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Abstract 

Many existing distributions in literatures does not have the modeling fits capacity to adequately describe the real-life phenomena. The 

Exponential Pareto (EP) distribution has further gained some generalizations among several authors using different generator techniques with 

an aim to obtain a new distribution with greater flexibility. This article proposes Gompertz Exponential Pareto (GEP) distribution using the 

Gompertz generator. Findings from the study revealed some lifetime distributions as special cases and mathematical properties of the distribution 

investigated including the mean, variance, coefficient of variation, quantile, moment, moment generating function and, order statistics. The 

distribution can be positively or negatively skewed. It is unimodal with failure rates whose shapes could be reversed J bathtub, constant, 

decreasing and, increasing and the parameters were estimated using maximum likelihood estimation approach. Applications to two real-life 

datasets revealed the ability of GEP distribution to provide more flexibilities and better fit to the dataset compared to some previously proposed 

distributions for the data. The results also revealed that GEP had the superior performance over other generalizations of EP distribution existing 

in literatures and the performance has further strengthened the usefulness of the Gompertz-generator technique. 

 

Keywords: Gompertz generator; exponential Pareto; Gompertz exponential Pareto; lifetime distributions; superior performance. 

 

1. Introduction  

        Statisticians and researchers are interested in investigating 

the challenges associated with real data set that cannot be fitted 

with existing standard distribution due to peculiar 

characteristics of the population from where the data originate. 

The distribution generalization is a statistical process to provide 

flexible distributions to address the challenges and several 

techniques involving the combination of two or more baseline 

distributions discovered. Many newly developed probability 

distributions associated with different techniques have also 

flooded the literatures. Cordeiro, et al. [1] proposed the 

Kumaraswamy Weibull (KwW) distribution. The results 

obtained from recent work by Tahir et al. [2] on the New 

Kumaraswamy Weibull (NKwW) distribution showed that 

research on the generalization of probability distribution 

always attract an attention because of the need for quality and 

superior probability models that can provide the superior model 

fit for real-life datasets associated with environment. However, 

most of the existing distributions have not adequately described 

many important lifetime datasets such as data with heavy-tailed 

from the field of hydrology, material engineering, insurance, 

biology and health. Several authors have introduced many 

important distributions for analyzing the real life datasets. [3] 

Developing the Gamma-Pareto, Alzaatreh, et al. [4] introduced 

Weibull Pareto. Meanwhile, Bouguignon, et al. [5] developed 

the Kumaraswamy Pareto and [6] introduced the 

Kumaraswamy Transmuted Pareto distribution, Weibull 

Rayleigh by Akarawak, et al. [7], Famoye, et al. [8] developed 

Weibull Normal, Akata [9] proposed the Weibull Logistic-

exponential distribution. 

     Exponential Pareto (EP) distribution was introduced in 2013 

by Al-Kadim, et al. [10] and many generalizations of EP 

existing in literatures from 2015 include Transmuted 

Exponential Pareto (TEP) by Luguterah, et al. [11], the 

Kumaraswamy Exponential Pareto (KEP) by Elbatal et al. [12],  

Exponentiated Exponential Pareto distribution (EEPD) by 

Salem [13]. The Beta Exponential Pareto (BEP) distribution 

was proposed and studied by Aryal [14] and by Rashwan, et al. 

[15]. 

The Gompertz distribution was introduced by the late 

Benjamin Gompertz [16] in which the distribution was used for 

growth model and for fitting tumor growth mortality. The 

distribution characterized with monotone increasing failure rate 

is widely used for lifetime data in medical and reliability 

studies. [17] extended the distribution to the power Gompertz 

distribution (PGD) and the distribution became more popular 

after its introduction as a generator by Alizadeh, et al. [18] in 

the form of Gompertz-G family of distribution where G was 
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taken to be a baseline distribution. 

