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Abstract 

In the process of verifying Al-Quran memorization, a person is usually asked to recite verses without looking at the text. This process is generally 
done together with a partner to verify the reading. This paper proposes a model using Siamese LSTM (Long Short-Term Memory) Network to 
help users to check their Al-Quran memorization alone. Siamese LSTM network will verify the recitation by matching the input with existing 
data for a read verse. This study evaluated two Siamese LSTM architectures: the Manhattan LSTM and the Siamese-Classifier. The Manhattan 
LSTM output a single numerical value representing the similarity, while the Siamese-Classifier used a binary classification approach. We also 
compared Mel-frequency Cepstral Coefficient (MFCC), Mel-Frequency Spectral Coefficient (MFSC), and delta features against model 
performance. We used the public dataset from Every Ayah website and provided the usage information for future comparison. Our best model, 
using MFCC with delta and Manhattan LSTM, produced an F1-score of 77.35%. 
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1. Introduction  

Al-Quran is the holy book of Muslims, and memorizing it is 

a form of worship for Muslims. To test their Al-Quran 

memorization, a person is usually asked to recite one or more 

verses without looking at the text. A Hafizh (a person who 

memorizes Al-Quran) sometimes is not aware if he or she has 

made a mistake because he do not see the texts being read. That 

is why a partner is typically required in the process to give a 

feedback on whether the recitation is correct. When someone 

does not have a partner or has difficulty to meet their partner, 

verifying Al-Quran memorization might be challenging. To 

overcome this difficulty, it needs a system to check someone's 

recitation's correctness without human assistance. This system 

is required to detect whether the verse read in the memorization 

test is correct.  

Creating a system to test whether someone's speech is 

correct can be done with several approaches. The first is by 

using a speech-to-text approach, where the features from the 

audio file are converted using a machine learning to obtain text 

or transcripts from the speech. After receiving the text, it can 

go to check the similarity of the text. Today's popular speech-

to-text methods use a number of deep learning approaches such 

as Convolutional Neural Network (CNN), Recurrent Neural 

Network (RNN), or a combination of both. [1-3]. Nevertheless, 

the disadvantage of this method is that the resulting model is 

relatively large. In the last Deep Speech model [2], released in 

late 2020, the pre-trained model size reached 180 MB for 

English. Previously in [4], a Deep Speech model was trained 

using only Al-Quran recitation data. However, the resulting 

Deep Speech model was more than 45 MB. A large model can 

reduce the flexibility of using the model on some platforms. 

Another approach is by directly mapping an audio file to a 

class without extracting the text first. It directly classifies that 

the received audio signal is a speech of a particular digit, 

number, or letter [5,6]. In the case of speech verification, this 

means that the model will classify the speech as valid or not. 

This method is used in the small portion of speech-to-text to 

recognize the spoken phonemes before extracting the text [1]. 

Therefore, this method is usually used for speech recognition 

with a relatively short audio length, for example, a number, 

word, or command [5-7]. Both approaches have their 

advantages and disadvantages dependent upon what case they 

are used. 

Even though the Al-Quran uses Arabic, there are several 

differences in speech recognition for Al-Quran compared to 

Arabic speech recognition. The difference lies in the rules for 

reading the Al-Quran or called tajweed, such as the tempo, 

reading style, and the accuracy of the reading letters' 

pronunciation. Several previous studies have specifically 

discussed these problems. In [8] proposed the Mel-Frequency 

Cepstral Coefficient (MFCC) and Hidden Markov Model 

(HMM) features to detect short lengths and the reading styles. 

The MFCC features is also used in [9] to detect one of the 

tajweed rules in combination with Vector Quantization. To 

detect the reading accuracy of difficult letters, in [6,10] 

proposed the use of a neural network, especially CNN. 

* Corresponding author.  
Email: rian.adam@uii.ac.id 

https://doi.org/10.21924/cst.6.1.2021.344 

 

 

mailto:rian.adam@uii.ac.id
https://doi.org/10.21924/cst.6.1.2021.344


36 Rajagede et al. / Communications in Science and Technology 6(1) (2021) 35–40   

This research proposed a different perspective for Al-Quran 

recitation verification system. We proposed it by using a 

combination of Siamese and Long Short-Term Memory 

(LSTM) Network to verify whether the Al-Quran recitation is 

correct without performing speech-to-text extraction process. 

