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Abstract 

Cumulonimbus (CB) clouds are vertically developed convective systems that are capable of producing severe weather phenomena, including 

turbulence, heavy rainfall, and lightning. These phenomena pose a significant threat to aviation safety. This paper considers an automated CB 

cloud detection approach using the deep learning algorithm You Only Look Once version 8 on NOAA-19 satellite imagery. The images of 640 

× 640 pixels each were labeled into two classes: CB and non-CB. In general, rotation, flip, and random brightening are performed to develop a 

more robust model. After 100 training epochs, the proposed model produced reliable detection performance, as evidenced by 1,694 TP (true 

positives), 438 FP (false positives), and 304 FN (false negatives) cases, with a precision of 0.79, recall of 0.84, and an F1-score of 0.81. Validation 

using METAR reports from the Indonesian Meteorological, Climatological, and Geophysical Agency (BMKG) confirmed the consistency of the 

model with observed weather conditions. The results demonstrated that YOLOv8 could provide a rapid and reliable framework for real-time 

detection and classification of CB clouds, thereby enhancing situational awareness for aviation operations and facilitating the effectiveness of 

satellite-based early warning systems in convectively active tropical regions.  
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1. Introduction  

The Cumulonimbus (CB) clouds are towering convective 

clouds formed by rapidly rising moist air into the upper 

atmosphere. They are frequently associated with severe 

weather such as thunderstorms, heavy rainfall, lightning, and 

strong turbulence that pose a significant threat to aviation 

safety, particularly in tropical regions. Conventional CB 

monitoring using radar and visual observations remains 

spatially limited and delayed; leading to a need for automated, 

real-time detection using satellite imagery [1,2]. Previous 

studies have utilized infrared thresholding to identify 

overshooting tops as key indicators of CB activity [3]. 

Furthermore, the integration of geostationary satellite data with 

radar has been employed to detect both CB and TCU clouds 

[4,5].  The advancements in image processing and machine 

learning have rendered deep learning–based models such as 

YOLO effective instruments for cloud detection and 

classification [6]. YOLOv8, the latest version, features a 

lightweight architecture with a backbone, neck, and head for 

multi-scale feature extraction, thus facilitating rapid and 

accurate detection of small objects in complex remote sensing 

imagery [7,8,9,10]. Supported by Ultralytics’ open-source 

framework, YOLOv8 is applicable to a wide range of real-

world scenarios [11,12,13] 

In this study, YOLOv8 was implemented to automatically 

detect CB clouds using NOAA-19 satellite imagery. The 

images were manually annotated into CB and non-CB classes 

using LabelMe [14,15,16] and trained with data augmentation 

techniques. The performance of the model was evaluated using 

precision, recall, and F1-score metrics, while the validation of 

the model was performed using METAR weather reports from 

BMKG. The objective of this approach is to facilitate the 

development of rapid, accurate, and reliable satellite-based 

early warning systems to enhance aviation safety in regions that 

are prone to convective weather events [17,18,19,20]. 

The detection and classification of convective clouds, with 

a particular focus on Cumulonimbus (CB), have long been 

central to meteorological research, given their significant 

impact on aviation safety. Early studies by Baum et al. [21] and 

Bankert [22] introduced automated cloud classification using 

multispectral satellite imagery. This work utilized fuzzy logic 

and probabilistic neural networks applied to AVHRR data. 

Berendes et al. [23] advanced this work with an adaptive 

clustering method for classifying convective clouds, while 

Donovan et al. [24] emphasized the identification of hazardous 

convective cells over oceans using visible and infrared data to 
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support early warning systems. Further progress in this field 

was achieved by Carbajal Henken et al. [25], who integrated 

cloud properties from MSG-SEVIRI with radar observations to 

enhance detection accuracy, and by Mecikalski and Bedka [26], 

who developed nowcasting techniques to forecast convective 

initiation using GOES imagery. Rosenfeld et al. [27] further 

contributed to this field by developing a microphysical 

approach by retrieving vertical profiles of particle size and 

thermodynamic phase to identify severe storms. Zinner et al. 

[28] developed Cb-TRAM, a real-time system for tracking 

convective storm life cycles from initiation to maturity. This 

system is conceptually similar to modern computer vision 

models such as YOLOv8. Schmetz et al. [29] and Levizzani 

and Setvák [30] highlighted the value of Meteosat and high-

resolution multispectral data in identifying overshooting tops 

and fine storm-top structures. Building on these foundations, 

this present study employed the deep learning–based YOLOv8 

model to develop an automatic, real-time, and precise CB 

detection system adaptive to extreme weather dynamics, 

thereby enhancing both satellite-based early warning 

capabilities and aviation safety. Alvira et al. [31] conducted a 

review of the various pretreatment technologies for 

lignocellulosic biomass to enhance enzymatic hydrolysis in 

bioethanol production. The study evaluated how different 

pretreatment methods modify cellulose, hemicellulose, and 

lignin structures, and analyzed their impacts on sugar recovery, 

inhibitor formation, energy consumption, and process cost. The 

review emphasized that pretreatment is a critical and cost-

intensive step that significantly determines the overall 

efficiency of lignocellulosic bioethanol conversion. In their 

study, Kun-Cahyono et al. [32] applied multiple machine 

learning and deep learning models to predict daily rainfall. 