          Some of the existing distributions developed using the 

Gompertz generator can be found in Gompertz Inverse 

Exponential (GoIE) by Oguntunde et al. [19], and Gompertz 

Exponential by Adewara et al. [20]. Oguntunde et al. [21] used 

Frechet as the baseline distribution to develop Gompertz 

Frechet (GoFr). Koleoso et al. [22] developed a three parameter 

Gompertz Lindley distribution, and Gompertz Flexible Weibull 

(GoFW) was developed by Khaleel et al. [23], the Gompertz 

extended generalized exponential distribution by Eghwerido et 

al. [24], Gompertz Lomax (GoLom) by Oguntunde et al. [25], 

Gompertz Alpha-Power Inverted Exponential (GAPIE) 

distribution by Eghwerido, et al. [26]. [27] developed the 

Gompertz Rayleigh distribution and most recently, Ogunde et 

al. [28] developed Gompertz Gumbel type II (GGTT). The 

usefulness of these proposed distributions was investigated by 

way of applications to real-life datasets. [5,6] and [14] applied 

the distributions to the Wheaton River data while the EEP by 

[13], GGTT by [28] and, the (PG) distributions by [17] justified 

the importance of the proposed distributions by application to 

the bladder cancer dataset. However, the existing results can 

still be improved because the dataset has not received adequate 

model fit from the distributions. The existing results from BEP, 

KTP and the KP with applications to Wheaton river data 

revealed the need to explore for other forms of technique that 

can provide a better modeling fit to the data. 

          This research explores the possibilities of using EP as a 

baseline distribution for the Gompertz-G with the aim of 

enhancing the potentials of the components distributions. The 

study addresses the monotone increasing failure rate associated 

with Gompertz distribution with the motive of introducing a 

new convoluted distribution having superior goodness-of-fit 

for modeling heavy-tailed real-life data. The rest of the paper is 

arranged as follows: Section 2 describes the proposed 

distribution derived under materials and methods. The section 

also contains some important special models of the proposed 

distribution, the graphical visualizations of the Cumulative 

Distribution (CDF) and the Probability Density Functions 

(PDF). Section 3 discusses some properties of the distribution 

and Section 4 presents the estimation of parameters. Section 5 

and Section 6 present the results from application to real life 

datasets to assess the performance of the distribution and the 

conclusion of this study respectively.   

 

2.  Materials and Methods 

2.1 The Gompertz-G Technique for Generalizing Distribution 

 

          The cumulative distribution function of Gompertz-G 

family of distribution is given by 

 

𝐹(𝑥) = 1 − 𝑒
𝛼

𝛽
[1−(1−𝐺(𝑥))−𝛽]

                                     (1) 

The corresponding density function is defined as; 

 

𝑓(𝑥) = 𝛼𝑔(𝑥)(1 − 𝐺(𝑥))−𝛽−1𝑒
𝛼

𝛽
[1−(1−𝐺(𝑥))−𝛽]

       (2) 

𝑥; 𝛼, 𝛽 > 0; 𝛼, 𝛽; 𝛼, 𝛽 are the additional shape parameters to 

add flexibility to the new distribution and  𝐺(𝑥) is the 

baseline distribution. 

2.2 The Exponential Pareto Distribution 

 

            The CDF of exponential Pareto for a random variable 𝑋 

as defined by Al-Kadim et al. [10] is given by 

 

𝐺(𝑥) = 1 − 𝑒−𝜆(
𝑥

𝑘
)
𝜃

                                                               (3) 

 

𝜃, 𝜆> 0 are the shape parameters, while 𝑘 > 0  is the scale 

parameter of the distribution 

 

The density function of EP distribution is defined as, 

 

𝑔(𝑥) =
𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

𝑒−𝜆(
𝑥

𝑘
)
𝜃

  ; 𝑘, 𝜆, 𝜃 > 0                                 (4) 

 

𝜃, 𝜆> 0 are the shape parameters while 𝑘 > 0 the scale 

parameter of the distribution 

 

2.3 The Gompertz Exponential Pareto Distribution 

 

