Communications in Science and Technology 2(1) (2@%728

COMMUNICATIONSIN

SCIENCE AND TECHNOL OGY
Homepage: cst.kipmi.or.id

CsT

Communications in
Science and Technolog

Modified adaptive support weight for stereo matghin

Etik Irijanti”

Department of Information Technology, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta, 55183, Indonesia

Article history:

Received: 1 April 2017 / Received in revised form:M&y 2017 / Accepted: 27 May 2017

Abstract

Stereo matching using local algorithms are incrigdilopular in the last years. The adaptive supperght algorithms can give high accuracy
results such as global methods. This paper propmsagpport aggregation approach for stereo matcthiaggcomputes support weight in

sparse support window mask. The improvement froenpifevious work is that the new support weight @uce the computation time. At

the end of the research, the result shows thatdhmputation time decreases to approximately hadf qoarter of the earlier work time without

significant difference of bad pixel percentage &b to reach the optimum correspondence. It mepasse support weight affects the
computation time that is needed in stereo matchimdjoptimizes the disparity. This support weighsed to accomplish the stereo matching
evaluation using this method. This approach is meliable than the previous approach in the replémentation.

Keywords: Disparity; local stereo matching; stereo corresoice; adaptive support weight.

1. Introduction

methods of managing occlusions, the boundarieReobbject
where un-textured areas and discontinuities offdepserved,

Research in stereo vision has been an issue faralev using cooperative methods [7,8]. These methodsg, ikea

years, and it has again become very popular inntegpears.
In the stereo vision, the description of the steestmation
difficulty is the method of evaluating a disparityap of two
or more images of the scene. Numerous algorithras haen
produced to estimate disparity, and the reseatthgmgiven a
classification and evaluation for these algorithmgl], which

is presented based on disparity optimization, nmatclcost,
and refinement phases of disparity. The main cheriatic of

a method typically based on optimization approdicét is the
second step, therefore the expert classified ibeal, semi-
global, global and cooperative [2].

In local approaches [1-4], “winner-take-all” optiration is
used to reach disparity map, by evaluating eacldidate

based global methods, depend on the suppositidrstiemes
are consist of non-overlapping planar pieces allwhich
match to pixel clusters relating color-wise simibéxels.

The primary constraints of stereo matching algamgh
need a speed of evaluation time, low memory netyessid
robust disparity map, particularly in electronigspkcation
devices. Furthermore, several applications requtereo
estimation methods must provide
complexity, provide less precision loss and lessony in the
extracted 3D models for robotic applications, siliaece
systems, and the future generation 3D TVs [14-Ib]that
behavior, the strongest applicants for faster digpa
evaluations are local window-based approaches $5181.

separately. The aggregation of matching cost throudhe local methods normally do not occupy iterativarks to

averaging or summation over a support area is lzaéml
therefore the disparity giving smallest cost is@pfed as the
corresponding pixel. The local method optimizatioase
simpler compared to the global optimization aldoris for
example graph cuts, belief propagation [5,6], t more
complicated and more accurate. Researchers dedetbpse
methods in an energy optimization of the whole, #redaim
is to minimize the estimated stereo correspondemegy.
The semi-global algorithms [1-3],
programming optimization are afforded to
computational complication of the global methodec&use
there is a view, that global optimization is conacfor every
scan line (row) individually in a polynomial time.

Other researchers combined benefits of global awdl |
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give fast and simplicity executions; because they robt
consume full cost volume and compared to othercgares,
they need lower memory. Therefore, these methods ar
suitable for real-time applications on approprietaditions.
Yoon introduced adaptive support weight stereo hiate
(ADSW) in 2006 [3], with outperform result comparéol
traditional local methods. Because of its advaggagnany
stereo-matching algorithms are developed based ten

such as dynami@éDSW [19-20].
reduce This work proposes a development of a fast comijounzait

stereo estimation method based on ADSW aggregaiiba.
aim is to optimize support weight computation inaptive
support-weight methods. The support weight is etald
faster using sparse support window mask. The pexpos
method provides further evaluation time reductibhis work
has a contribution to the stereo matching improvgme
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less computational
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particularly in speed up the computation.

