning—based YOLOv8
model to develop an automatic, real-time, and precise CB
detection system adaptive to extreme weather dynamics,
thereby enhancing both satellite-based early warning
capabilities and aviation safety. Alvira et al. [31] conducted a
review of the various pretreatment technologies for
lignocellulosic biomass to enhance enzymatic hydrolysis in
bioethanol production. The study evaluated how different
pretreatment methods modify cellulose, hemicellulose, and
lignin structures, and analyzed their impacts on sugar recovery,
inhibitor formation, energy consumption, and process cost. The
review emphasized that pretreatment is a critical and cost-
intensive step that significantly determines the overall
efficiency of lignocellulosic bioethanol conversion. In their
study, Kun-Cahyono et al. [32] applied multiple machine
learning and deep learning models to predict daily rainfall.
These models were trained on open-access remote sensing data
processed through Google Earth Engine. The results of the
study demonstrated that Support Vector Regression provided
the most reliable performance, thus highlighting the feasibility
of using satellite-derived atmospheric variables for operational
rainfall forecasting.

Despite the considerable adoption of YOLO-based object
detection within recent literature, the significance of this paper
relates to the examination and validation of YOLOv8 within
the context of convective storm cloud detection, as acquired by
the use of polar-orbiting satellite imagery supplied by the
NOAA-19 satellite within tropical geography. In opposition to
the vast majority of recent YOLOVS literature, which focuses
on generic object detection tasks or ground-level images, this
paper focuses on the distinct spatial, spectral, and
morphological attributes of Cumulonimbus clouds.
Additionally, the utilization of METAR data supplied by
BMKG in this study relates to examination within a
meteorological capacity, rather than solely relying on computer
vision evaluation.

2. Materials and Methods
2.1. Dataset and Preprocessing

This study utilized satellite imagery acquired from the
NOAA polar-orbiting satellite to detect Cumulonimbus (CB)

clouds. The dataset consisted of RGB composite images
covering tropical regions with frequent convective activity. The
satellite data were obtained through the NOAA Automatic
Picture Transmission (APT) system using a self-developed
ground receiving station, allowing direct acquisition of raw
satellite imagery without reliance on third-party data providers.
Rafsyam et al. [33] demonstrated that a double cross dipole
antenna operating at 137—-138 MHz can receive NOAA satellite
signals and converting voice data into cloud images. Fig. 1
illustrates the original satellite image acquired from the
receiving system.

(@) (b)

Fig. 1. Example of the original satellite image (a) noaa-19-202202030016-
contrastb.jpg (b) noaa-19-202303311318-contrast.jpg

As demonstrated in Fig. 1, the original NOAA-19 satellite
images used in this study were obtained under different
observation conditions. All images were resized to 640 x 640
pixels to ensure compatibility with the YOLOVS input
requirements. Standard preprocessing steps, including pixel
normalization and image scaling, were applied to enhance
training stability. The dataset was manually annotated using the
Labeling tool and categorized into three classes:
Cumulonimbus (CB), non-convective clouds, and background,
following established meteorological cloud classification
principles.

Fig. 2(a) presents the confusion matrix of the YOLOVS
detection results for three categories: Cumulonimbus (CB),
non-CB, and background. The diagonal elements indicate the
correct samples, while the off-diagonal entries indicate
misclassified instances among the various classes. The system
demonstrated an accuracy of 1,694 CB samples, which thus
indicated its capacity to recognize mature convective structures
of CBs. However, misclassifications of 299 CB samples as
background, as well as 2 as non-CB, demonstrated the
possibility of inadequate distinctive visual cues in weak or
immature convective systems to always be distinguished.
Additionally, within the non-CB class, 2,550 samples were
correctly classified, but 436 background samples were
misclassified as CB. This may result in the conveyance of
visual textures or brightness information similar to CBs in
specific background areas.
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Fig. 2. (a) Confusion matrix of YOLOVS classification results for CB, nonCB, and background classes, (b) Normalized confusion matrix for YOLOVS
classification of CB, nonCB, and background

