
Communications in Science and Technology 6(1) (2021) 35–40

COMMUNICATIONS IN

SCIENCE AND TECHNOLOGY
Homepage: cst.kipmi.or.id

© 2021 KIPMI

Al-Quran recitation verification for memorization test using Siamese

LSTM network

Rian Adam Rajagedea,*, Rochana Prih Hastutib

aDepartment of Informatics, Faculty of Industrial Technology, Universitas Islam Indonesia, Sleman 55584, Indonesia
bIndependent Scholar, Klaten 57417, Indonesia

Article history:
Received: 2 April 2021 / Received in revised form: 2 June 2021 / Accepted: 3 June 2021

Abstract

In the process of verifying Al-Quran memorization, a person is usually asked to recite verses without looking at the text. This process is generally
done together with a partner to verify the reading. This paper proposes a model using Siamese LSTM (Long Short-Term Memory) Network to
help users to check their Al-Quran memorization alone. Siamese LSTM network will verify the recitation by matching the input with existing
data for a read verse. This study evaluated two Siamese LSTM architectures: the Manhattan LSTM and the Siamese-Classifier. The Manhattan
LSTM output a single numerical value representing the similarity, while the Siamese-Classifier used a binary classification approach. We also
compared Mel-frequency Cepstral Coefficient (MFCC), Mel-Frequency Spectral Coefficient (MFSC), and delta features against model
performance. We used the public dataset from Every Ayah website and provided the usage information for future comparison. Our best model,
using MFCC with delta and Manhattan LSTM, produced an F1-score of 77.35%.

Keywords: Siamese Network; Long Short-Term Memory Network; Al-Quran Recitation

1. Introduction

Al-Quran is the holy book of Muslims, and memorizing it is

a form of worship for Muslims. To test their Al-Quran

memorization, a person is usually asked to recite one or more

verses without looking at the text. A Hafizh (a person who

memorizes Al-Quran) sometimes is not aware if he or she has

made a mistake because he do not see the texts being read. That

is why a partner is typically required in the process to give a

feedback on whether the recitation is correct. When someone

does not have a partner or has difficulty to meet their partner,

verifying Al-Quran memorization might be challenging. To

overcome this difficulty, it needs a system to check someone's

recitation's correctness without human assistance. This system

is required to detect whether the verse read in the memorization

test is correct.

Creating a system to test whether someone's speech is

correct can be done with several approaches. The first is by

using a speech-to-text approach, where the features from the

audio file are converted using a machine learning to obtain text

or transcripts from the speech. After receiving the text, it can

go to check the similarity of the text. Today's popular speech-

to-text methods use a number of deep learning approaches such

as Convolutional Neural Network (CNN), Recurrent Neural

Network (RNN), or a combination of both. [1-3]. Nevertheless,

the disadvantage of this method is that the resulting model is

relatively large. In the last Deep Speech model [2], released in

late 2020, the pre-trained model size reached 180 MB for

English. Previously in [4], a Deep Speech model was trained

using only Al-Quran recitation data. However, the resulting

Deep Speech model was more than 45 MB. A large model can

reduce the flexibility of using the model on some platforms.

Another approach is by directly mapping an audio file to a

class without extracting the text first. It directly classifies that

the received audio signal is a speech of a particular digit,

number, or letter [5,6]. In the case of speech verification, this

means that the model will classify the speech as valid or not.

This method is used in the small portion of speech-to-text to

recognize the spoken phonemes before extracting the text [1].

Therefore, this method is usually used for speech recognition

with a relatively short audio length, for example, a number,

word, or command [5-7]. Both approaches have their

advantages and disadvantages dependent upon what case they

are used.

Even though the Al-Quran uses Arabic, there are several

differences in speech recognition for Al-Quran compared to

Arabic speech recognition. The difference lies in the rules for

reading the Al-Quran or called tajweed, such as the tempo,

reading style, and the accuracy of the reading letters'

pronunciation. Several previous studies have specifically

discussed these problems. In [8] proposed the Mel-Frequency

Cepstral Coefficient (MFCC) and Hidden Markov Model

(HMM) features to detect short lengths and the reading styles.

The MFCC features is also used in [9] to detect one of the

tajweed rules in combination with Vector Quantization. To

detect the reading accuracy of difficult letters, in [6,10]

proposed the use of a neural network, especially CNN.