2. M ethodology

X
2.1. Stereo Images Data Source .
This work used stereo images obtained from Middigbu
stereo images test set which can be downloaded from
(http://vision.middlebury.edu/stereo/data/). Theages used Fig. 1. Support weight window mask
are ‘cones’, ‘teddy’, ‘venus’, ‘books’ ,‘sawtooth’;art’,
‘laundry’, and ‘computer’. The size of images arerhe shaded squares are the pixels used in the upeight

approximately about 370 463 pixels and 388 434 pixels. calculation in sparse and full mask. This papemghthat the
sparse mask can reduced processing time and gdarsim
2.2. Overview of Algorithm result compared to the full mask. The differenetween
pixel xandx,, E(x %), is expressed as
The method is consist of several main steps whieh a D WG YWCR, Y, )ECY, V)
determining the different distance weighting alguri, cost E(x X,) = S Nedaltg * e
aggregation evaluation, disparity selection for lgfeto right ZyDNX,VdDNXd WX, Y)W(Xy, Ya)
and right to left, and right to left check for ssochecking the x andy in the reference image have a disparity valu& and

both results. v . . . .
. . : . Ys are the corresponding pixels in the target image,y
Gaussian function of the color distance is caledamong ‘ P gp g aQ9:Ys)

the midpoint pixek of the window and a pixélin the support €XPresses the raw maEching cost based on pixelizteal by
window to define the original color weight. The eixi € colors of y and y,. When using the truncated AD

)

regarding to pixet has color weightvi, (absolute difference), it is expressed as
vv,czex;{ﬂJ (1) e(y,yd)=min{ Zlc(y)—lc(yd),T} ()
! yC c{r, gb}

where the color distance value among two pixesndi is a wherelc is the color group intensity af andT represents the

constant. This weight allows the pixel with a samnitolor to truncation limit number for controlling the matcbhircost.

the midpoint pixel. They will give more effect ohet last After the difference calculation, the every pixesphrity is

matching cost. In this paper, the color space lisedSV just selected by using the Winner-Takes-All (WTAgthod

instead of Lab color space that assigned in ADSWe dolor  With no any global calculation as

distance is calculated utilizing Manhattan rathdrant _ : o

Euclidean color distance to minimize calculation. d. = argrdTgIsT E(xX,) “)
The mask size of support window for weighting iSyhere sy = {dmin,....dmd iS the set of whole probable

maintained as large and as symmetric as possibeeslipport gigparities.

window mask uses only the alternate pixels in eaeh and

each column of the support weights window, as shiowig.

1 for 7 x 7 mask.

Tsukuba (left image) Tsukuba (right image) Tsukuba (groundtruth disparity)

Teddy (right image) Teddy (groundtruth disparity)

Venus (left image)

Venus (right image) Venus (groundtruth disparity)

Fig. 2. Tsukuba, Teddy and Venus stereo imageét ilnage, right Image and ground truth
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3. Results and Discussion

This paper used the Tsukuba, Teddy, and Venus s th,

example for tested images. Fig. 2 shows the imadayleft
image, (b) right image and (c) ground truth. Figst®ws the
disparity result using both full support weight &)d sparse
support weight windows for Tsukuba. The size of $ulpport
windows in Fig 4 (a) 25 25 full support weight windows,
computed from left to right, (b) 28 25 full support weight
windows, computed from right to left (c) 26 25 sparse
support weight windows, computed from left to rigat) 25x
25 sparse support weight windows, computed frormtrig
left, T = 40 for Tsukuba.

The full support weight needs more calculation careg
to a sparse window because it calculates wholelixrethe
support windows. Support weight computation fox n full
support windows size needs evaluation ofxnn pixels,
however in sparse support window needs [(n-1)/3 * Kn-
1)/2 + 1] pixels. Regarding to weight formula, itllweduce
many calculations, because each pixel will be dated.
Computation time also decreases because the esdlpbdels

number is also reduced as in weight computationthBo

calculation indicated that the whole stereo maighinocess
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using sparse window mask will give faster resuiinpare to
the previous method proposed in [5].