Siamese LSTM Network has previously been used to verify the 

data similarity in the form of sequences, such as text data [11], 

fragments of images [12], or speech data for speaker 

verification [13]. Al-Quran recitation data can also be 

represented as a sequence that can be processed using the 

LSTM Network. Due to its specific task, we believed that this 

method is more efficient than the speech-to-text approach. The 

use of Siamese Network will change the representation of the 

problem to binary classification, whether the reading that is 

read matches the answer rather than classifying what verse is 

being read.  Siamese network is also suitable for use in cases 

where the amount of training set for each class is small [14]. 

This will be very helpful considering that the speech features 

are quite large to hinder creating models with limited resources. 

Combining Siamese with LSTM network is done previously to 

handle data in sequences such as speech or text data [11,15]. In 

this study we used a publicly available dataset from Every 

Ayah (https://everyayah.com/) to facilitate comparison in 

future research. 

2. Materials and Methods 

2.1. Dataset 

This study used publicly available datasets to facilitate 

comparisons in future research. The dataset consisted of five 

reciters who read the last ten Surahs of Al-Quran from Surah 

number 105 to 114 or specifically, there were 48 verses. The 

reciters are shown in table 1. The reciter code in table 1 was 

used on Every Ayah website to choose the specific reciters with 

specific audio quality. The audio files were downloaded using 

url http://www.everyayah.com/data<reciter_code>. 

Of the five reciters, we used four reciters for training and 

one reciter for testing. In the training process, 30% of the train 

set samples were used as a validation set to avoid overfitting. 

We only used the testing set at the end of the experiment after 

obtaining the best models to avoid information leaks. In this 

study, we used the testing set from a different reciter from the 

training set. It made the evaluation process carried out to 

unobserved data commonly occurred in speech recognition 

evaluation. 

Table 1. Reciter information 

Reciter Code Data Usage 

Alafasy_64kbps Training 

Hani_Rifai_64kbps Training 

Maher_AlMuaiqly_64kbps Training 

Muhammad_Ayyoub_64kbps Training 

Khalefa_al_tunaiji_64kbps Testing 

 

The Siamese network dataset was built by pairing two audio 

files and then labeled as 1 if both verses read were the same and 

0 if the verses were different. By pairing verses between the 

reciters, the combination resulted in an imbalance class with 

many labeled 0 verse pairs. Training the model with imbalance 

class was deemed necessary to make the model more robust in 

determining the correct answer. However, to avoid a significant 

gap between both classes, we downsampled the majority class 

by randomly sampling the data so that the distribution of 

training set and test set appeared as shown in table 2. 

Table 2. Class distribution 

Dataset Correct Incorrect 

Train set 288 9006 

Test set 192 253 

 

Apart from pairing the two audio files, we also created a 

small data set named the inference set. The data consisted of 36 

audio files randomly chosen from 12 verses from reciter 5. The 

chosen verses are shown in table 3. The data were also used to 

evaluate the model but differently from the test set. The 

inference set was used when simulating the model, checking 

whether the recitation was correct with the expected verse. The 

dataset consisted of 36 samples: 12 correct samples; 12 samples 

modified from the original recitation by cropping 30% of the 

end of the audio; and 12 samples that did not match the verse 

that the reciter should read. 

Table 3. Verses used in inference set (surah/ayah) 

105/004 106/004 107/002 107/007 

108/001 109/003 110/002 111/002 

112/004 113/001 113/004 114/006 

2.2. Feature extraction 

All data used were turned into a mono channel and set to 

have a frame rate of 16 kHz. Two feature extraction methods 

were used separately: Mel-frequency Cepstral Coefficient 

(MFCC) and Mel-frequency Spectral Coefficient (MFSC). 

Feature extraction was carried out using Python Speech 

Features (https://.github.com/jameslyons/python_speech_ 

features). MFCC is a commonly used method as in [10,16], 

while the MFSC method was originally proposed for the CNN 

architecture in [1] and it was also used for Arabic datasets in 

[6]. The MFSC method ignored the Discrete Cosine Transform 

(DCT) step in MFCC so it only used spectral values instead of 

its inverse, cepstral.MFCC produced 13 coefficients for each 

frame, while the MFSC produced 26 coefficients, without using 

the energy features. In this study, the frame width of 30 

milliseconds was used. Each data then had a different number 

of frames dependent on the original length of the audio. Figure 

1 shows the plot of MFCC features for an audio file.  