* Corresponding author.
Email: rian.adam@uii.ac.id

https://doi.org/10.21924/cst.6.1.2021.344

mailto:rian.adam@uii.ac.id
https://doi.org/10.21924/cst.6.1.2021.344

36 Rajagede et al. / Communications in Science and Technology 6(1) (2021) 35–40

This research proposed a different perspective for Al-Quran

recitation verification system. We proposed it by using a

combination of Siamese and Long Short-Term Memory

(LSTM) Network to verify whether the Al-Quran recitation is

correct without performing speech-to-text extraction process.

Siamese LSTM Network has previously been used to verify the

data similarity in the form of sequences, such as text data [11],

fragments of images [12], or speech data for speaker

verification [13]. Al-Quran recitation data can also be

represented as a sequence that can be processed using the

LSTM Network. Due to its specific task, we believed that this

method is more efficient than the speech-to-text approach. The

use of Siamese Network will change the representation of the

problem to binary classification, whether the reading that is

read matches the answer rather than classifying what verse is

being read. Siamese network is also suitable for use in cases

where the amount of training set for each class is small [14].

This will be very helpful considering that the speech features

are quite large to hinder creating models with limited resources.

Combining Siamese with LSTM network is done previously to

handle data in sequences such as speech or text data [11,15]. In

this study we used a publicly available dataset from Every

Ayah (https://everyayah.com/) to facilitate comparison in

future research.

2. Materials and Methods

2.1. Dataset

This study used publicly available datasets to facilitate

comparisons in future research. The dataset consisted of five

reciters who read the last ten Surahs of Al-Quran from Surah

number 105 to 114 or specifically, there were 48 verses. The

reciters are shown in table 1. The reciter code in table 1 was

used on Every Ayah website to choose the specific reciters with

specific audio quality. The audio files were downloaded using

url http://www.everyayah.com/data<reciter_code>.

Of the five reciters, we used four reciters for training and

one reciter for testing. In the training process, 30% of the train

set samples were used as a validation set to avoid overfitting.

We only used the testing set at the end of the experiment after

obtaining the best models to avoid information leaks. In this

study, we used the testing set from a different reciter from the

training set. It made the evaluation process carried out to

unobserved data commonly occurred in speech recognition

evaluation.

Table 1. Reciter information

Reciter Code Data Usage

Alafasy_64kbps Training

Hani_Rifai_64kbps Training

Maher_AlMuaiqly_64kbps Training

Muhammad_Ayyoub_64kbps Training

Khalefa_al_tunaiji_64kbps Testing

The Siamese network dataset was built by pairing two audio

files and then labeled as 1 if both verses read were the same and

0 if the verses were different. By pairing verses between the

reciters, the combination resulted in an imbalance class with

many labeled 0 verse pairs. Training the model with imbalance

class was deemed necessary to make the model more robust in

determining the correct answer. However, to avoid a significant

gap between both classes, we downsampled the majority class

by randomly sampling the data so that the distribution of

training set and test set appeared as shown in table 2.

Table 2. Class distribution

Dataset Correct Incorrect

Train set 288 9006

Test set 192 253

Apart from pairing the two audio files, we also created a

small data set named the inference set. The data consisted of 36

audio files randomly chosen from 12 verses from reciter 5. The

chosen verses are shown in table 3. The data were also used to

evaluate the model but differently from the test set. The

inference set was used when simulating the model, checking

whether the recitation was correct with the expected verse. The

dataset consisted of 36 samples: 12 correct samples; 12 samples

modified from the original recitation by cropping 30% of the

end of the audio; and 12 samples that did not match the verse

that the reciter should read.

Table 3. Verses used in inference set (surah/ayah)

105/004 106/004 107/002 107/007

108/001 109/003 110/002 111/002

112/004 113/001 113/004 114/006

2.2. Feature extraction

All data used were turned into a mono channel and set to

have a frame rate of 16 kHz. Two feature extraction methods

were used separately: Mel-frequency Cepstral Coefficient

(MFCC) and Mel-frequency Spectral Coefficient (MFSC).

Feature extraction was carried out using Python Speech

Features (https://.github.com/jameslyons/python_speech_

features). MFCC is a commonly used method as in [10,16],

while the MFSC method was originally proposed for the CNN

architecture in [1] and it was also used for Arabic datasets in

[6]. The MFSC method ignored the Discrete Cosine Transform

(DCT) step in MFCC so it only used spectral values instead of

its inverse, cepstral.MFCC produced 13 coefficients for each

frame, while the MFSC produced 26 coefficients, without using

the energy features. In this study, the frame width of 30

milliseconds was used. Each data then had a different number

of frames dependent on the original length of the audio. Figure

1 shows the plot of MFCC features for an audio file.