These models were trained on open-access remote sensing data 

processed through Google Earth Engine. The results of the 

study demonstrated that Support Vector Regression provided 

the most reliable performance, thus highlighting the feasibility 

of using satellite-derived atmospheric variables for operational 

rainfall forecasting. 

Despite the considerable adoption of YOLO-based object 

detection within recent literature, the significance of this paper 

relates to the examination and validation of YOLOv8 within 

the context of convective storm cloud detection, as acquired by 

the use of polar-orbiting satellite imagery supplied by the 

NOAA-19 satellite within tropical geography. In opposition to 

the vast majority of recent YOLOv8 literature, which focuses 

on generic object detection tasks or ground-level images, this 

paper focuses on the distinct spatial, spectral, and 

morphological attributes of Cumulonimbus clouds. 

Additionally, the utilization of METAR data supplied by 

BMKG in this study relates to examination within a 

meteorological capacity, rather than solely relying on computer 

vision evaluation. 

2. Materials and Methods 

2.1. Dataset and Preprocessing 

This study utilized satellite imagery acquired from the 

NOAA polar-orbiting satellite to detect Cumulonimbus (CB) 

clouds. The dataset consisted of RGB composite images 

covering tropical regions with frequent convective activity. The 

satellite data were obtained through the NOAA Automatic 

Picture Transmission (APT) system using a self-developed 

ground receiving station, allowing direct acquisition of raw 

satellite imagery without reliance on third-party data providers. 

Rafsyam et al. [33] demonstrated that a double cross dipole 

antenna operating at 137–138 MHz can receive NOAA satellite 

signals and converting voice data into cloud images. Fig. 1 

illustrates the original satellite image acquired from the 

receiving system. 
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Fig. 1. Example of the original satellite image (a) noaa-19-202202030016-

contrastb.jpg (b) noaa-19-202303311318-contrast.jpg 

 

As demonstrated in Fig. 1, the original NOAA-19 satellite 

images used in this study were obtained under different 

observation conditions. All images were resized to 640 × 640 

pixels to ensure compatibility with the YOLOv8 input 

requirements. Standard preprocessing steps, including pixel 

normalization and image scaling, were applied to enhance 

training stability. The dataset was manually annotated using the 

Labeling tool and categorized into three classes: 

Cumulonimbus (CB), non-convective clouds, and background, 

following established meteorological cloud classification 

principles. 

Fig. 2(a) presents the confusion matrix of the YOLOv8 

detection results for three categories: Cumulonimbus (CB), 

non-CB, and background. The diagonal elements indicate the 

correct samples, while the off-diagonal entries indicate 

misclassified instances among the various classes. The system 

demonstrated an accuracy of 1,694 CB samples, which thus 

indicated its capacity to recognize mature convective structures 

of CBs. However, misclassifications of 299 CB samples as 

background, as well as 2 as non-CB, demonstrated the 

possibility of inadequate distinctive visual cues in weak or 

immature convective systems to always be distinguished. 

Additionally, within the non-CB class, 2,550 samples were 

correctly classified, but 436 background samples were 

misclassified as CB. This may result in the conveyance of 

visual textures or brightness information similar to CBs in 

specific background areas. 
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Fig. 2. (a) Confusion matrix of YOLOv8 classification results for CB, nonCB, and background classes, (b) Normalized confusion matrix for YOLOv8 

classification of CB, nonCB, and background

  

Fig. 2(b) illustrates the normalized confusion matrix. The 

columns and rows correspond to the reference classification 

and the classification, respectively. The value of 0.58 for CB-

CB indicates that approximately 58% of the CB pixels have 

been accurately classified, while the value of 0.44 for CB-

background indicates that a significant amount of background 

pixels has been confused with CB. The occurrence of this 

confusion is predominantly related to the cloud boundaries, 

cloud edges, and the stratified regions of clouds that resemble 

the convective cloud top features observed in the optical 

satellite images. The normalized confusion matrix illustrates 

that misclassifications occur more frequently between cloud-

related classes than between cloud pixels or clear pixels. The 

confusion matrix analysis indicates that a trade-off is present 

between the sensitivity to the convective features and the false 

alarms in the ambiguous regions as identified by other studies 

related to cloud classification from satellite images. 