The features of MFCC and MFSC were normalized using 

Cepstral Mean Normalization (CMN) before feeding it to the 

model. It was used to reduce channel distortion in the data 

caused by different recording environments and devices. CMN 

was calculated on each coefficient between frames using (1) 

and (2). In that equation, 𝑜𝑖
𝑡 refers to the value of the 𝑖-th 

coefficient in the 𝑡-th frame, where 𝑇 is the number of frames 

https://github.com/jameslyons/python_speech_features
https://github.com/jameslyons/python_speech_features
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in each sample. The standard deviation of the 𝑖-th coefficient, 

𝜎𝑖, calculated on the same dimension as the mean value 𝜇𝑖. 

 μi =
1

T
∑ oi

tT
t=1  

 𝑜𝑖
�̅� =

𝑜𝑖
𝑡−μ𝑖

σ𝑖
  

Fig. 1. (a) Original audio plotted in time domain (b) Extracted MFCC 

features from original audio, 281 frames and 13 features 

Fig. 2. Illustration of Manhattan LSTM architecture 

In addition, we explored the usage of delta features from 

MFCC, as used in [1], [6]. Delta features of the 𝑡-th frame were 

computed using (3), where ct+1 and  ct−1 were the coefficients 

of MFCC from previous and next frame. We also normalized 

the delta features using CMN. When a model used delta 

features, we concatenated MFCC and delta features to double 

the feature vector length. 

 dt  =  
ct+1 − ct−1

2
  

2.3. Siamese LSTM models 

Siamese network [17] is a type of neural network that is used 

to verify the similarity of two samples. The Siamese network 

architecture consists of two models with the same weight and 

parameters but receiving different inputs. Both inputs were then 

combined into one. The output was usually a single value that 

represented the similarity of the two data. Due to the data in the 

form of sequences, this study combined Long Short-Term 

Memory (LSTM) network with Siamese architecture. 

LSTM is a type of neural network architecture designed for 

data in sequences [18]. It improved the Recurrent Neural 

Network (RNN), which excelled in preserving information in 

long sequences. In this study, the hidden state of the last 

sequence, hlast, was used as the LSTM model output and then 

compared with other inputs in the Siamese network. The hidden 

state value at time 𝑡 was calculated using (4). 

 𝑖𝑡 = σ(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏ℎ𝑓) 

                    𝑔𝑡 = tanh(𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏ℎ𝑔)     

𝑜𝑡 = σ(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜) 

                     𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 

                     ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) 

In Equation (4), xt is the input at time 𝑡. Meanwhile, it, 

ft, gt, ot are LSTM gates, which differentiate LSTM with RNN. 

Sigmoid function, σ, used as non-linear activation function. 

This research used multilayer LSTM. In the next layer, the 

input of the model at time 𝑡 was obtained from the hidden state 

of the previous layer at time 𝑡. 
We evaluated two types of Siamese-LSTM networks. The 

first type was the Manhattan LSTM (MaLSTM) Network 

proposed in [11]. MaLSTM used two LSTM networks with the 

same weights to process data in the form of sequences. The 

illustration is shown in figure 2. The input xi
(a)

 is the coefficient 

vector in i-th frame for data a. The final output of each LSTM 

was combined and then the similarity value was calculated 

using a function based on Manhattan distance. The single value 

as the result of this difference was the output of the MaLSTM 

model. 

For the second type, the Siamese-LSTM network produces 

output in binary class, correct or not. The absolute difference 

of the two LSTM networks' output is calculated and then fed as 

input to the fully connected layer with the two outputs as 

illustrated in figure 3. This architecture is similar with the one 

used in [19]. Henceforth, the first model will be referred to as 

MaLSTM, while the second model is called Siamese-Classifier. 

Fig. 3. Illustration of Siamese-Classifier architecture 
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We also explored the addition of as fully connected layer 

with 200 neurons before the similarity function in MaLSTM, 

as shown in figure 4. We added a fully connected layer that 

received output from the LSTM to add to the complexity of the 

model as is done in a typical LSTM model.  We used h̅ to 

represent the outputs from additional fully connected layer in 

the figure. 

