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Abstract 

The multi-class motor imagery based on Electroencephalogram (EEG) signals in Brain-Computer Interface (BCI) systems still face challenges, 
such as inconsistent accuracy and low classification performance due to inter-subject dependent. Therefore, this study aims to improve multi-
class EEG-motor imagery using two-stage detection and voting scheme on one-versus-one approach. The EEG signal used to carry out this 
research was extracted through a statistical measure of narrow window sliding. Furthermore, inter and cross-subject schemes were investigated 
on BCI competition IV-Dataset 2a to evaluate the effectiveness of the proposed method. The experimental results showed that the proposed 
method produced enhanced inter and cross-subject kappa coefficient values of 0.78 and 0.68, respectively, with a low standard deviation of 0.1 
for both schemes. These results further indicated that the proposed method has an ability to address inter-subject dependent for promising and 
reliable BCI systems. 
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1. Introduction  

Brain-Computer Interface (BCI) is a computerized system 

that translates the brain signals into commands, which are 

relayed to an external device to carry out specific actions [1], 

[2] that are recorded with an electroencephalogram (EEG) [3]. 

The motor imagery (MI) task is one of the most studied and 

promising types of EEG signals in BCI systems [4,5]. MI is 

designed to detect and translate the images of the user's 

imagination regarding a motor task, such as the hand movement 

needed to roll a wheelchair forward or to move a cursor left or 

right [6,7]. Several studies have shown that MI provides a 

promising means of control and communication to people with 

motor disabilities [3,8] and plays an essential role in learning 

and rehabilitating motor skills, as well as the control of 

prostheses [9].  

Two of the most significant challenges in the detection of 

MI task are the efficient extraction and correct classification of 

EEG features [2,10,11]. The extraction process remains a 

challenge since the signal is naturally noisy [12], non-stationary 

[13,14], with intra and inter-subject dependents [6,15,16] that 

affects the classification results [12]. Furthermore, existing 

studies show several remaining problems, such as subject-

dependent or inconsistent accuracy among all subjects, and low 

performance in multi-class EEG-MI classification [17-21]. 

The single classifier has a common drawback in handling 

the nonlinear, noisy and embedded outlier nature of EEG signal 

data  [22]. For instance, the majority rely on the feature 

extraction and selection technique, thereby leading to the 

exhibition of poor performance when the features overlap with 

one another [23]. However, despite this major disadvantage, 

several studies have employed the use of this process, such as 

least squares classifier (LSC) [17] with novel feature extraction 

and linear discriminant analysis (LDA) [18] with fusion 

approach. Rodrigues et al. [17] proposed the space-time 

recurrent and LSC as feature extraction and classifiers for 

tackling multi-class EEG-MI classification using BCI 

competition IV-Dataset 2a. Their study gained high 

performance and low kappa coefficient in 2-class and 4-class 

classification, respectively. Razi et al. researched by employing 

the fusion theory, also known as the Dempster–Shafer theory 

(DST) [18]. In their study, the LDA was employed as a single 

classifier by fusing one-versus-one, one-versus-rest and two-

versus-two processes on DST, to gain a promising kappa 

coefficient of 0.75. However, their proposed method showed a 

less consistent performance because several subjects gained a 

low kappa coefficient. 

Several studies attempted to employ deep learning with a 

convolutional neural network as the main scheme to determine 

the limitation of single classifier performance [19-21]. Despite 

the promising features of deep learning in many areas, multi-

class EEG-MI classification, however, has still not gained 

excellent performance. Several drawbacks associated with 

deep learning, such as the need for numerous training data and 

hyper-parameters or configuration, need to be properly tuned. 

Furthermore, many previous studies [19-21], have different 
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hyper-parameters and configuration for deep learning model 

for every subject. Therefore, based on the performances of 

previous studies on multi-class, EEG-MI classification is still 

open for any improvement since its performance, and the kappa 

coefficient are found still far from excellence [19]. 

This study aims to address the remaining gaps in multi-class 

EEG-MI classification, which, according to numerous studies, 

still rely on the feature extraction and selection method and 

yield lower performance compared to the two-class EEG-MI 

classification. Meanwhile, the enhancement of multi-class 

EEG-MI classification via ensemble learning is not properly 

explored. Therefore, this study proposed the use of a hybrid 

classifier and one-versus-one (OvO) approach for multi-class 

EEG-motor imagery (MI) classification.  In hybrid classifier, a 

two-stage detection with Linear Discriminant Analysis (LDA) 

as the first stage detector was used, while the kNN and Gradient 

Boosted Tree (GBT) were used as the second stage detector. 