The features of MFCC and MFSC were normalized using

Cepstral Mean Normalization (CMN) before feeding it to the

model. It was used to reduce channel distortion in the data

caused by different recording environments and devices. CMN

was calculated on each coefficient between frames using (1)

and (2). In that equation, 𝑜𝑖
𝑡 refers to the value of the 𝑖-th

coefficient in the 𝑡-th frame, where 𝑇 is the number of frames

https://github.com/jameslyons/python_speech_features
https://github.com/jameslyons/python_speech_features

 Rajagede et al. / Communications in Science and Technology 6(1) (2021) 35–40 37

in each sample. The standard deviation of the 𝑖-th coefficient,

𝜎𝑖, calculated on the same dimension as the mean value 𝜇𝑖.

 μi =
1

T
∑ oi

tT
t=1  

 𝑜𝑖
�̅� =

𝑜𝑖
𝑡−μ𝑖

σ𝑖
 

Fig. 1. (a) Original audio plotted in time domain (b) Extracted MFCC

features from original audio, 281 frames and 13 features

Fig. 2. Illustration of Manhattan LSTM architecture

In addition, we explored the usage of delta features from

MFCC, as used in [1], [6]. Delta features of the 𝑡-th frame were

computed using (3), where ct+1 and ct−1 were the coefficients

of MFCC from previous and next frame. We also normalized

the delta features using CMN. When a model used delta

features, we concatenated MFCC and delta features to double

the feature vector length.

 dt  =  
ct+1 − ct−1

2
 

2.3. Siamese LSTM models

Siamese network [17] is a type of neural network that is used

to verify the similarity of two samples. The Siamese network

architecture consists of two models with the same weight and

parameters but receiving different inputs. Both inputs were then

combined into one. The output was usually a single value that

represented the similarity of the two data. Due to the data in the

form of sequences, this study combined Long Short-Term

Memory (LSTM) network with Siamese architecture.

LSTM is a type of neural network architecture designed for

data in sequences [18]. It improved the Recurrent Neural

Network (RNN), which excelled in preserving information in

long sequences. In this study, the hidden state of the last

sequence, hlast, was used as the LSTM model output and then

compared with other inputs in the Siamese network. The hidden

state value at time 𝑡 was calculated using (4).

 𝑖𝑡 = σ(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖)

𝑓𝑡 = 𝜎(𝑊𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏ℎ𝑓)

 𝑔𝑡 = tanh(𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏ℎ𝑔) 

𝑜𝑡 = σ(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜)

 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡

 ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) 

In Equation (4), xt is the input at time 𝑡. Meanwhile, it,

ft, gt, ot are LSTM gates, which differentiate LSTM with RNN.

Sigmoid function, σ, used as non-linear activation function.

This research used multilayer LSTM. In the next layer, the

input of the model at time 𝑡 was obtained from the hidden state

of the previous layer at time 𝑡.
We evaluated two types of Siamese-LSTM networks. The

first type was the Manhattan LSTM (MaLSTM) Network

proposed in [11]. MaLSTM used two LSTM networks with the

same weights to process data in the form of sequences. The

illustration is shown in figure 2. The input xi
(a)

 is the coefficient

vector in i-th frame for data a. The final output of each LSTM

was combined and then the similarity value was calculated

using a function based on Manhattan distance. The single value

as the result of this difference was the output of the MaLSTM

model.

For the second type, the Siamese-LSTM network produces

output in binary class, correct or not. The absolute difference

of the two LSTM networks' output is calculated and then fed as

input to the fully connected layer with the two outputs as

illustrated in figure 3. This architecture is similar with the one

used in [19]. Henceforth, the first model will be referred to as

MaLSTM, while the second model is called Siamese-Classifier.

Fig. 3. Illustration of Siamese-Classifier architecture

38 Rajagede et al. / Communications in Science and Technology 6(1) (2021) 35–40

We also explored the addition of as fully connected layer

with 200 neurons before the similarity function in MaLSTM,

as shown in figure 4. We added a fully connected layer that

received output from the LSTM to add to the complexity of the

model as is done in a typical LSTM model. We used h̅ to

represent the outputs from additional fully connected layer in

the figure.