               The CDF of Gompertz Exponential Pareto (GEP) 

distribution is derived here by substituting 𝐺(𝑥) in (3) into (1) 

to obtain 

 

𝐹(𝑥) = 1 − 𝑒

𝛼

𝛽
[1−(𝑒

−𝜆(
𝑥
𝑘)
𝜃

)

−𝛽

]

                                             (5) 

The probability density function of GEP is the derivative of the 

CDF in (5) and is obtained as 

𝑓(𝑥) =
𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

(𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

𝑒

𝛼

𝛽
[1−(𝑒

−𝜆(
𝑥
𝑘)
𝜃

)

−𝛽

]

            (6) 

𝛼, 𝛽, 𝜃, 𝜆> 0 are the shape parameters while 𝑘 > 0 is the scale 

parameter of the distribution. 

 

2.4. Expansion of the Density Function of GEP Distribution 
 
           Using the series expansion; 

 

𝑒

𝛼

𝛽
[1−(𝑒

−𝜆(
𝑥
𝑘)
𝜃

)

−𝛽

]

=∑
(−1)𝑗 (

𝛼

𝛽
)
𝑖

𝑖!

∞

𝑖=0

(1 − (𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

)

𝑖

 

The PDF of GEP can be expressed as; 

 

𝑓(𝑥) =
𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

(𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

 

   × ∑
(−1)𝑗(

𝛼

𝛽
)
𝑖

𝑖!

∞
𝑖=0 (1 − (𝑒−𝜆(

𝑥

𝑘
)
𝜃

)

−𝛽

)

𝑖

                               (7) 

Applying the binomial expansion on (5), and carrying out some 

algebraic additions, we obtained 

 

𝑓(𝑥) =
𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

(𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

 

    × ∑
(
𝛼

𝛽
)
𝑖

𝑖!

∞
𝑖=0 ∑ (−1)𝑗∞

𝑗=0 (
𝑖
𝑗
) (𝑒−𝜆(

𝑥

𝑘
)
𝜃

)

−𝛽𝑗

                         (8) 
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=
𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

∑ ∑
(−1)𝑗(

𝛼

𝛽
)
𝑖

𝑖!

∞
𝑗=0

∞
𝑖=0 (

𝑖
𝑗
) (𝑒−𝜆(

𝑥

𝑘
)
𝜃

)

−𝑚

         (9)       

where  𝑚 = 𝛽(𝑗 + 1) 
 

2.5. The Sub-models of GEP Distribution 

 

         i. When 𝜆 = 1; the GEP reduces to Gompertz Weibull 

distribution with CDF given by 

 

𝐹(𝑥) = 1 − 𝑒

𝛼

𝛽
[1−(𝑒

−(
𝑥
𝑘)
𝜃

)

−𝛽

]

                                         (10) 

 

ii. When 𝑘 = 𝜃 = 1; the GEP reduces to Gompertz 

Exponential  distribution studied by Adewara et al. [20] with 

CDF as given by 

𝐹(𝑥) = 1 − 𝑒
𝛼

𝛽
[1−(𝑒−𝜆𝑥)

−𝛽
]
                                              (11) 

 

 iii. When 𝑘 = 1, 𝜃 = 2,   GEP reduces to Gompertz Rayleigh 

distribution studied by Mohammed et al. [27] with CDF given 

by 

𝐹(𝑥) = 1 − 𝑒
𝛼

𝛽
[1−(𝑒−𝜆𝑥

2
)
−𝛽
]
                                           (12) 

 

Figure 1 shows the graphical properties showing the shapes of 

the GEP distribution with different arbitrary values of 

parameters for the shape of probability density. Figure 2 shows 

the cumulative distribution function. 

3.  Properties of the GEP Distribution 

     This section presents some of the statistical properties of 

Gompertz Exponential Pareto distribution under various 

subsections. 