Furthermore, seven statistical features were used for feature 

extraction with the introduction of the data transformation 

approach, also known as channel instantiation [8]. 

This study is organized as follows. Section 2 explains the 

materials and methods used in this research, which comprises a 

dataset description and the proposed method. Section 3 

describes the quantitative result in comparison to previous 

studies and further discussions. Finally, Section 4 concludes the 

research. 

2. Materials and Methods 

2.1. Dataset 

This research made the use of BCI Competition IV–Dataset 

2a consisting of EEG data from 9 subjects [24]. The cue-based 

BCI paradigm consisted of four different motor imagery tasks 

the imagination of movement of the left hand (class 1), right 

hand (class 2), feet (class 3), and tongue (class 4). EEG data 

were recorded on two different days for two sessions of each 

subject. In each session, six runs were carried out, separated by 

short breaks. One run consisted of 48 trials (12 for each of the 

four possible classes), thereby culminating in 288 trials per 

session. 

In addition, twenty-two electrodes were used to record the 

EEG signals as monopolar with the left mastoid serving as a 

reference and the right as ground. The signals were sampled 

with 250 Hz and band-pass filtered between 0.5 – 100 Hz. 

Furthermore, the sensitivity of the amplifier was set to 100 µV, 

with an additional 50 Hz notch filter used to suppress line noise. 

This study used 2 out of 3 seconds, comprising of 500 data 

points from recorded EEG-MI. 

2.2. The Proposed Method 

The proposed method used in this research is the 

NWFE+OvO-TSD, purposely to develop a hybrid of narrow 

window feature extraction and classifier on a one-versus-one 

approach to enhance the performance of multi-class of EEG-

MI classification. Furthermore, the ensemble technique was 

used by employing hybrid classifier. This study, utilized the 

two-stage detection (TSD) by employing Linear Discriminant 

Analysis (LDA) as first stage detector, while kNN and Gradient 

Boosted Tree (GBT) were used as the second stage detector. 

All of these combinations were employed in one-versus-one 

technique (OvO) commonly used to tackle multi-class 

classification. Fig. 1 – 3 show the block diagram and modeling 

scheme of the proposed method. 

The following are the detailed steps of the proposed method: 

1) Data pre-processing  

This data pre-processing consisted of two stages. Firstly, 

windows were set to 3 – 5 seconds (2 seconds), which 

consisted of 500 data points at a frequency of 250 Hz. 

Secondly, this time window was split into 10 windows, 

consisting of 50 data points. 

2) Feature extraction 

After filtering and windowing, each window was 

extracted with seven statistical measures: root mean 

square, mean absolute value, standard deviation, 
skewness, kurtosis, coefficient of variation and variance 

to mean ratio. 

 

 

Fig. 1. Block diagram of the proposed method 

Fig. 2. Channel-trial instantiation scheme 
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3) Data Transformation  

In this proposed method, data transformation was 

generated to be the channel-trial dataset based on the 

channel-Trial instantiation approach. In this 

transformation, the EEG channels were converted into 

rows and the statistical measures of each window were 

converted into columns as shown in Fig. 3.  

 

 
 

Fig. 3. Channel-trial instantiation scheme (Tr=Trial, Ch=Channel, 

Data=7 statistical measures) 

 

4) Modeling with One-versus-One approach and TSD in 10 

fold cross-validation (CV). 
In this proposed method, the detection was split into 6 

classification tasks: 1 vs. 2, 1 vs. 3, 1 vs. 4, 2 vs. 3, 2 vs. 

4 and 3 vs. 4. Each of classification tasks was detected by 

TSD classifier by maximizing the probability of the 

detection from all classifiers, as shown in Fig. 4. 

5) Conducting a voting scheme and calculating its accuracy 

and standard deviation.  

This voting scheme was carried out because each trial had 

many instances as the result of the channel-trial 

instantiation scheme so as to produce one decision for 

each trial. 

 

Fig. 4 shows 2 datasets, namely training and testing, used to 

build and evaluate the model, respectively. The evaluation 

process was based on testing the dataset results to determine the 

kappa coefficient and accuracy. 