Fig. 4. MaLSTM with additional fully-connected layer

Both models were trained using Adam optimizer [20] and

implemented using PyTorch framework [21]. We initialized the

weight and bias model with Glorot Uniform [22], as shown in

(5). This method initialized weights and biases by randomly

select a value between −
1

𝑛
 to

1

n
, where n is the hidden size in

the LSTM model or the number of input neurons in the fully

connected layer.

𝑊, 𝑏 ∼ 𝑈 (−
1

𝑛
,

1

𝑛
)  

The cost function used in the MaLSTM model is the sum of

the squared error for handling imbalance class. Meanwhile, the

Siamese-Classifier uses a weighted cross-entropy with a weight

ratio of 1:4. Weighted cross-entropy is calculated using (6)

where x is the output vector, c is the prediction class, and w
is the class's weight vector.

 𝐶𝑜𝑠𝑡(𝑥, 𝑐) = 𝑤[𝑐](−𝑥[𝑐] + log (∑ 𝑒𝑥𝑝(𝑥[𝑗])𝑗))

2.4. Experimental stages

During the training process, the model was evaluated using

the validation set to find the best parameters. We attempted to

find some parameters such as architecture, learning rate, and

the number of training epochs. When finding parameters, we

only used the dataset with MFCC features. After finding the

best parameters in the validation set, the model was trained with

all training sets, including the validation set, and was evaluated

using the test set and the inference set.

In the test set, the Precision, Recall, and F1-score (7) were

used to evaluate the model. We used the F1-score as an

evaluation metric because the data had class imbalance. The

number of pairs with label 0 was more than those with label 1.

The use of F1-score for the imbalance class was considered

better than using accuracy because of its ability to measure the

model's performance on the smaller class [23]. Besides the F1-

score, the model precision also needed to be considered.

Models with high precision values can avoid false positives

where the model confirms recitations that are false. Precision is

calculated using (8).

F1-score =
2×Precision×Recall

Precision+Recall
 

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

True Positive + False Positive


3. Results and Discussion

3.1. Hyperparameters search

After several trials using validation set, we selected five

architectures that performed reasonably well. The selected

architectures can be seen in table 4. Model that uses additional

layer as shown in Fig. 4 is indicated in the Additional Layer

column in table 4.

The learning rate, number of epochs, and threshold values

used are shown in table 5. The number of epochs was selected

when the validation loss obtained during training has not

decreased or tended to start to increase (overfitting). MaLSTM

model has an additional hyperparameter, threshold, to

determine whether two input data are the same. The threshold

parameter in MaLSTM is one of the drawbacks because finding

the best value requires an additional search process. The

threshold that produces the best score can differ depending on

the data, model, and even other hyperparameters such as

learning rate. This is not experienced by Siamese-Classifier,

which immediately classifies whether two audio files read the

same verse.

Table 4. Models architecture

Model Type
LSTM hidden

neuron

LSTM

layers

Add.

layer

A
Siamese

Classifier
200 3 No

B MaLSTM 200 3 No

C MaLSTM 200 3 Yes

D
Siamese

Classifier
300 3 No

E
Siamese

Classifier
300 2 No

Table 5. Model hyperparameter

Model Epoch Learning rate Threshold

A 45 0.00002 -

B 190 0.002 0.005

C 305 0.001 0.018

D 50 0.00002 -

E 50 0.00002 -

 Rajagede et al. / Communications in Science and Technology 6(1) (2021) 35–40 39

3.2. Evaluation on test set

After the training process, the five models with the best

hyperparameters were evaluated with the test set. The results

obtained are shown in table 6 showing that Model B had the

best performance on the F1-score than other four models.

Model B was the original MaLSTM model that the output was

a similarity score. Model C, which used MaLSTM model with

an additional layer, had the second-best performance in the F1-

score evaluation. The highest Precision value was owned by

Model D, but this model had a low F1-score. In contrast, model

B with the highest F1-score value, had the lowest Precision

value. The robust model we expected had a similar high value

both in F1-score and precision.