 

2.2. YOLOv8 model architecture 

 

In this work, the proposed detection framework is 

constructed on the YOLOv8 architecture, specifically designed 

to perform real-time object detection with robust multi-scale 

feature representation. Fig. 3 depicts the overall architecture 

employed in this work and is divided into three parts: a 

backbone, a neck, and an anchor-free detection head. The 

backbone of the model uses CSPDarknet53 in extracting 

hierarchical spatial and semantic features from NOAA satellite 

imagery. while it uses Conv2D layers, Batch Normalization, 

SiLU activation functions, and C2f residual blocks to improve 

feature reuse without compromising computational efficiency. 

This structure has proven to be of particular important for 

satellite-based cloud detection, given that cloud boundaries are 

frequently diffuse, and radiative contrasts tend to be quite 

subtle. 

A feature map is obtained at three different spatial 

resolutions, 80×80, 40×40, and 20×20, to capture the small-, 

medium-, and large-scale cloud structure. These multi-

resolution representations facilitate the model to capture the 

extensive range of spatial variability exhibited by that 

Cumulonimbus clouds, ranging from compact convective cells 

at early development stages to large, mature systems with 

extensive anvils. This neck module amalgamates these features 

via upsampling and concatenation operations inspired by 

Feature Pyramid Networks and Path Aggregation Networks, 

respectively. These operations jointly leverage both fine-

grained local information and high-level contextual features. 

The adoption of enhanced C2f and CBS modules serves to 

reinforce cross-scale feature fusion, which is of great 

importance to discriminate CB clouds from surrounding non-

convective cloud fields and backgrounds. 

This study, as illustrated in Fig. 3 employs the YOLOv8 

architecture, that encompass the backbone, neck, and head 

components. These components are applied for the detection of 

CB clouds at multi-scale. Multi-resolution feature extraction 

has been identified as a key component in the analysis of spatial 

variability related to the structure of convective clouds. This 

approach has been identified as a primary requirements for 

cloud detection in previous works using deep learning models 

[7,10]. The anchor-free prediction mechanism is considered in 

the detecting head, which contains three parallel branches 

corresponding to different object scales. Each branch predicts 

the coordinates of bounding boxes, confidence scores, and class 

labels for CB and non-CB clouds, being flexible to handle 

irregular shapes with variable aspect ratios that characterize the 

formations of convective clouds. Non-Maximum Suppression 

(NMS) is finally applied to remove redundant detections 

arising from overlapping predictions, ensuring that each CB 

cloud system is represented by a single, most confident 

bounding box. The architecture, as illustrated in Fig.3, 

facilitates the effective detection of Cumulonimbus clouds at 

multiple scales from polar-orbiting satellite imagery, thereby 

forming the basis for the subsequent experimental observation 

and results.
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Fig. 3. YOLOv8 architecture used in this study to detect CB clouds from NOAA satellite imagery 

 
To ensure that the performance of the proposed YOLOv8-

based detection framework is not biased by a specific data 
partition, a cross-validation-based dataset validation strategy 
was applied prior to model training. The annotated NOAA 
satellite image dataset was divided into K mutually exclusive 
subsets (folds) of approximately equal size, while maintaining 
representative spatial and temporal variability of cloud 
patterns. In each iteration, one-fold was designated as the 
validation set, with the remaining K−1 folds being allocated for 
training. The overall performance of the model was computed 
by averaging the evaluation metrics across all folds, which is 
expressed as: 

𝐶𝑉𝑠𝑐𝑜𝑟𝑒 =  (
1

𝐾
) ∑ 𝑀𝑖

𝐾
𝑖=1    (1) 

where K denotes the number of folds and 𝑀𝑖 represents the 

evaluation metric obtained from the iii-th fold, including 

precision, recall, mAP@0.5, and mAP@0.5:0.5:0.95. 
This validation strategy ensures that the multi-scale 

detection capability of the YOLOv8 architecture, as illustrated 
in Fig. 4, is evaluated under diverse atmospheric conditions and 
cloud morphologies. Fig. 4 presents a schematic overview of 
the cross-validation procedure employed in this study.  

The detection visualization, as illustrated in Fig. 4, is an 

indication of the result of the proposed YOLOv8 model’s 

approach to the NOAA satellite images of the region employed 

in the K-Fold cross-validation process. Each sub-figure of the 

image denotes the capacity of the proposed YOLOv8 model to 

perform multi-scale detections of cloud features, which fits 

well with the aim of testing the proposed approach to different 

atmospheric conditions. The [Pink/Red] bounding-box 

rectangles around the images illustrate the positioning of 

detected cloud features (e.g., spiral bands and convective 

centers), along with the detected class and the confidence level 

of each proposed YOLOv8 approach. The dense distribution of 

bounding-box rectangles around images indicates that the 

proposed approach to YOLOv8 architecture performs well in 

handling different detections of images at various scales. 