 

3.1 Reliability Analysis 

 

          The survival function is defined as 

𝑆(𝑥) = 1 − 𝐹(𝑥)                                                              (13) 

 

The survival function for the GEP is derived and given as 

S(x) = e

α

β
[1−(e

−λ(
x
k
)
θ

)

−β

]

                                                  (14) 

 

The hazard function (failure rate) is defined as 

 

        ℎ(𝑥) =
𝑓(𝑥)

1−𝐹(𝑥)
                                                          (15) 

 

The hazard function for GEP is derived and given by 

 

ℎ(𝑥) =

𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

(𝑒
−𝜆(

𝑥
𝑘)
𝜃

)

−𝛽

𝑒

𝛼
𝛽

[
 
 
 

1−(𝑒
−𝜆(

𝑥
𝑘)
𝜃

)

−𝛽

]
 
 
 

𝑒

𝛼
𝛽

[
 
 
 

1−(𝑒
−𝜆(

𝑥
𝑘)
𝜃

)

−𝛽

]
 
 
 

                 (16)   

ℎ(𝑥) =
𝑓(𝑥)

1−𝐹(𝑥)
=

𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

(𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

                        (17) 

 

The cumulative hazard function for GEP is given by 

 

− ln(𝑆(𝑥)) = −
𝛼

𝛽
[1 − (𝑒−𝜆(

𝑥

𝑘
)
𝜃

)

−𝛽

]                              (18) 

The reversed hazard rate function is given by 

 

𝑟ℎ(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
=

𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

(𝑒
−𝜆(

𝑥
𝑘)
𝜃

)

−𝛽

𝑒

𝛼
𝛽

[
 
 
 

1−(𝑒
−𝜆(

𝑥
𝑘)
𝜃

)

−𝛽

]
 
 
 

1−𝑒

𝛼
𝛽

[
 
 
 

1−(𝑒
−𝜆(

𝑥
𝑘)
𝜃

)

−𝛽

]
 
 
 

        (19)   

 

 

The plots of the survival and hazard rate functions of the GEP 

distribution for some arbitrary values of parameters are shown 

in figure3 and figure 4 respectively. 

 
Fig. 1. The PDF of GEP distribution for some arbitrary values of the 

parameter 

 

 
Fig. 2. The CDF of GEP distribution for some arbitrary values of the 

parameter 
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Fig. 3. The survival function for some arbitrary values of the parameter 

 
Fig. 4. The failure rates for some arbitrary values of the parameters 

 

 

The characteristics of the failure (hazard) rates of GEP 

distribution can be summarized as follows; 

i. The hazard rate is unimodal when  𝜃 > 1 

ii. The hazard rate is U bathtub shaped when 𝜃 < 1 

iii. The GEP has the constant failure rates of  
𝛼𝜆

𝑘
 

when  𝜃 = 1 

iv. The hazard rate is an increasing function of 𝑥 

when 𝜃 ≥ 1; 

v. The hazard rate decreases when 𝜃 ≤ 1 

vi. The GEP distribution is monotone decreasing and 

could become approximately symmetric as 𝜃 

increases when 𝜃 < 1. 

3.2. The Quantile Function and Median 

         Let 𝑋 be a random variable from the Gompertz-

exponential Pareto distribution whose cdf is denoted by 𝐹(𝑥) 
with parameters GEP(𝑥; 𝛼, 𝛽, 𝑘, 𝜆, 𝜃), the quantile function 

is defined by 

 

𝑢 = 𝑃(𝑋 ≤ 𝑥𝑢) = 𝐹(𝑥)                                                     (20) 

 

where U is a uniform random variable on U(0,1). 