3. Results and Discussion 

As shown in Table 1, three experiments were conducted in 

this research to evaluate the proposed method due to subject-

dependent problem. The two experiments were used to handle 

inter-subject for both 2-classes and 4-classes. Meanwhile, 1 

experiment was dedicated to handling cross-subject, which was 

more challenging in EEG-MI classification. 

Table 1.  Experimental design with an inter-session scheme 

Experiment #class Training dataset Remark 

Experiment #1 2 (1) Inter-subject 

Experiment #2  4 (1) Inter-subject 

Experiment #3  4 (2) Cross-subject 

Note: (1) common training data + 30% own testing data, (2) common training 

data + 30% common testing data 

In the inter-subject scheme, the training dataset from BCI 

competition IV-Dataset 2a was combined to become a common 

training data with 30% testing data for the respective subject in 

the testing phase. Meanwhile, in the cross-subject scheme, all 

training data and 30% of all subject testing data were combined 

to become common training data. Therefore, in the cross-

subject scheme, the training dataset was identical for all 

subjects with the implementation of scheme inter-session 

detection due to the difference in training and testing. 

Table 2. Classification accuracy for BCI competition IV-Dataset 2a (2-class) 

in Experiment #1 with inter-subject 

Subject L/R L/F L/T R/F R/T F/T 

S1 90.97 85.42 83.33 88.19 90.97 88.89 

S2 94.44 95.83 93.06 96.53 93.75 97.92 

S3 90.28 90.28 91.67 90.28 93.06 90.28 

S4 86.81 83.33 82.64 90.28 90.28 92.36 

S5 91.67 97.92 93.06 97.22 97.92 97.92 

S6 77.78 86.81 81.25 80.56 86.81 86.81 

S7 84.03 78.47 77.08 88.19 88.89 86.11 

S8 95.14 88.19 88.89 92.36 95.83 91.67 

S9 90.28 90.28 95.83 88.89 89.58 89.58 

Average 89.04 88.50 87.42 90.28 91.90 91.28 

Std. Dev. 5.13 5.66 6.14 4.67 3.34 4.03 

 

BCI competition IV-Dataset 2a had 4-classes, namely left 

hand (L), right hand (R), foot (F), and tongue (T). In 

Experiment #1, the combination of 2-classes was evaluated, 

namely left hand vs. right hand (L/R), left hand vs. foot (L/F), 

left hand vs. tongue (L/T), right hand vs. foot (R/F), right hand 

vs. tongue (R/T), and foot vs. tongue (F/T). Table 2 shows that 

the classification related with the left hand (L) gained accuracy 

Fig. 4. Modeling scheme employing hybrid classifier over a one-versus-

one approach followed by a voting scheme as final detection 
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below 90%, while those unrelated, such as R/F, R/T, and F/T 

had excellent accuracy as indicated in bold font with 90.28%, 

91.90%, and 91.28%, respectively. 

Table 3. Classification performance for BCI competition IV-Dataset 2a (4-

class) in Experiment #2 with inter-subject and inter-session scheme 

Subject Accuracy (%) Kappa 

S1 75.00 0.69 

S2 95.14 0.94 

S3 84.72 0.81 

S4 76.04 0.7 

S5 88.19 0.85 

S6 72.92 0.67 

S7 72.22 0.66 

S8 92.01 0.90 

S9 87.85 0.84 

Average 82.68 0.78 

Std. Dev. 8.24 0.10 

 

In Experiment #2, 4-classes classification was carried out 

with the inter-subject scheme. Table 3 presents the 

classification results both in accuracy and kappa coefficient. 

Table 3 shows that S2 gained the highest results followed by 

S8 with accuracy >= 90% or kappa coefficient >= 0.9, where 

both were marked in bold font. Meanwhile, S7 followed by S6 

gained the lowest accuracy with 72.22% and 72.92%, 

respectively. However, for the overall result, the proposed 

method yielded good accuracy with 82.68% (kappa coefficient 

= 0.78). This second finding indicated that the proposed method 

is promising since many previous studies gained event below 

80%. 

Experiment #3 was a more challenging task, with a 4-class 

classification and cross-subject scheme. Table 4 presents the 

classification results with a promising overall performance 

because of the overall average accuracy above 70% (73.75%) 

kappa coefficient of nearly 0.7 (0.68). This third finding 

indicated that the proposed method is promising for multi-class 

EEG-MI classification. 