Table 6. Models performance on test set

Model Precision Recall F1-Score

A 71.72 54.16 61.72

B 67.61 86.97 76.10

C 70.77 80.73 75.43

D 75.69 56.77 64.88

E 71.97 58.85 64.76

3.3. Features comparison

As shown in table 7, we compared the model performance

on a dataset using the MFSC feature. It can be seen that the best

model with MFCC features, i.e. model B, outperformed all

models with MFSC features. Even though it was reported [1],

[6] that MFSC helps to produce better model performance

because it maintains locality features, we assumed that it

depends on the architecture used in the study. In this study, as

we used LSTM instead of Convolutional Neural Network

(CNN) used in [1,6], which processes data as a sequence, it

appeared that the MFCC feature is more recommended.

Table 7. Results comparison between MFCC and MFSC

Model Features F1-score

B MFCC 76.10

A MFSC 52.96

B MFSC 70.24

C MFSC 74.24

D MFSC 60.26

E MFSC 56.03

Table 8. Results comparison after using delta features on test set and

inference set

After MFCC seemed to outperform MFSC, we explored the

use of additional delta features of MFSC. We used MaLSTM

models B and C, and then tested them on the test set and

inference set. The results are shown in table 8 in which it can

be seen that the delta features succeeded in increasing the F1-

score on the test set especially for model C.

As shown in table 8, all models used MFCC as features,

except models with "+ Delta" that concatenated delta features

on the feature vector. It can be seen that delta features not only

increased the F1-score, but also made model C to have the

highest precision value compared to the other four models and

slightly lower than model D as depicted in table 6.

3.4. Evaluation on inference set

The next stage of evaluation was carried out using the

inference set. At this step, we made a prototype using the best

model to verify whether a recitation for the specific ayah was

correct. The audio file, along with the verse number read, was

input into the system, and then the system would conduct

inference four times by pairing the input data with four reciters

that read the same verse. The four reciters were those used in

the training set as shown in table 1.

Fig. 5. Evaluation flow on inference set second sub-figure

We stored the records of the four reciters in a features

matrix. When the system received a recording, the system

sought the corresponding verse from the four reciters on the

features matrix and then performed the inference process using

the model four times. The process is shown in figure 5. To

determine the system output, we used a rule: if at least two of

the four models return a "correct" value, then the audio will be

labeled as correct or match the verse read.
The F1-scores we obtained for the evaluation using the

inference set are shown in table 9. As seen in the table, model

C with delta features consistently outperformed other models

both on F1-score and Precision value.

Model Precision Recall
Test set

F1-score

B 67.61 86.97 76.10

B + Delta 70.23 78.65 74.2

C 80.73 80.73 75.43

C + Delta 75.62 79.17 77.35

40 Rajagede et al. / Communications in Science and Technology 6(1) (2021) 35–40

3.5. Evaluation on model size

We saved the features matrix using Pickle, and the resulting

file size was 10.4 MB. Model C was saved using PyTorch

serialization, resulting in 3.4 MB in size. It can be seen that, the

total storage required for the inference process was only 13.8

MB, quite efficient compared to the general pre-trained model

mentioned before.

Table 9. Models performance on inference set

4. Conclusion

In this study, we proposed the use of the Siamese LSTM

network to verify the Al-Quran recitation for memorization

test. We evaluated two types of models, i.e. the MaLSTM and

Siamese-Classifier, which used two different approaches. In

addition, we experimented with some feature extraction

methods, namely MFCC, MFSC, and Delta. The model was

trained using data from four reciters who read 48 verses from

the last ten Surahs of Al-Quran and tested using different

reciters. We selected the best model based on the F1-score in

the test set. Our best model using MaLSTM with additional

fully connected layer and using MFCC and delta features got

an F1-score of 77.35%. Compared to the pre-trained speech-to-

text model, our model only required small storage for inference.

For the future research, it is suggested to use more complex

model, for example a deeper Siamese network or using

attention-based model. Train the model with more data,

different speakers, or fine tune from the available pre-trained

model may achieve a better performance in Al-Quran recitation

verification.

References

1. O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu,

Convolutional neural networks for speech recognition, IEEE/ACM Trans.

Audio, Speech, Lang. Process. 22 (2014) 1533–1545.

2. A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, et al.,

Deep speech: scaling up end-to-end speech recognition, arXiv Prepr.

arXiv1412.5567, 2014.

3. D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,

et al., Deep speech 2: end-to-end speech recognition in english and

mandarin, Int. Conf. Mach. Learn., New York City, NY, USA, 2016, pp.

173–182.

4. E. Tareek, Project DeepSpeech Quran, Github repository,

https://github.com/tarekeldeeb/DeepSpeech-Quran (accessed 26 May

2021).