Fig. 2(b) illustrates the normalized confusion matrix. The
columns and rows correspond to the reference classification
and the classification, respectively. The value of 0.58 for CB-
CB indicates that approximately 58% of the CB pixels have
been accurately classified, while the value of 0.44 for CB-
background indicates that a significant amount of background
pixels has been confused with CB. The occurrence of this
confusion is predominantly related to the cloud boundaries,
cloud edges, and the stratified regions of clouds that resemble
the convective cloud top features observed in the optical
satellite images. The normalized confusion matrix illustrates
that misclassifications occur more frequently between cloud-
related classes than between cloud pixels or clear pixels. The
confusion matrix analysis indicates that a trade-off is present
between the sensitivity to the convective features and the false
alarms in the ambiguous regions as identified by other studies
related to cloud classification from satellite images.

2.2. YOLOvS model architecture

In this work, the proposed detection framework is
constructed on the YOLOVS architecture, specifically designed
to perform real-time object detection with robust multi-scale
feature representation. Fig. 3 depicts the overall architecture
employed in this work and is divided into three parts: a
backbone, a neck, and an anchor-free detection head. The
backbone of the model uses CSPDarknet53 in extracting
hierarchical spatial and semantic features from NOAA satellite
imagery. while it uses Conv2D layers, Batch Normalization,
SiLU activation functions, and C2f residual blocks to improve
feature reuse without compromising computational efficiency.
This structure has proven to be of particular important for
satellite-based cloud detection, given that cloud boundaries are
frequently diffuse, and radiative contrasts tend to be quite
subtle.

A feature map is obtained at three different spatial
resolutions, 80%80, 40x40, and 20%20, to capture the small-,
medium-, and large-scale cloud structure. These multi-

resolution representations facilitate the model to capture the
extensive range of spatial variability exhibited by that
Cumulonimbus clouds, ranging from compact convective cells
at early development stages to large, mature systems with
extensive anvils. This neck module amalgamates these features
via upsampling and concatenation operations inspired by
Feature Pyramid Networks and Path Aggregation Networks,
respectively. These operations jointly leverage both fine-
grained local information and high-level contextual features.
The adoption of enhanced C2f and CBS modules serves to
reinforce cross-scale feature fusion, which is of great
importance to discriminate CB clouds from surrounding non-
convective cloud fields and backgrounds.

This study, as illustrated in Fig. 3 employs the YOLOvVS
architecture, that encompass the backbone, neck, and head
components. These components are applied for the detection of
CB clouds at multi-scale. Multi-resolution feature extraction
has been identified as a key component in the analysis of spatial
variability related to the structure of convective clouds. This
approach has been identified as a primary requirements for
cloud detection in previous works using deep learning models
[7,10]. The anchor-free prediction mechanism is considered in
the detecting head, which contains three parallel branches
corresponding to different object scales. Each branch predicts
the coordinates of bounding boxes, confidence scores, and class
labels for CB and non-CB clouds, being flexible to handle
irregular shapes with variable aspect ratios that characterize the
formations of convective clouds. Non-Maximum Suppression
(NMS) is finally applied to remove redundant detections
arising from overlapping predictions, ensuring that each CB
cloud system is represented by a single, most confident
bounding box. The architecture, as illustrated in Fig.3,
facilitates the effective detection of Cumulonimbus clouds at
multiple scales from polar-orbiting satellite imagery, thereby
forming the basis for the subsequent experimental observation
and results.
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Fig. 3. YOLOWS architecture used in this study to detect CB clouds from NOAA satellite imagery

To ensure that the performance of the proposed YOLOVS-
based detection framework is not biased by a specific data
partition, a cross-validation-based dataset validation strategy
was applied prior to model training. The annotated NOAA
satellite image dataset was divided into K mutually exclusive
subsets (folds) of approximately equal size, while maintaining
representative spatial and temporal variability of cloud
patterns. In each iteration, one-fold was designated as the
validation set, with the remaining K—1 folds being allocated for
training. The overall performance of the model was computed
by averaging the evaluation metrics across all folds, which is
expressed as:

CVscore = (i) i=1 M; ()

where K denotes the number of folds and M; represents the
evaluation metric obtained from the iii-th fold, including
precision, recall, mAP@0.5, and mAP@0.5:0.5:0.95.