Table 4. Classification accuracy and kappa coefficient for BCI competition 

IV-Dataset 2a (4-class) in Experiment #3 with a cross-subject scheme 

Subject Accuracy (%) Kappa 

S1 77.43 0.72 

S2 82.99 0.79 

S3 76.39 0.71 

S4 65.28 0.59 

S5 73.26 0.67 

S6 69.79 0.63 

S7 52.78 0.46 

S8 82.99 0.79 

S9 81.25 0.76 

Average 73.57 0.68 

Std. Dev. 9.28 0.10 

 

Furthermore, to evaluate the competitiveness of the 

proposed method, a comparison prior to the research was 

carried out, as shown in Table 5. The comparison between 

Experiments #2 with other previous studies comprising of the 

same scheme (inter-subject scheme) used the bold font to 

indicate the best evaluation score in each subject. In addition,  

Table 5. Comparison to previous research on accuracy for BCI competition IV-Dataset 2a (4-class) in Experiment #2 with inter-subject and inter-session 

scheme 

Method 
Accuracy (%) 

S1 S2 S3 S4 S5 S6 S7 S8 S9 Average 

CCNN [21] 87.14 63.1 86.76 68.29 63.61 48.32 87.73 80.17 78.83 73.77  12.93 

MCNN [21] 90.21 63.4 89.35 71.16 62.82 47.66 90.86 83.72 82.32 75.72  14.37 

DFBCSP+CNN 

Monolithic [19] 
83.13 65.45 80.29 81.6 76.7 71.12 84 82.66 80.74 78.41  5.91 

DFBCSP+CNN 

Modular [19] 
84.91 66.38 84.74 81.36 79.22 70.67 86.12 83.81 83.04 80.03  6.52 

OVO-LDA [18] 82.29 40.97 84.03 60.07 58.68 46.87 76.04 79.17 78.47 67.4  15.22 

OVR-LDA [18] 82.29 46.18 79.51 63.19 57.29 53.12 77.78 76.39 77.08 68.09  12.56 

OVO-OVR-TVT-

DST [18] 
83.33 69.09 88.89 79.17 75 68.06 85.42 89.24 90.97 81.02  8.19 

STR+LSC [17] 60 33 67 45 33 33 35 70 67 49.22  15.60 

2L-CNN [20] 85.71 78.57 92.15 95.67 89.2 85.12 79.23 81.28 80.67 85.29  5.67 

Experiment #2 75 95.14 84.72 76.04 88.19 72.92 72.22 92.01 87.85 82.68  8.24 
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Fig. 5. A dot plot for each method ordered by their average 

accuracy (red dot) with standard deviation (red line). Note: 

M1=CCNN, M2=MCNN, M3=DFBCSP+CNN Monolithic, 

M4=DFBCSP+CNN Modular, M5=OVO-LDA, M6=OVR-LDA, 

M7=OVO-OVR-TVT-DST, M8=STR+LSC, M9=2L-CNN, 

Ex#2=Experiment #2 

 

 
Fig. 6. A dot plot for each method ordered by their average kappa 

coefficient (red dot) with standard deviation (red line). Note: 

M1=DFBCSP+CNN Monolithic, M2=DFBCSP+CNN Modular, 

M3=OVO-OVR-TVT-DST, M4=STR+LSC, M5=2L-CNN, 

Ex#2=Experiment #2. 

the proposed method gained the second best in terms of overall 

average accuracy, compared to previous studies. The proposed 

method outperformed 2 out of 9 subjects compared to all 

previous studies. This finding indicated that the proposed 

method is promising in multi-class EEG-MI classification and 

can still be improved. 

The proposed method (Ex#2), represented with dot-plots, as 

shown in Fig. 5, was still competitive. It was used for the 

consistent detection of 8 others previous studies. To 

corroborate the effectiveness and competitiveness of the 

proposed method, the kappa coefficient was also compared, as 

shown in Table 6. 

Table 6 shows that the proposed method outperformed 3 out 

of 9 subjects compared to prior research (as marked in bold 

font). In overall results, the average kappa coefficient and 

standard deviation were found higher and lower, respectively. 

These findings corroborated with the effectiveness and 

competitiveness of the proposed method in multi-class EEG-

MI classification. The dot plot diagram shown in Fig. 6 proves 

that the proposed method is better compared with prior 

research. 