Nevertheless, it also signifies that the approach might have 

double-detections and the complexity of demarcating 

boundaries between the detected cloud features in images. 

 
Fig. 4. Visualization of YOLOv8 detection results on NOAA satellite imagery 

using K-Fold Cross-Validation 

 

2.3. Training strategy and hyperparameters 

 

Model training is conducted using a supervised learning 

approach with a five-fold cross-validation strategy with the aim 

of enhancing generalization and reducing overfitting. Each fold 

maintains a balanced ratio of CB and non-CB samples. To 

enhance robustness against cloud variability, data 

augmentation techniques including horizontal flipping, color 

jittering, and random cropping, are applied. The model has 

been trained using standard YOLOv8 hyperparameters 

provided by the Ultralytics framework. 

Fig. 5(a) illustrates the F1-Confidence Curve, in terms of the 

correlation of model confidence and F1-score. From the data 

given, the optimal F1-score of 0.88 is attained at the confidence 

threshold of 0.355. NonCB maintains a constantly high F1-

score, while CB exhibits more fluctuations, thereby facilitating 
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the determination of the threshold balancing the detection 

accuracy and misclassification. Fig. 5(b) presents the number 

distribution of the detected instances and spatial pattern of 

bounding boxes. It is observed that NonCB instances exhibit a 

slight numerical advantage over CB. From the x-y scatter plot, 

it is relatively even in space. Most of the bounding boxes are 

small, which is indicative of the typical cloud size and informs 

further anchor box scales and preprocessing. Fig. 5(c) presents 

pairwise relationships of bounding box parameters (x-center, y-

center, width, height). The majority of boxes are characterized 

by compactness, with weak correlations between width and 

height for most boxes, indicating varied cloud shapes. This 

approach thus provides insights into the bounding box 

regression to further improve irregular cloud formations 

detection. 

 

Fig. 5. (a) Confusion matrix of YOLOv8 classification results for CB, nonCB, 

and background classes, (b) Normalized confusion matrix for YOLOv8 

classification of CB, nonCB, and background, (c) Airwise plot of bounding 

box parameters: x-center, y-center, width, and height 

 

Fig. 5 provides more detailed model’s behavior during 

detection than do overall accuracy metrics. The F1–Confidence 

curve illustrates the sensitivity of detection performance to 

confidence threshold selection, whereas bounding box 

distribution and pairwise plots demonstrate the geometric 

properties of detected cloud objects. Similar analyses have been 

previously employed in several YOLO-based remote sensing 

studies to evaluate the reliability of detection and the spatial 

consistency of detection [6,13]. 

 

2.4. Evaluation metrics 

 

Standard object detection metrics include Precision, Recall, 

F1-score, and mean Average Precision, which are utilized to 

evaluate the model's performance. Precision and recall are 

designed to measure correctness and completeness, 

respectively, whereas the F1-score is a balanced metric that 

provides both of these qualities.  The mAP metric evaluates the 

performance of detection at various confidence thresholds and 

IoU criteria. Another supplementary indicator for operational 

reliability is the confidence-threshold-based accuracy metric. 

Fig. 6(a) illustrates Precision-Confidence Curve that 

describes how model precision changes regarding its 

confidence threshold. The maximum precision equals 1.00 for 

the threshold of 0.823. The NonCB class maintains its precision 

at a high level even for lower thresholds, although CB precision 

increases more sharply with confidence. This can be effective 

to identify operational thresholds when it is deemed necessary 

to minimize false positives in Automatic Weather Alert 

Systems. Precision-Recall Curve, as illustrated in Fig. 6(b) 

depicts the balance of accuracy and coverage. Class CB reaches 

an mAP@0.5 value of 0.589, while the class nonCB reaches 

0.546. The overall combined mAP@0.5 is 0.568. Curves that 

are closer to the top right demonstrate better performance and 

provide additional insights into model consistency across 

different classes and thresholds. Fig. 6(c) presents Recall-

Confidence Curve. How does recall change when the 

confidence threshold increases? Overall recall reaches the 

value of 0.74 for the threshold of 0.000 and decreases as the 

model becomes more conservative. Classes CB and nonCB are 

represented separately. It can facilitate the selection of 

threshold settings in operational systems where it is important 

to ensure that no real events are overlooked, thus minimizing 

false negatives. 