Fig. 4. MaLSTM with additional fully-connected layer 

 

Both models were trained using Adam optimizer [20] and 

implemented using PyTorch framework [21]. We initialized the 

weight and bias model with Glorot Uniform [22], as shown in 

(5). This method initialized weights and biases by randomly 

select a value between −
1

𝑛
  to  

1

n
, where n is the hidden size in 

the LSTM model or the number of input neurons in the fully 

connected layer. 

𝑊, 𝑏 ∼ 𝑈 (−
1

𝑛
,

1

𝑛
)  

 

The cost function used in the MaLSTM model is the sum of 

the squared error for handling imbalance class. Meanwhile, the 

Siamese-Classifier uses a weighted cross-entropy with a weight 

ratio of 1:4. Weighted cross-entropy is calculated using (6) 

where  x  is the output vector, c  is the prediction class, and w  
is the class's weight vector. 

 

 𝐶𝑜𝑠𝑡(𝑥, 𝑐) = 𝑤[𝑐](−𝑥[𝑐] + log  (∑ 𝑒𝑥𝑝(𝑥[𝑗])𝑗 )) 

2.4. Experimental stages 

During the training process, the model was evaluated using 

the validation set to find the best parameters. We attempted to 

find some parameters such as architecture, learning rate, and 

the number of training epochs. When finding parameters, we 

only used the dataset with MFCC features. After finding the 

best parameters in the validation set, the model was trained with 

all training sets, including the validation set, and was evaluated 

using the test set and the inference set. 

In the test set, the Precision, Recall, and F1-score (7) were 

used to evaluate the model. We used the F1-score as an 

evaluation metric because the data had class imbalance. The 

number of pairs with label 0 was more than those with label 1. 

The use of F1-score for the imbalance class was considered 

better than using accuracy because of its ability to measure the 

model's performance on the smaller class [23]. Besides the F1-

score, the model precision also needed to be considered. 

Models with high precision values can avoid false positives 

where the model confirms recitations that are false. Precision is 

calculated using (8). 

 

F1-score =
2×Precision×Recall

Precision+Recall
           

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

True Positive + False Positive
 

3. Results and Discussion 

3.1. Hyperparameters search 

After several trials using validation set, we selected five 

architectures that performed reasonably well. The selected 

architectures can be seen in table 4. Model that uses additional 

layer as shown in Fig. 4 is indicated in the Additional Layer 

column in table 4. 

The learning rate, number of epochs, and threshold values 

used are shown in table 5. The number of epochs was selected 

when the validation loss obtained during training has not 

decreased or tended to start to increase (overfitting). MaLSTM 

model has an additional hyperparameter, threshold, to 

determine whether two input data are the same. The threshold 

parameter in MaLSTM is one of the drawbacks because finding 

the best value requires an additional search process. The 

threshold that produces the best score can differ depending on 

the data, model, and even other hyperparameters such as 

learning rate. This is not experienced by Siamese-Classifier, 

which immediately classifies whether two audio files read the 

same verse. 

Table 4. Models architecture 

Model Type 
LSTM hidden 

neuron 

LSTM 

layers 

Add. 

layer 

A 
Siamese 

Classifier 
200 3 No 

B MaLSTM 200 3 No 

C MaLSTM 200 3 Yes 

D 
Siamese 

Classifier 
300 3 No 

E 
Siamese 

Classifier 
300 2 No 

Table 5. Model hyperparameter 

Model Epoch Learning rate Threshold 

A 45 0.00002 - 

B 190 0.002 0.005 

C 305 0.001 0.018 

D 50 0.00002 - 

E 50 0.00002 - 
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3.2. Evaluation on test set 

After the training process, the five models with the best 

hyperparameters were evaluated with the test set. The results 

obtained are shown in table 6 showing that Model B had the 

best performance on the F1-score than other four models. 

Model B was the original MaLSTM model that the output was 

a similarity score. Model C, which used MaLSTM model with 

an additional layer, had the second-best performance in the F1-

score evaluation. The highest Precision value was owned by 

Model D, but this model had a low F1-score. In contrast, model 

B with the highest F1-score value, had the lowest Precision 

value. The robust model we expected had a similar high value 

both in F1-score and precision. 