5. N. Hammami and M. Sellam, Tree distribution classifier for automatic

spoken arabic digit recognition, Int. Conf. Internet Technol. Secur. Trans.,

London, UK, 2009, pp. 1–4.

6. R. A. Rajagede, C. K. Dewa, and Afiahayati, Recognizing arabic letter

utterance using convolutional neural network, 18th IEEE/ACIS Int. Conf.

SNPD, Kanazawa, Japan, 2017, pp. 181–186.

7. H. A. Elharati, M. Alshaari, and V. Z. Këpuska, Arabic speech recognition

system based on MFCC and HMMs, J. Comput. Commun. 8 (2020) 28–34

8. B. Yousfi, A. M. Zeki, and A. Haji, Holy qur’an speech recognition system

distinguishing the type of prolongation, Sukkur IBA J. Comput. Math. Sci.

2.1 (2018) 36-43.

9. A. Ismail, M. Yamani, I. Idris, N. M. Noor, Z. Razak, and Z. Yusoff,

MFCC-VQ approach for qalqalah tajweed rule checking, Malaysian J.

Comput. Sci. 27 (2014) 275-293.

10. E. S. Wahyuni, Arabic speech recognition using MFCC feature extraction

and ANN classification, 2nd Int. Conf. Inf. Technol. Inf. Syst. Elect. Eng.,

Yogyakarta, Indonesia, 2017, pp. 22–25.

11. J. Mueller and A. Thyagarajan, Siamese recurrent architectures for

learning sentence similarity, 30th AAAI Conf. Artif. Intell., Phoenix, AZ,

USA, 2016, pp. 2786-2792.

12. R. R. Varior, B. Shuai, J. Lu, D. Xu, and G. Wang, A siamese long short-

term memory architecture for human re-identification, Comput. Vis.

ECCV, Amsterdam, The Netherlands, 2016, pp. 135-153.

13. K. Sriskandaraja, V. Sethu, and E. Ambikairajah, Deep siamese

architecture based replay detection for secure voice biometric,

INTERSPEECH, Hyderabad, India, 2018, pp. 671-675.

14. J. Zhang, X. Jin, Y. Liu, A. K. Sangaiah, and J. Wang, Small sample face

recognition algorithm based on novel siamese network, J. Inf. Process.

Syst., 14 (2018) 1464-1479.

15. P. Neculoiu, M. Versteegh, M. Rotaru, and T. B. V Amsterdam, Learning

text similarity with siamese recurrent networks, RepL4NLP-2016, Berlin,

Germany, 2016, pp. 148-157.

16. M. Bezoui, A. Elmoutaouakkil, and A. Beni-Hssane, Feature extraction of

some quranic recitation using mel-frequency cepstral coeficients (MFCC),

5th Int. Conf. Multimedia Comput. Syst., Marrakech, Morocco, 2016, pp.

127–131.

17. J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore et al.,

Signature verification using a 'siamese' time delay neural network, Int. J.

Pattern Recognit. Artif. Intell. 7 (1993) 669–688.

18. S. Hochreiter and J. Schmidhuberx, Long short-term memory, Neural

Comput. 9 (1997) 1735–1780.

19. J. Wang, Y. Qin, Z. Peng and T. Lee, Child speech disorder detection with

siamese recurrent network using speech attribute features,

INTERSPEECH, Graz, Austria, 2019, pp. 3885-3889.

20. D. P. Kingma and J. L. Ba, Adam: A method for stochastic optimization,

3rd Int. Conf. Learn. Representations, San Diego, CA, USA, 2015.

21. A. Paszke, et al., PyTorch: an imperative style, high-performance deep

learning library, Adv. Neural Inf. Process. Syst. 32 (2019) 8026–8037.

22. X. Glorot and Y. Bengio, Understanding the difficulty of training deep

feedforward neural networks, J. Mach. Learn. Res. 9 (2010) 249–256.

23. G. Forman and M. Scholz, Apples-to-apples in cross-validation studies:

pitfalls in classifier performance measurement, SIGKDD Explor. 12

(2010) 49-57.

Model Precision Recall F1-score

A 53.33 66.67 59.26

B 62.5 83.33 71.43

C 62.5 83.33 71.43

D 58.82 83.33 68.97

E 58.82 83.33 68.97

B + Delta 71.43 83.33 76.92

C + Delta 90.00 75.00 81.82