 

 

Fig.6 (a) Precision-Confidence Curve of the YOLOv8 model 

demonstrating how precision changes with different confidence values, (b) 

YOLOv8 Precision-Recall Curve showing the balance between accuracy and 

instance coverage, (c) Recall-Confidence Curve showing how recall varies 

with increasing confidence thresholds 

 

The robust detection performance of the YOLOv8 model 

can be attributed to its anchor-free design and multi-scale 

feature aggregation, which facilitate the effective localization 

of irregular and spatially diverse cloud structures. The 

employment of multi-resolution feature maps allows the model 
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to capture both compact convective cores and broader cloud 

anvils, which are the characteristic of mature CB systems. In 

addition, data augmentation techniques such as rotation and 

brightness adjustment have been shown to enhance the 

robustness of satellite observations against variations in 

viewing geometry and illumination conditions.   

Equation (1) was used to calculate accuracy, representing 

the percentage of detections with confidence scores equal to or 

greater than the defined threshold of 0.50. Meanwhile, Eq. (2) 

was used to determine the error rate, indicating the proportion 

of detections with confidence scores below the threshold. 

 Accuracy (%) = (TP / Total) x 100 %                 (2) 

Error Rate (%) = (FP + FN) / Total) x 100 %        (3)                                  

In this evaluation, the detections with confidence levels 

greater than or equal to 0.50 are denoted as true positives (TP) 

as the predictions would have been made with high confidence. 

The detections with confidence levels lower than 0.50 would 

be denoted as false positives (FP) as they would have fallen 

below the minimum confidence level for proper classification. 

The threshold value of 0.50 was selected for the purpose of 

comparison, with the objective of differentiating between high 

confidence and low confidence. 

 

2.5 METAR-based validation 

 

In this study, the utilization of METAR from operational 

weather stations is also considered for the purpose of 

independent meteorological validation. The METAR is utilized 

in validating the occurrence of convective weather events 

including thunderstorms, heavy rain, or cumulonimbus cloud 

occurrences at the time when the satellite overpass is 

performed. For the NOAA image to be considered in the 

analysis of the evaluated scene, the METAR reports within a 

short time frame of the satellite data acquisition time are 

reviewed. 

It should be pointed out that METAR data are point 

measurements, which are taken at predefined aerodrome 

stations, while satellite images are used to observe clouds in a 

region in terms of continuous data. Consequently, the 

identification of Cumulonimbus clouds at specific points in 

relation to the predefined stations may not always be possible, 

particularly in cases of rapidly changing and displaced 

convective systems. In addition, temporal discrepancies may 

occur between satellite passes and METAR intervals in view of 

their differing frequency. This has the potential to result in 

partly incongruent image-based and METAR-based 

observations of clouds. 

In spite of these limitations, the validation using METAR is 

of great practical importance for determining whether the 

identified convective system is in accordance or not with 

surface weather reports. In this case, rather than employing the 

METAR as an objective reference for validation, validation by 

METAR is employed as supplementary evidence in justifying 

the validity and practical significance of the proposed method 

for detection using YOLOv8 in respect to aviation safety and 

early warning. 

3. Results and Discussion 

The YOLOv8-based Cumulonimbus (CB) detection model 

was trained for 200 epochs, exhibiting three distinct training 

phases. During the initial phase, a rapid decrease in loss values 

was observed (box loss from approximately 3.29 to 2.20), 

accompanied by sharp increases in precision, recall, and 

mAP@0.5 from near-zero values to approximately 0.18, 0.21, 

and 0.12, respectively. This phase is indicative of effective 

learning of basic object localization and feature 

representations. 

In the middle phase, loss values decreased steadily while 

precision and recall exceeded 0.50, and mAP@0.5 approached 

0.50. This indicates a refinement in feature extraction and 

bounding box regression. In the final phase, the model reached 

convergence, characterized by a stabilized box loss near 1.0, 

precision values between 0.70 and 0.73, recall between 0.50 

and 0.52, and mAP@0.5 exceeding 0.55. The learning rate 

decayed to approximately 3.3×10⁻⁵, thereby facilitating stable 

weight updates and preventing oscillations during 

convergence. Minor fluctuations in evaluation metrics were 

observed and are considered normal due to batch variability and 

stochastic optimization. 

The confusion matrix analysis indicates that most 

misclassifications occur between the Cumulonimbus (CB) and 

background classes. This behavior can be primarily attributed 

to the inherent limitations of single-sensor RGB satellite 

imagery. Early-stage or weakly developed convective clouds 

frequently exhibit visual characteristics that closely resemble 

surrounding background clouds, such as similar brightness, 

texture, and spatial continuity. In the absence of additional 

spectral or thermal information, these subtle convective 

signatures prove challenging to distinguish exclusively based 

on RGB features. 