This validation strategy ensures that the multi-scale
detection capability of the YOLOVS architecture, as illustrated
in Fig. 4, is evaluated under diverse atmospheric conditions and
cloud morphologies. Fig. 4 presents a schematic overview of
the cross-validation procedure employed in this study.

The detection visualization, as illustrated in Fig. 4, is an
indication of the result of the proposed YOLOvS model’s
approach to the NOAA satellite images of the region employed
in the K-Fold cross-validation process. Each sub-figure of the
image denotes the capacity of the proposed YOLOvV8 model to
perform multi-scale detections of cloud features, which fits
well with the aim of testing the proposed approach to different
atmospheric conditions. The [Pink/Red] bounding-box
rectangles around the images illustrate the positioning of
detected cloud features (e.g., spiral bands and convective
centers), along with the detected class and the confidence level
of each proposed YOLOVS approach. The dense distribution of
bounding-box rectangles around images indicates that the
proposed approach to YOLOVS architecture performs well in
handling different detections of images at various scales.
Nevertheless, it also signifies that the approach might have
double-detections and the complexity of demarcating
boundaries between the detected cloud features in images.

Fig. 4. Visualization of YOLOV8 detection results on NOAA satellite imagery
using K-Fold Cross-Validation

2.3. Training strategy and hyperparameters

Model training is conducted using a supervised learning
approach with a five-fold cross-validation strategy with the aim
of enhancing generalization and reducing overfitting. Each fold
maintains a balanced ratio of CB and non-CB samples. To
enhance robustness against cloud variability, data
augmentation techniques including horizontal flipping, color
jittering, and random cropping, are applied. The model has
been trained using standard YOLOv8 hyperparameters
provided by the Ultralytics framework.

Fig. 5(a) illustrates the F1-Confidence Curve, in terms of the
correlation of model confidence and F1-score. From the data
given, the optimal F1-score of 0.88 is attained at the confidence
threshold of 0.355. NonCB maintains a constantly high F1-
score, while CB exhibits more fluctuations, thereby facilitating
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the determination of the threshold balancing the detection
accuracy and misclassification. Fig. 5(b) presents the number
distribution of the detected instances and spatial pattern of
bounding boxes. It is observed that NonCB instances exhibit a
slight numerical advantage over CB. From the x-y scatter plot,
it is relatively even in space. Most of the bounding boxes are
small, which is indicative of the typical cloud size and informs
further anchor box scales and preprocessing. Fig. 5(c) presents
pairwise relationships of bounding box parameters (x-center, y-
center, width, height). The majority of boxes are characterized
by compactness, with weak correlations between width and
height for most boxes, indicating varied cloud shapes. This
approach thus provides insights into the bounding box
regression to further improve irregular cloud formations
detection.

FL-Confidence Curve
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Fig. 5. (a) Confusion matrix of YOLOVS classification results for CB, nonCB,
and background classes, (b) Normalized confusion matrix for YOLOv8
classification of CB, nonCB, and background, (c) Airwise plot of bounding
box parameters: x-center, y-center, width, and height

Fig. 5 provides more detailed model’s behavior during
detection than do overall accuracy metrics. The F1-Confidence
curve illustrates the sensitivity of detection performance to
confidence threshold selection, whereas bounding box
distribution and pairwise plots demonstrate the geometric
properties of detected cloud objects. Similar analyses have been
previously employed in several YOLO-based remote sensing
studies to evaluate the reliability of detection and the spatial
consistency of detection [6,13].