Table 6. Models performance on test set 

Model Precision Recall F1-Score 

A 71.72 54.16 61.72 

B 67.61 86.97 76.10 

C 70.77 80.73 75.43 

D 75.69 56.77 64.88 

E 71.97 58.85 64.76 

3.3. Features comparison 

As shown in table 7, we compared the model performance 

on a dataset using the MFSC feature. It can be seen that the best 

model with MFCC features, i.e. model B, outperformed all 

models with MFSC features. Even though it was reported [1], 

[6] that MFSC helps to produce better model performance 

because it maintains locality features, we assumed that it 

depends on the architecture used in the study. In this study, as 

we used LSTM instead of Convolutional Neural Network 

(CNN) used in [1,6], which processes data as a sequence, it 

appeared that the MFCC feature is more recommended. 

Table 7. Results comparison between MFCC and MFSC 

Model Features F1-score 

B MFCC 76.10 

A MFSC 52.96 

B MFSC 70.24 

C MFSC 74.24 

D MFSC 60.26 

E MFSC 56.03 

Table 8. Results comparison after using delta features on test set and 

inference set 

After MFCC seemed to outperform MFSC, we explored the 

use of additional delta features of MFSC. We used MaLSTM 

models B and C, and then tested them on the test set and 

inference set. The results are shown in table 8 in which it can 

be seen that the delta features succeeded in increasing the F1-

score on the test set especially for model C. 

As shown in table 8, all models used MFCC as features, 

except models with "+ Delta" that concatenated delta features 

on the feature vector. It can be seen that delta features not only 

increased the F1-score, but also made model C to have the 

highest precision value compared to the other four models and 

slightly lower than model D as depicted in table 6. 

3.4. Evaluation on inference set 

The next stage of evaluation was carried out using the 

inference set. At this step, we made a prototype using the best 

model to verify whether a recitation for the specific ayah was 

correct. The audio file, along with the verse number read, was 

input into the system, and then the system would conduct 

inference four times by pairing the input data with four reciters 

that read the same verse. The four reciters were those used in 

the training set as shown in table 1. 

 

Fig. 5. Evaluation flow on inference set second sub-figure 

 

We stored the records of the four reciters in a features 

matrix. When the system received a recording, the system 

sought the corresponding verse from the four reciters on the 

features matrix and then performed the inference process using 

the model four times. The process is shown in figure 5. To 

determine the system output, we used a rule: if at least two of 

the four models return a "correct" value, then the audio will be 

labeled as correct or match the verse read. 
The F1-scores we obtained for the evaluation using the 

inference set are shown in table 9. As seen in the table, model 

C with delta features consistently outperformed other models 

both on F1-score and Precision value. 

Model Precision Recall 
Test set 

F1-score 

B 67.61 86.97 76.10 

B + Delta 70.23 78.65 74.2 

C 80.73 80.73 75.43 

C + Delta 75.62 79.17 77.35 
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3.5. Evaluation on model size 

We saved the features matrix using Pickle, and the resulting 

file size was 10.4 MB. Model C was saved using PyTorch 

serialization, resulting in 3.4 MB in size. It can be seen that, the 

total storage required for the inference process was only 13.8 

MB, quite efficient compared to the general pre-trained model 

mentioned before. 

Table 9. Models performance on inference set 

4. Conclusion 

In this study, we proposed the use of the Siamese LSTM 

network to verify the Al-Quran recitation for memorization 

test. We evaluated two types of models, i.e. the MaLSTM and 

Siamese-Classifier, which used two different approaches. In 

addition, we experimented with some feature extraction 

methods, namely MFCC, MFSC, and Delta. The model was 

trained using data from four reciters who read 48 verses from 

the last ten Surahs of Al-Quran and tested using different 

reciters. We selected the best model based on the F1-score in 

the test set. Our best model using MaLSTM with additional 

fully connected layer and using MFCC and delta features got 

an F1-score of 77.35%. Compared to the pre-trained speech-to-

text model, our model only required small storage for inference. 

For the future research, it is suggested to use more complex 

model, for example a deeper Siamese network or using 

attention-based model. Train the model with more data, 

different speakers, or fine tune from the available pre-trained 

model may achieve a better performance in Al-Quran recitation 

verification. 
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Model Precision Recall F1-score 

A 53.33 66.67 59.26 

B 62.5 83.33 71.43 

C 62.5 83.33 71.43 

D 58.82 83.33 68.97 

E 58.82 83.33 68.97 

B + Delta 71.43 83.33 76.92 

C + Delta 90.00 75.00 81.82 