In addition, there are no physical parameters such as cloud 

height or cloud moisture in RGB images that are frequently 

employed by IR, multispectral, and radar technologies in cloud 

detection techniques. Consequently, there might be cases where 

the model is prone to misinterpreting the thin convective clouds 

or the cloud borders for the background in conditions where the 

atmosphere is in the state of transition. These results are in line 

with those from previous cloud classification studies that 

utilized satellite images, in that the imaging technology still 

faces similar issues where there is less use of spectral images. 

These misclassification patterns facilitate comprehension of 

the observed trade-off between precision and recall as 

discussed in the subsequent performance curves. As 

demonstrated in Fig. 2 (and Fig. 4) the confusion matrix reveals 

that the YOLOv8 model achieves high true positive detection 

for the CB class, while the majority of misclassifications occur 

between cloud and background regions. This behavior is 

consistent with earlier studies on satellite-based cloud 

classification, where diffuse cloud boundaries often lead to 

background confusion [14,18]. The normalized confusion 

matrix further highlights the relative difficulty in distinguishing 

weak convective signatures from non-convective cloud 

formations. 

The Precision–Recall and confidence-based performance 

curves as depicted in Fig. 6 (Fig. 5) further confirm the trade-

off between precision and recall under varying confidence 

thresholds. This trade-off has also been reported in earlier cloud 

detection and object detection studies, emphasizing the 

importance of threshold selection for operational applications 
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such as aviation safety and early warning systems [3,26]. 

Fig. 7 illustrates the training dynamics of the YOLOv8 

model, including loss convergence and performance 

stabilization over 200 epochs. The decrease in training and 

validation losses, combined with consistent enhancement in 

mAP metrics, indicates the stability of the learning behavior 

without significant overfitting, which is comparable to training 

trends as reported in similar YOLO-based remote sensing 

studies [6,15]. 

Fig. 7 illustrates the YOLOv8 training process over 200 

epochs, with both loss dynamics and performance metrics. The 

training losses—train/box_loss, train/cls_loss, and 

train/dfl_loss exhibited a consistent decrease, indicating an 

enhancement in the accuracy of bounding box accuracy and 

feature learning. The corresponding precision and recall 

metrics increased from low initial values (~0.1) to above 0.5, 

reflecting reduced false positives and better true positive 

detection. The validation losses followed a similar downward 

trend, slightly higher than training losses, suggesting the 

absence of overfitting. The Mean Average Precision metrics, 

mAP50 and mAP50-95, also exhibited consistent 

improvement, indicating the capacity for robust object 

localization under varying thresholds. The gradual warm-up 

and decay of the learning rate supported convergence and 

training stability. Overall, the figure confirms effective model 

learning, consistent performance gains, and strong 

generalization to unseen data. 

Even with this promising performance, instances of failure 

in the results of the cloud detection were observed. False 

positives were identified in the dense stratiform clouds and the 

boundaries of the clouds with textured characteristics of 

developing Cumulonimbus clouds. Such areas tend to have 

higher values of reflectance and steep gradients that can easily 

be confused with convective systems by the model. 

Conversely, false negative instances were mainly identified in 

the early-developing and partially occult CB clouds that did not 

yet have evident vertical growth in the satellite image. This 

finding indicates that the model is better at detecting fully 

developed convective systems rather than developing ones. 

Fig. 8 depicts the result of testing the YOLOv8 algorithm 

model for its applicability in the classification results validated 

by METAR. 

As illustrated in Fig. 8, representative examples of CB and 

nonCB detection are presented on NOAA-18 and NOAA-19 

satellite imagery. The spatial distribution and confidence levels 

of detected objects demonstrate the model’s capability to 

localize convective cloud structures under different 

atmospheric conditions. The visual results provide qualitative 

validation of the quantitative metrics and are consistent with 

previous satellite-based CB detection approaches [10,27]. 

Fig. 8 presents the results of CB and non-CB cloud detection 

in the NOAA-18 and 19 images. The details of the detection 

data results by the YOLOv8 model are outlined in Table 1. 

Table 1 summarizes the detection results obtained from 

three representative satellite scenes. The high proportion of 

detections with confidence scores above 0.50 supports the 

robustness of the YOLOv8 model, while the limited number of 

low-confidence detections highlights remaining challenges in 

ambiguous cloud regions. Similar confidence-based 

evaluations have been reported in prior studies on cloud 

detection to assess model reliability [11,18]. 

As depicted in Table 1, a total of 53 objects were detected 

across the three images. Of these, 49 detections had confidence 

scores above the threshold (TP), while 4 detections fell below 

it (FP). Substituting these values into the equations above 

yields an overall detection accuracy of 92.45% and an error rate 

of 7.55%. These results indicate that the model has a capacity 

to detect and classify cloud features with a high level of 

confidence, with only a small portion of predictions falling into 

the lower-confidence category.  