2.4. Evaluation metrics

Standard object detection metrics include Precision, Recall,
Fl-score, and mean Average Precision, which are utilized to
evaluate the model's performance. Precision and recall are
designed to measure correctness and completeness,
respectively, whereas the Fl-score is a balanced metric that

provides both of these qualities. The mAP metric evaluates the
performance of detection at various confidence thresholds and
IoU criteria. Another supplementary indicator for operational
reliability is the confidence-threshold-based accuracy metric.

Fig. 6(a) illustrates Precision-Confidence Curve that
describes how model precision changes regarding its
confidence threshold. The maximum precision equals 1.00 for
the threshold 0f 0.823. The NonCB class maintains its precision
at a high level even for lower thresholds, although CB precision
increases more sharply with confidence. This can be effective
to identify operational thresholds when it is deemed necessary
to minimize false positives in Automatic Weather Alert
Systems. Precision-Recall Curve, as illustrated in Fig. 6(b)
depicts the balance of accuracy and coverage. Class CB reaches
an mAP@0.5 value of 0.589, while the class nonCB reaches
0.546. The overall combined mAP@0.5 is 0.568. Curves that
are closer to the top right demonstrate better performance and
provide additional insights into model consistency across
different classes and thresholds. Fig. 6(c) presents Recall-
Confidence Curve. How does recall change when the
confidence threshold increases? Overall recall reaches the
value of 0.74 for the threshold of 0.000 and decreases as the
model becomes more conservative. Classes CB and nonCB are
represented separately. It can facilitate the selection of
threshold settings in operational systems where it is important
to ensure that no real events are overlooked, thus minimizing
false negatives.

Precision-Confidence Curve
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Fig.6 (a) Precision-Confidence Curve of the YOLOv8 model
demonstrating how precision changes with different confidence values, (b)
YOLOVS Precision-Recall Curve showing the balance between accuracy and
instance coverage, (¢) Recall-Confidence Curve showing how recall varies
with increasing confidence thresholds

The robust detection performance of the YOLOv8 model
can be attributed to its anchor-free design and multi-scale
feature aggregation, which facilitate the effective localization
of irregular and spatially diverse cloud structures. The
employment of multi-resolution feature maps allows the model
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to capture both compact convective cores and broader cloud
anvils, which are the characteristic of mature CB systems. In
addition, data augmentation techniques such as rotation and
brightness adjustment have been shown to enhance the
robustness of satellite observations against variations in
viewing geometry and illumination conditions.

Equation (1) was used to calculate accuracy, representing
the percentage of detections with confidence scores equal to or
greater than the defined threshold of 0.50. Meanwhile, Eq. (2)
was used to determine the error rate, indicating the proportion
of detections with confidence scores below the threshold.

Accuracy (%) = (TP / Total) x 100 % 2)
Error Rate (%) = (FP + FN) / Total) x 100 % €)

In this evaluation, the detections with confidence levels
greater than or equal to 0.50 are denoted as true positives (TP)
as the predictions would have been made with high confidence.
The detections with confidence levels lower than 0.50 would
be denoted as false positives (FP) as they would have fallen
below the minimum confidence level for proper classification.
The threshold value of 0.50 was selected for the purpose of
comparison, with the objective of differentiating between high
confidence and low confidence.

2.5 METAR-based validation

In this study, the utilization of METAR from operational
weather stations is also considered for the purpose of
independent meteorological validation. The METAR is utilized
in validating the occurrence of convective weather events
including thunderstorms, heavy rain, or cumulonimbus cloud
occurrences at the time when the satellite overpass is
performed. For the NOAA image to be considered in the
analysis of the evaluated scene, the METAR reports within a
short time frame of the satellite data acquisition time are
reviewed.

It should be pointed out that METAR data are point
measurements, which are taken at predefined aerodrome
stations, while satellite images are used to observe clouds in a
region in terms of continuous data. Consequently, the
identification of Cumulonimbus clouds at specific points in
relation to the predefined stations may not always be possible,
particularly in cases of rapidly changing and displaced
convective systems. In addition, temporal discrepancies may
occur between satellite passes and METAR intervals in view of
their differing frequency. This has the potential to result in
partly incongruent image-based and METAR-based
observations of clouds.