Table 7. Comparison to previous research on accuracy for BCI competition 

IV-Dataset 2a (4-class) in Experiment #3 with cross-subject and inter-session 

scheme 

 

Table 7 shows the performance of Experiment#3 (cross-

subject scheme) that was better compared to previous related 

Subject CCNN [21] MCNN [21] Experiment #3 

S1 62.07 51.91 77.43 

S2 42.44 38.06 82.99 

S3 63.12 43.34 76.39 

S4 52.09 35.81 65.28 

S5 49.96 41.5 73.26 

S6 37.16 31.11 69.79 

S7 62.54 48.09 52.78 

S8 59.32 45.01 82.99 

S9 69.43 51.29 81.25 

Average 55.35 42.90 72.57 

Std. Dev. 10.5 6.65 9.28 

Table 6.  Comparison to previous research on kappa coefficient for BCI competition IV-Dataset 2a (4-class) in Experiment #2 with inter-subject and inter-

session scheme 

Method 
Kappa coefficient 

S1 S2 S3 S4 S5 S6 S7 S8 S9 Average 

DFBCSP+CNN Monolithic [19] 0.68 0.36 0.69 0.62 0.6 0.45 0.71 0.72 0.66 0.61  0.12 

DFBCSP+CNN Modular [19] 0.67 0.35 0.65 0.62 0.58 0.45 0.69 0.7 0.64 0.59  0.11 

OVO-OVR-TVT-DST [18] 0.78 0.59 0.85 0.72 0.67 0.57 0.81 0.86 0.88 0.75  0.11 

STR+LSC [17] 0.46 0.13 0.56 0.26 0.11 0.11 0.16 0.6 0.56 0.33  0.20 

2L-CNN [20] 0.70 0.59 1.00 1.00 0.83 0.80 0.72 0.63 0.64 0.77  0.15 

Experiment #2 0.69 0.94 0.81 0.7 0.85 0.67 0.66 0.9 0.84 0.78  0.10  
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research with less attention on the cross-subject in EEG-MI 

classification. According to [20], cross-subject is promising in 

EEG-MI classification because the signals are subject-

dependent, thereby leading to the need for reliable BCI systems 

[21]. Prior research carried out by [21] performed a cross-

subject scheme by employing a deep learning in the form of 

convolutional neural network (CNN). 

Table 7 shows that the proposed method outperformed 8 out 

of 9 subjects in previous studies (marked in bold font). This 

finding corroborated the proposed method, which handled the 

subject-dependent with various schemes and acceptable 

accuracies. 

A dot plot was used to indicate that the detection spread of 

the proposed method was narrower compared to prior research, 

as shown in Fig. 7. The simple approach from the proposed 

method outperformed more complex processes under CNN 

scheme (MCNN and CCNN). A significance test was 

performed with the Bonferroni-Dunn test for comparing the 

proposed method with other related previous studies [25,26]. 

To carry out the Bonferroni-Dunn test, the performance 

methods needed to be ranked by employing six statistical 

measures. The six statistical measures consisted of a range of 

kappa coefficient (max-min), first quartile (Q1), third quartile 

(Q3), mean absolute deviation (MAD), coefficient of variation 

(CV), and coefficient of quartile variation (CQV). Table 8 

shows the six statistical measure and its rank for all methods. 

 The proposed method (Experiment #2) gained the lowest 

rank compared to prior research. This initial finding indicated 

that the proposed method is more consistent compared to prior 

research. This rank was used in the Bonferroni-Dunn test with 

the critical difference (CD) plot, as shown in Fig. 8.  

 

The research with STR+LSC [17] was outside the tick line, 

meaning that it is the only study with a statistical difference. 

This finding indicated that the proposed method is competitive 

with previous research. Another significant test was performed 

to evaluate the cross-subject results using six statistical 

measures, as shown in Table 9.  