 
Fig. 7. Training progress of the object detection model over 200 epochs, including loss and performance metrics 
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Fig. 8. (a) shows CB and nonCB detection on a NOAA-18 image from 4 

January 2022 at 03:15 UTC after contrast enhancement. YOLOv8 detected 20 

objects: 4 CB (confidence 0.79–0.93) and 16 nonCB (0.81–0.94), with nonCB 

dominating the central and right regions. (b) presents detection results from 5 

January 2022 at 03:03 UTC. A total of 20 objects were identified: 2 CB 

(0.90–0.93) and 18 nonCB (0.52–0.93). CBs were located center to lower-left, 

while nonCBs were more widely distributed. (c) illustrates detection on a 

NOAA -19 image from 3 February 2022 at 00:16 UTC. YOLOv8 found 13 

objects: 3 CB (0.58–0.82) concentrated in the middle to upper-right and 10 

nonCB (0.25–0.70) distributed broadly with variable confidence scores 

Table 1. Summary of the detection results produced by the YOLOv8 model 

Name Total 

Detections 

Detections 

≥ 0.50 

Detections 

< 0.50 

Confidence 

Range 

noaa-18-

202201040315-

contrastb 

20 20 0 0.79 - 0.94 

noaa-18-

202201050303-

contrastb 

20 20 0 0.52 – 0.93 

noaa-19-

202202030016-

contrastb 

12 9 3 0.25 – 0.82 

 

To evaluate the model’s performance, accuracy and error 

rate were calculated using the following equations: 

Accuracy (%) = (49 / 53) x 100 % = 92.45 % (2) 

Error Rate (%) = (4 / 53) x 100 % = 7.55 % (3) 

It is imperative to note that, in this study, rather than using 

precision, recall, or mean Average Precision (mAP) as a 

measure of accuracy as the standard for most object detection 

methods, this accuracy is actually defined based on the 

confidence threshold. This approach serves as an interpretation 

of the detection accuracy at an operational level. It is pivotal to 

note that, in the confidence level for the detected object being 

0.50 or higher, the object is considered correctly detected. In 

contrast, those with lower confidence levels are considered 

uncertain outputs of detection. In this case, this definition of 

accuracy represents the number of detections that meet the 

specified confidence level. 

In contrast, mAP values quantify the performance of 

detection across multiple confidence thresholds and 
Intersection over Union (IoU) criteria, thus offering a more 

comprehensive evaluation of localization and classification 

accuracy. Therefore, the reported accuracy of 92.45% and the 

mAP@0.5 value of approximately 0.57 represent different 

aspects of model performance and should not be directly 

compared. While mAP evaluates overall detection quality, the 

confidence-based accuracy provides additional insight into the 

reliability of high-confidence detections for operational 

applications such as early warning systems. 

It is important to note that confidence thresholds are 

subjected to variation according to performance assessment 

tasks. Specifically, the confidence threshold value 0.355 is 

selected according to F1 score maximization, with the objective 

of identifying an optimal balance point concerning Precision-

Recall score values calculated over the evaluation set of 

images. This confidence threshold is exclusively employed 

within the context of an evaluation concerning the operating 

point at which the balance of classifications is most consistently 

achieved by the detector. 

In contrast, a higher confidence threshold of 0.50 is adopted 

for accuracy analysis to reflect a more conservative operational 

scenario. In practical applications such as early warning or 

aviation-related monitoring, high-confidence detections are 

favored to reduce false alarms. Hence, the accuracy reported at 

a confidence threshold of 0.50 represents the reliability of 

detections under stricter confidence requirements, rather than 

the optimal classification balance. These two thresholds serve 

complementary functions and should not be interpreted 

interchangeably. 

Recent studies have employed the use of various YOLO 

models such as YOLOv5 and YOLOv7 for cloud and 

atmospheric objects. However, these studies in general have 

shown an incremental improvement over each other regarding 

the detection capability and efficiency of the method. The 

YOLOv8 model was selected for the task due to its anchor-free 

mechanism, its feature aggregation technique, and the 

steadiness of its training procedure, rendering it more 

appropriate for cloud objects that tend to have irregular 

features. Instead of empirically asserting its superiority over 

other models available, the feasibility of YOLOv8 will be 

assessed for its functionality from a real-time satellite 

observation perspective.  

It is importantly noted that no direct quantitative 

comparison is made with other state-of-the-art detectors under 

identical experimental settings, which require multiple model 

retraining with the same dataset and hyperparameter and is 

considered an important direction of prospective work. 

However, the performance achieved in this paper is consistent 

and comparable to those reported in previous cloud detection 

studies using YOLO architecture, thereby validating the 

proposed approach. 