In spite of these limitations, the validation using METAR is
of great practical importance for determining whether the
identified convective system is in accordance or not with
surface weather reports. In this case, rather than employing the
METAR as an objective reference for validation, validation by
METAR is employed as supplementary evidence in justifying
the validity and practical significance of the proposed method
for detection using YOLOVS in respect to aviation safety and
early warning.

3. Results and Discussion

The YOLOvV8-based Cumulonimbus (CB) detection model

was trained for 200 epochs, exhibiting three distinct training
phases. During the initial phase, a rapid decrease in loss values
was observed (box loss from approximately 3.29 to 2.20),
accompanied by sharp increases in precision, recall, and
mAP@0.5 from near-zero values to approximately 0.18, 0.21,
and 0.12, respectively. This phase is indicative of effective
learning of basic object localization and feature
representations.

In the middle phase, loss values decreased steadily while
precision and recall exceeded 0.50, and mAP@0.5 approached
0.50. This indicates a refinement in feature extraction and
bounding box regression. In the final phase, the model reached
convergence, characterized by a stabilized box loss near 1.0,
precision values between 0.70 and 0.73, recall between 0.50
and 0.52, and mAP@0.5 exceeding 0.55. The learning rate
decayed to approximately 3.3x107°, thereby facilitating stable
weight updates and preventing oscillations during
convergence. Minor fluctuations in evaluation metrics were
observed and are considered normal due to batch variability and
stochastic optimization.

The confusion matrix analysis indicates that most
misclassifications occur between the Cumulonimbus (CB) and
background classes. This behavior can be primarily attributed
to the inherent limitations of single-sensor RGB satellite
imagery. Early-stage or weakly developed convective clouds
frequently exhibit visual characteristics that closely resemble
surrounding background clouds, such as similar brightness,
texture, and spatial continuity. In the absence of additional
spectral or thermal information, these subtle convective
signatures prove challenging to distinguish exclusively based
on RGB features.

In addition, there are no physical parameters such as cloud
height or cloud moisture in RGB images that are frequently
employed by IR, multispectral, and radar technologies in cloud
detection techniques. Consequently, there might be cases where
the model is prone to misinterpreting the thin convective clouds
or the cloud borders for the background in conditions where the
atmosphere is in the state of transition. These results are in line
with those from previous cloud classification studies that
utilized satellite images, in that the imaging technology still
faces similar issues where there is less use of spectral images.

These misclassification patterns facilitate comprehension of
the observed trade-off between precision and recall as
discussed in the subsequent performance curves. As
demonstrated in Fig. 2 (and Fig. 4) the confusion matrix reveals
that the YOLOv8 model achieves high true positive detection
for the CB class, while the majority of misclassifications occur
between cloud and background regions. This behavior is
consistent with earlier studies on satellite-based cloud
classification, where diffuse cloud boundaries often lead to
background confusion [14,18]. The normalized confusion
matrix further highlights the relative difficulty in distinguishing
weak convective signatures from non-convective cloud
formations.

The Precision—Recall and confidence-based performance
curves as depicted in Fig. 6 (Fig. 5) further confirm the trade-
off between precision and recall under varying confidence
thresholds. This trade-off has also been reported in earlier cloud
detection and object detection studies, emphasizing the
importance of threshold selection for operational applications
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such as aviation safety and early warning systems [3,26].

Fig. 7 illustrates the training dynamics of the YOLOVS
model, including loss convergence and performance
stabilization over 200 epochs. The decrease in training and
validation losses, combined with consistent enhancement in
mAP metrics, indicates the stability of the learning behavior
without significant overfitting, which is comparable to training
trends as reported in similar YOLO-based remote sensing
studies [6,15].