The result showed that the proposed method gained the 

lowest rank, meaning to be better in rank compared to other 

Table 8. Consistency measure and its rank from six statistical measures from all methods for BCI competition IV-Dataset 2a on kappa coefficient with 

inter-subject and inter-session scheme (Rank in bracket value) 

Method Range Q1 Q3 MAD CV CQV Avg. Rank 

DFBCSP+CNN Monolithic [19] 0.36 (4) 0.6 (4) 0.69 (4) 0.0933 (3) 0.19258 (5) 0.06977 (1) 3.5 

DFBCSP+CNN Modular [19] 0.35 (3) 0.58 (5) 0.67 (5) 0.0896 (1) 0.18818 (4) 0.07200 (2) 3.3 

OVO-OVR-TVT-DST [18] 0.31 (2) 0.67 (2) 0.85 (1.5) 0.0980 (4) 0.14700 (2) 0.11842 (4) 2.6 

STR+LSC [17] 0.49 (6) 0.13 (6) 0.56 (6) 0.1931 (6) 0.61536 (6) 0.62319 (6) 6 

2L-CNN [20]  0.41 (5) 0.64 (3) 0.83 (3) 0.1242 (5) 0.18752 (3) 0.12925 (5) 4 

Experiment #2 0.28 (1) 0.69 (1) 0.85 (1.5) 0.0928 (2) 0.12764 (1) 0.10390 (3) 1.6 

Table 9. Consistency measure and its rank from six statistical measures from all methods for BCI competition IV-Dataset 2a on accuracy with cross-subject 

and inter-session scheme (Rank in bracket value) 

Method Range Q1 Q3 MAD CV CQV Avg. Rank 

CCNN [21] 32.27 (3) 49.96 (2) 62.54 (2) 8.8314 (3) 0.18152 (3) 0.11182 (2) 2.50 

MCNN [21] 20.8 (1) 38.06 (3) 48.09 (3) 5.5842 (1) 0.15497 (2) 0.11642 (3) 12.17 

Experiment #3 30.21 (2) 69.79 (1) 81.25 (1) 7.3741 (2) 0.12610 (1) 0.07587 (1) 1.33 

 

Note: Q1=first quartile, Q3=third quartile, MAD=mean absolute deviation, CV=coefficient of variation, CQV=coefficient of quartile 

variation. 

Fig. 8. Critical difference (CD) plot based on Bonferroni-Dunn test for 

prior research vs Experiment #2 on BCI competition IV-Dataset 2a regarding 

kappa coefficient with inter-subject and inter-session scheme (CD=2.78) 

Fig. 9. Critical difference (CD) plot based on Bonferroni-Dunn test for 

prior research vs Experiment #3 on BCI competition IV-Dataset 2a regarding 

accuracy with cross-subject and inter-session scheme (CD=1.29) 

Fig. 7. A dot plot for each method ordered by their average accuracy (red 

dot) with standard deviation (red line) 
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previous studies. However, the CD plot produced by the 

Bonferroni-Dunn test showed no difference among all methods 

as shown in Fig. 9. 

All findings from Experiment #2 and #3 indicated that the 

proposed method is effective, consistent and able to handle 

subject-dependent. Furthermore, cross-subject is a promising 

and important task in multi-class EEG-MI classification [21]. 

However, in the cross-subject scheme, it is still open for 

improvement since the accuracy was found below 80%. 

The effectiveness of the proposed methods is a combination 

strategy from feature extraction using a classification scheme. 

Firstly, the narrow window and its combination tackles the 

nature of EEG signal, such as non-stationary and subject-

dependent [27]. Secondly, the higher-order statistic (skewness 

and kurtosis) is used as a statistical feature extraction method 

[3], mean average value and root mean square [8,28]. Finally, 

the third component is a combination of several, such as 

ensemble technique, which helps to derive consistent and better 

classification results [29]. 

4. Conclusion 

In conclusion, this study proposed the one-versus-one 

(OvO) approach for multi-class EEG-motor imagery (MI) 

classification using the two-stage detection as a classifier. This 

two-stage detection process employed Linear Discriminant 

Analysis (LDA) as the first stage detector, while kNN and 

Gradient Boosted Tree (GBT) were used in the second stage. 

The experimental results showed that the proposed methods 

gained higher kappa coefficient and lower standard deviation, 

approximately 80% and 0.8, respectively. In addition, the 

proposed method showed consistence detection among all 

subjects as indicated by low standard deviation with 6 statistical 

measures of consistent evaluation on the first rank. Another 

research carried out from the box plot, and Bonferroni-Dunn 

test corroborated the effectiveness and competitiveness of the 

proposed method compared to related works. Therefore, it can 

be concluded that the proposed method has an ability to address 

the inter-subject dependent problem in multi-class EEG-MI 

classification and enhance the detection performance. In future 

works, EEG channels reduction is needed to reduce the 

processed data with a decrease in time consumption, while 

applying the model in two-class EEG-MI classification to test 

the robustness of the proposed method. 
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