However, a number of potential limitations should be 

acknowledged. Firstly, the model is based solely on RGB 

satellite imagery and does not explicitly model spectral or 
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temporal information, which may limit its ability to 

discriminate visually similar cloud types. Secondly, the 

efficacy of detection will be determined by the quality of 

manual annotations and the spatial resolution of the satellite 

data. Furthermore, the confidence-based thresholding 

technique introduces a trade-off between false positives and 

false negatives, and requires threshold values to be carefully 

selected according to the operational requirements. These 

results emphasize the necessity to understand model behavior 
beyond aggregate performance metrics, with a particular focus 

on safety-critical applications. 

 

3.1. Comparison with previous YOLO-based studies and  

       implications 

  

Different from previous detection studies grounded in the 

YOLO, which are primarily concerned with generic object or 

land scene detection, this study aims to exploit polar-orbiting 

satellite imagery in the DO of Cumulonimbus clouds over 

tropical areas. Although the results achieved are similar to 

performance statistics as reported by previous YOLO-based 

cloud detection studies, this work adds value to existing 

approaches by verifying meteorologically and using METAR 

observations. Pragmatically, the findings demonstrate the 

feasibility of employing YOLOv8 for near real-time CB 

identification, thereby supporting aviation safety and early 

warning systems. Scientifically, the observed detection 

behavior and failure cases provide insights into the strengths 

and limitations of anchor-free object detectors when applied to 

diffuse and non-rigid atmospheric targets. 

Some recent studies have presented quantitative results for 

CB detection with infrared thresholds, multispectral satellite 

data and radar-supported techniques. Such algorithms 

generally can attain a high level of accuracy in the detection 

process as they exploit information regarding the physical 

cloud-top temperature, vertical structure or reflectivity. 

However the reported performance is based on different 

datasets, sensors, spatial resolutions of images and evaluation 

protocol, which prevents us making direct quantitative 

comparison with YOLO methods for vision modality. In this 

study, the detection performance was achieved within the 

reported range of previous CB detector studies, using solely 

single-source RGB satellite imagery. This highlights the 

feasibility of using a lightweight, data-driven detector for near-

real-time CB identification, particularly in regions where radar 

coverage or multispectral data availability is constrained. 

Although the utilization of METAR observations provides 

valuable independent validation from an operational 

meteorological perspective, it is important to acknowledge the 

inherent spatial and temporal mismatches between satellite-

based detections and point-based surface reports. Satellite 

imagery represents cloud structures over a spatially continuous 

area, whereas METAR observations are recorded at fixed 

ground stations and describe atmospheric conditions at specific 

locations. As a result, a detected Cumulonimbus cloud within a 

satellite image may not be perfectly aligned with the exact 

position of a METAR station, particularly for rapidly evolving 

convective systems. 

Furthermore, temporal discrepancies may arise due to 

differences between satellite overpass times and the reporting 

intervals of METAR observations. Despite efforts to match 

observations within a close temporal window, short-term 

convective development or dissipation may still lead to partial 

inconsistencies. These limitations are inherent to satellite–

surface data integration and should be considered when 

interpreting the results of validation process. Nevertheless, 

METAR-based validation remains valuable in providing 

operational relevance and complementary confirmation of 

convective activity. 

4. Conclusion 

The outcome of the evaluation suggests that the YOLOv8 

model provides encouraging results for the detection of 

Cumulonimbus (CB) cloud in individual NOAA satellite 

imagery, as evident by balanced quantitative metrics and 

observations. The model has been shown to be capable and 

efficient in differentiating CB clouds from non-CB clouds, 

reaching an highest F1 score of 0.88 for an optimal confidence 

threshold value of 0.355, while an even higher conservative 

value threshold at 0.50 has been demonstrated to work well for 

operational accuracy. The results for object detection 

performance, regardless of CB cloud size and shape, confirm 

the resilience of the system and demonstrate YOLOv8’s 

superior ability in identifying small-scale and convective CB 

clouds. This signifies YOLOv8 strength in encoding small-

scale convective clouds. Despite attaining mAP scores of 

0.568, which are comparatively weaker than standards for 

general terrestrial object detection tasks, the model can still 

compete with satellite image detection work, considering the 

natural complexity involved in atmospheric phenomena for 

accurate cloud detection. Validation on additional NOAA-18 

images provided an overall accuracy level of 92.45%, 

signifying consistent performance for accurate detection. 

However, remaining confusion between CB clouds and 

background regions confirms limitations in utilizing RGB 

images alone. This suggests the necessity for additional satellite 

imaging tools or techniques involving multispectral, temporal, 

or adaptive threshold strategies for further enhancement in 

resilience for operational aviation weather surveillance and 

early warning systems. 
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