Fig. 7 illustrates the YOLOVS training process over 200
epochs, with both loss dynamics and performance metrics. The
training losses—train/box_loss, train/cls_loss, and
train/dfl_loss exhibited a consistent decrease, indicating an
enhancement in the accuracy of bounding box accuracy and
feature learning. The corresponding precision and recall
metrics increased from low initial values (~0.1) to above 0.5,
reflecting reduced false positives and better true positive
detection. The validation losses followed a similar downward
trend, slightly higher than training losses, suggesting the
absence of overfitting. The Mean Average Precision metrics,
mAP50 and mAP50-95, also exhibited consistent
improvement, indicating the capacity for robust object
localization under varying thresholds. The gradual warm-up
and decay of the learning rate supported convergence and
training stability. Overall, the figure confirms effective model
learning, consistent performance gains, and strong
generalization to unseen data.

Even with this promising performance, instances of failure
in the results of the cloud detection were observed. False
positives were identified in the dense stratiform clouds and the
boundaries of the clouds with textured characteristics of
developing Cumulonimbus clouds. Such areas tend to have
higher values of reflectance and steep gradients that can easily
be confused with convective systems by the model.
Conversely, false negative instances were mainly identified in

train/box_loss train/cls_loss

train/dfl_loss

the early-developing and partially occult CB clouds that did not
yet have evident vertical growth in the satellite image. This
finding indicates that the model is better at detecting fully
developed convective systems rather than developing ones.

Fig. 8 depicts the result of testing the YOLOVS algorithm
model for its applicability in the classification results validated
by METAR.

As illustrated in Fig. 8, representative examples of CB and
nonCB detection are presented on NOAA-18 and NOAA-19
satellite imagery. The spatial distribution and confidence levels
of detected objects demonstrate the model’s capability to
localize convective cloud structures under different
atmospheric conditions. The visual results provide qualitative
validation of the quantitative metrics and are consistent with
previous satellite-based CB detection approaches [10,27].

Fig. 8 presents the results of CB and non-CB cloud detection
in the NOAA-18 and 19 images. The details of the detection
data results by the YOLOvVS model are outlined in Table 1.

Table 1 summarizes the detection results obtained from
three representative satellite scenes. The high proportion of
detections with confidence scores above 0.50 supports the
robustness of the YOLOvV8 model, while the limited number of
low-confidence detections highlights remaining challenges in
ambiguous cloud regions. Similar confidence-based
evaluations have been reported in prior studies on cloud
detection to assess model reliability [11,18].

As depicted in Table 1, a total of 53 objects were detected
across the three images. Of these, 49 detections had confidence
scores above the threshold (TP), while 4 detections fell below
it (FP). Substituting these values into the equations above
yields an overall detection accuracy of 92.45% and an error rate
of 7.55%. These results indicate that the model has a capacity
to detect and classify cloud features with a high level of
confidence, with only a small portion of predictions falling into
the lower-confidence category.

metrics/precision(B) metrics/recall(B)

—e— results 0.5 1
3.0 smooth | 27 0.6
3 i 0.4
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Fig. 7. Training progress of the object detection model over 200 epochs, including loss and performance metrics



474 Rafsyam et al. / Communications in Science and Technology 10(2) (2025) 467-476

Fig. 8. (a) shows CB and nonCB detection on a NOAA-18 image from 4
January 2022 at 03:15 UTC after contrast enhancement. YOLOvV8 detected 20
objects: 4 CB (confidence 0.79-0.93) and 16 nonCB (0.81-0.94), with nonCB
dominating the central and right regions. (b) presents detection results from 5

January 2022 at 03:03 UTC. A total of 20 objects were identified: 2 CB
(0.90-0.93) and 18 nonCB (0.52—0.93). CBs were located center to lower-left,
while nonCBs were more widely distributed. (c) illustrates detection on a
NOAA -19 image from 3 February 2022 at 00:16 UTC. YOLOvS found 13
objects: 3 CB (0.58-0.82) concentrated in the middle to upper-right and 10
nonCB (0.25-0.70) distributed broadly with variable confidence scores