()

Fig. 3. Dense disparity of Tsukuba using:

(a) 25 x 25 full support weight windows, computenfi left to right,
(b) 25 x 25 full support weight windows, computerfr right to left
(c) 25 x 25 sparse support weight windows, comfrota left to right,
(d) 25 x 25 sparse support weight windows, comfrota right to left.

(d) 29229, sparse support window

(e) 33x 33, sparse support window

(£) 37237, sparse support window

Fig. 4. Dense disparity of Tsukuba using: (a) SAEtric, (b) 25 x 25 full support weight windowg (25 x 25 sparse support weight windows, (d) 2B x
sparse support weight windows, (e) 33 x 33 spargpat weight windows, (f) 37 x 37 sparse suppaigit windows

Table 1. Execution time and error for disparity goration

Windows size and support Execution Time (s) Baelgix%o)
25x 25, full support window 8081.5 30.86
29 x 29, full support window 9404.2 29.56
25x 25, sparse support window 2428.2 34.14
29 % 29, sparse support window 3750.3 19.52
33x 33, sparse support window 4850.5 18.56
37 x 37, sparse support window 6587.1 17.88

© 2017 KIPMI
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Fig. 5. Disparity map left to right (L to R), ritito left (R to L) and disparity after right to fefheck (RLC) of Tsukuba, Teddy and Venus

Furthermore, the matching process is performedetwéd computer’s memory, so we do not present in TablHile if
first with the left image kept as a reference; ttl@nprocess is we use sparse support window, the calculation d¢#éinbe
reversed, and the right image of a stereo pairtitotes a done, even Yyielding better results, lower bad pgixel
reference image. Then, the two disparity maps heeled as percentage. The 38 33 sparse support window gives 4850.5
follows: cross-checking, left—right checking (LRGjig. 5. seconds execution time and 18.56% bad pixels. The 37
shows the result of disparity using 33x33 sparedpsett sparse support window gives 6587.1 seconds exectitite
windows which are LR, RL, and the RLC disparityhi and 17.88% bad pixels. It shows the limitation uf §upport
paper calculated the disparity estimation perforteamy window method that consumes high memory and
comparing to the disparity from the ground trutfiable 1. computation. Disparity estimation process that se@darge
shows execution time and bad pixels for disparitpumber of calculations gives too much time and stp&ed
computation from several windows size and the supype. execution. Hence, the sparse support window caluateathe
The execution time and bad pixels percentage caused to stereo matching with lower error.
consider optimum window size. The result is still having big bad pixels becauselasion

The table shows the execution time and error fepality handling and refinement as the post-processing tstep not
computation using 2% 25, 29x 29, 33x 33 and 37x 37 been conducted in this paper. The work aim isawatribute
windows size and support. The 3525 and 29x 29 full optimum computation for local stereo matching based
support window give 8081.5; 9404.2 seconds exegutine; support weight aggregation schemes. Disparity @diim has
and 30.86; 29.56 error percentage respectivelythEumore, not given expected result yet. Thus, reduction iofiet
25 x 25 and 29x 29 sparse support window give 2428.2gxecution and quality improvement is needed.

3750.3 seconds execution time; and 34.14; 19&Pdixels

percentage in that order. In the size o2%6 presents 8081.5 4. Conclusion

seconds calculation time for full support windowda2v28.2

seconds evaluation time for sparse support winddhe This paper has proposed a new support aggregation
comparison of process time is around 3.3:1, whaestror is approach for stereo matching and has computed suppo
1:1.33. That means this approach reduces procefisiagnto weight in sparse support window mask. The improvgme
fourth without reducing the quality significantly. from the previous work is that the new support \weignask

The computer cannot perform the stereo matchingan reduce computation time while maintain the grenince.
evaluation to get the result using 33 and 37 windize by It means sparse support weight can improve the rhakk
full support window method, because of the limgatiof support weight. The occlusion handling and postessing



28 Irijanti / Communications in Science and Technology 2(1) (2017) 24-28

filter can be explored in the next step to make disparity
map close to ground truth and has smaller bad gixel
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