Table 1. Summary of the detection results produced by the YOLOvV8 model

Name Total Detections  Detections  Confidence
Detections >0.50 <0.50 Range

noaa-18-
202201040315~ 20 20 0 0.79-0.94
contrastb
noaa-18-
202201050303- 20 20 0 0.52-0.93
contrastb
noaa-19-
202202030016~ 12 9 3 0.25-0.82
contrastb

To evaluate the model’s performance, accuracy and error
rate were calculated using the following equations:

Accuracy (%) = (49 /53) x 100 % = 92.45 % 2)
Error Rate (%) = (4/53) x 100 % = 7.55 % 3)

It is imperative to note that, in this study, rather than using
precision, recall, or mean Average Precision (mAP) as a
measure of accuracy as the standard for most object detection
methods, this accuracy is actually defined based on the
confidence threshold. This approach serves as an interpretation

of the detection accuracy at an operational level. It is pivotal to
note that, in the confidence level for the detected object being
0.50 or higher, the object is considered correctly detected. In
contrast, those with lower confidence levels are considered
uncertain outputs of detection. In this case, this definition of
accuracy represents the number of detections that meet the
specified confidence level.

In contrast, mAP values quantify the performance of
detection across multiple confidence thresholds and
Intersection over Union (IoU) criteria, thus offering a more
comprehensive evaluation of localization and classification
accuracy. Therefore, the reported accuracy of 92.45% and the
mAP@0.5 value of approximately 0.57 represent different
aspects of model performance and should not be directly
compared. While mAP evaluates overall detection quality, the
confidence-based accuracy provides additional insight into the
reliability of high-confidence detections for operational
applications such as early warning systems.

It is important to note that confidence thresholds are
subjected to variation according to performance assessment
tasks. Specifically, the confidence threshold value 0.355 is
selected according to F1 score maximization, with the objective
of identifying an optimal balance point concerning Precision-
Recall score values calculated over the evaluation set of
images. This confidence threshold is exclusively employed
within the context of an evaluation concerning the operating
point at which the balance of classifications is most consistently
achieved by the detector.

In contrast, a higher confidence threshold of 0.50 is adopted
for accuracy analysis to reflect a more conservative operational
scenario. In practical applications such as early warning or
aviation-related monitoring, high-confidence detections are
favored to reduce false alarms. Hence, the accuracy reported at
a confidence threshold of 0.50 represents the reliability of
detections under stricter confidence requirements, rather than
the optimal classification balance. These two thresholds serve
complementary functions and should not be interpreted
interchangeably.

Recent studies have employed the use of various YOLO
models such as YOLOvS and YOLOv7 for cloud and
atmospheric objects. However, these studies in general have
shown an incremental improvement over each other regarding
the detection capability and efficiency of the method. The
YOLOVS model was selected for the task due to its anchor-free
mechanism, its feature aggregation technique, and the
steadiness of its training procedure, rendering it more
appropriate for cloud objects that tend to have irregular
features. Instead of empirically asserting its superiority over
other models available, the feasibility of YOLOvV8 will be
assessed for its functionality from a real-time satellite
observation perspective.

It is importantly noted that no direct quantitative
comparison is made with other state-of-the-art detectors under
identical experimental settings, which require multiple model
retraining with the same dataset and hyperparameter and is
considered an important direction of prospective work.
However, the performance achieved in this paper is consistent
and comparable to those reported in previous cloud detection
studies using YOLO architecture, thereby validating the
proposed approach.

However, a number of potential limitations should be
acknowledged. Firstly, the model is based solely on RGB
satellite imagery and does not explicitly model spectral or
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temporal information, which may limit its ability to
discriminate visually similar cloud types. Secondly, the
efficacy of detection will be determined by the quality of
manual annotations and the spatial resolution of the satellite
data. Furthermore, the confidence-based thresholding
technique introduces a trade-off between false positives and
false negatives, and requires threshold values to be carefully
selected according to the operational requirements. These
results emphasize the necessity to understand model behavior
beyond aggregate performance metrics, with a particular focus
on safety-critical applications.

3.1. Comparison with previous YOLO-based studies and
implications

Different from previous detection studies grounded in the
YOLO, which are primarily concerned with generic object or
land scene detection, this study aims to exploit polar-orbiting
satellite imagery in the DO of Cumulonimbus clouds over
tropical areas. Although the results achieved are similar to
performance statistics as reported by previous YOLO-based
cloud detection studies, this work adds value to existing
approaches by verifying meteorologically and using METAR
observations. Pragmatically, the findings demonstrate the
feasibility of employing YOLOv8 for near real-time CB
identification, thereby supporting aviation safety and early
warning systems. Scientifically, the observed detection
behavior and failure cases provide insights into the strengths
and limitations of anchor-free object detectors when applied to
diffuse and non-rigid atmospheric targets.

Some recent studies have presented quantitative results for
CB detection with infrared thresholds, multispectral satellite
data and radar-supported techniques. Such algorithms
generally can attain a high level of accuracy in the detection
process as they exploit information regarding the physical
cloud-top temperature, vertical structure or reflectivity.
However the reported performance is based on different
datasets, sensors, spatial resolutions of images and evaluation
protocol, which prevents us making direct quantitative
comparison with YOLO methods for vision modality. In this
study, the detection performance was achieved within the
reported range of previous CB detector studies, using solely
single-source RGB satellite imagery. This highlights the
feasibility of using a lightweight, data-driven detector for near-
real-time CB identification, particularly in regions where radar
coverage or multispectral data availability is constrained.

Although the utilization of METAR observations provides
valuable independent validation from an operational
meteorological perspective, it is important to acknowledge the
inherent spatial and temporal mismatches between satellite-
based detections and point-based surface reports. Satellite
imagery represents cloud structures over a spatially continuous
area, whereas METAR observations are recorded at fixed
ground stations and describe atmospheric conditions at specific
locations. As a result, a detected Cumulonimbus cloud within a
satellite image may not be perfectly aligned with the exact
position of a METAR station, particularly for rapidly evolving
convective systems.

Furthermore, temporal discrepancies may arise due to
differences between satellite overpass times and the reporting
intervals of METAR observations. Despite efforts to match
observations within a close temporal window, short-term
convective development or dissipation may still lead to partial

inconsistencies. These limitations are inherent to satellite—
surface data integration and should be considered when
interpreting the results of validation process. Nevertheless,
METAR-based validation remains valuable in providing
operational relevance and complementary confirmation of
convective activity.

4. Conclusion

The outcome of the evaluation suggests that the YOLOvV8
model provides encouraging results for the detection of
Cumulonimbus (CB) cloud in individual NOAA satellite
imagery, as evident by balanced quantitative metrics and
observations. The model has been shown to be capable and
efficient in differentiating CB clouds from non-CB clouds,
reaching an highest F1 score of 0.88 for an optimal confidence
threshold value of 0.355, while an even higher conservative
value threshold at 0.50 has been demonstrated to work well for
operational accuracy. The results for object detection
performance, regardless of CB cloud size and shape, confirm
the resilience of the system and demonstrate YOLOvVS’s
superior ability in identifying small-scale and convective CB
clouds. This signifies YOLOvV8 strength in encoding small-
scale convective clouds. Despite attaining mAP scores of
0.568, which are comparatively weaker than standards for
general terrestrial object detection tasks, the model can still
compete with satellite image detection work, considering the
natural complexity involved in atmospheric phenomena for
accurate cloud detection. Validation on additional NOAA-18
images provided an overall accuracy level of 92.45%,
signifying consistent performance for accurate detection.
However, remaining confusion between CB clouds and
background regions confirms limitations in utilizing RGB
images alone. This suggests the necessity for additional satellite
imaging tools or techniques involving multispectral, temporal,
or adaptive threshold strategies for further enhancement in
resilience for operational aviation weather surveillance and
early warning systems.
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