 

The quantile for the proposed GEP distribution was obtained as 

𝑄(𝑢) = 𝑘 {−
1

𝜆
𝑙𝑜𝑔 (1 − [1 −

𝛽

𝛼
log (1 − 𝑢)]

−
1

β
)}

1

𝜃

           (21) 

Simulation was achievable by generating random samples from 

the GEP distribution using the random variable 𝑋 where we had 

𝑥 = 𝑄(𝑢) 

The median was obtained by substituting 𝑢 = 0.5 into 𝑄(𝑢),   

and the median of Gompertz-exponential Pareto is then given 

by 

𝑥 = 𝑘 {−
1

𝜆
𝑙𝑜𝑔 (1 − [1 −

𝛽

𝛼
log (0.5)]

−
1

β
)}

1

𝜃

                   (22) 

 
3.3. Asymptotic Behavior of GEP 

       The Asymptotic properties of the Gompertz Exponential 

distribution was investigated by taking the limits of the density 

function, and hazard rate function as 𝑥 → ∞ 𝑎𝑛𝑑 𝑎𝑠 𝑥 → 0 

using theorems (1 and 2). 

 

Theorem 1: The limit of Gompertz-Exponential Pareto density 

function as 𝑥 → ∞ 𝑖𝑠 0  and as𝑥 → 0 𝑖𝑠 

 

lim
𝑥→0

𝑓(𝑥) = {

0           , 𝜃 > 1
𝛼𝜆 

𝑘
   , 𝜃 = 1

 ∞       ,   𝜃 < 1

                                               (23) 

 

Proof: 

lim
𝑥→0

𝑓(𝑥) = lim
𝑥→0

𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

(𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

𝑒

𝛼

𝛽
[1−(𝑒

−𝜆(
𝑥
𝑘)
𝜃

)

−𝛽

]

 

lim
𝑥→0

(𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

= lim
𝑥→0

𝑒

𝛼

𝛽
[1−(𝑒

−𝜆(
𝑥
𝑘)
𝜃

)

−𝛽

]

= 1 

as 𝑥 → 0  when 𝜃 > 1 = 0 

as 𝑥 → 0  when 𝜃 < 1 = ∞ 

if 𝜃 = 1, the limit is   
𝛼𝜆𝜃

𝑘
 

lim
𝑥→∞

𝑓(𝑥) = 

lim
𝑥→∞

𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

(𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

𝑒

𝛼

𝛽
[1−(𝑒

−𝜆(
𝑥
𝑘)
𝜃

)

−𝛽

]

= 0            (24) 

 

Theorem 2: The limit of Gompertz exponential Pareto hazard 

rate function as 𝑥 → ∞ 𝑖𝑠 0  and as  𝑥 → 0 𝑖𝑠 
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lim
𝑥→0

ℎ(𝑥) = {

0           , 𝜃 > 1
𝛼𝜆 

𝑘
   , 𝜃 = 1

 ∞       ,   𝜃 < 1

(24) 

 

Proof: 

The hazard rate function is given as, 

ℎ(𝑥) =
𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

(𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

 

Asymptotes of hazard function rate as 𝑥 → ∞ 

lim
𝑥→∞

ℎ(𝑥) = 0; 𝑤ℎ𝑒𝑛 𝜃 > 1 

lim
𝑥→∞

ℎ(𝑥) = 0; 𝑤ℎ𝑒𝑛 𝜃 < 1 

lim
𝑥→∞

ℎ(𝑥) = 0; 𝑤ℎ𝑒𝑛 𝜃 = 1 

 

Asymptotes of hazard function rate as 𝑥 → 0 

 

lim
𝑥→0

ℎ(𝑥) = 0; 𝑤ℎ𝑒𝑛 𝜃 > 1 

lim
𝑥→0

ℎ(𝑥) = ∞; 𝑤ℎ𝑒𝑛 𝜃 < 1 

lim
𝑥→0

ℎ(𝑥) =
𝛼𝜆𝜃

𝑘
; 𝑤ℎ𝑒𝑛 𝜃 = 1 

 

Corollary 3: Let 𝑓(𝑥) 𝑎𝑛𝑑 ℎ(𝑥) be the probability density and 

the hazard function of Gompertz Exponential Pareto 

distribution respectively, then the asymptotes for 

𝑓(𝑥) 𝑎𝑛𝑑 ℎ(𝑥) 𝑎𝑠 𝑥 → 0  𝑖𝑚𝑝𝑙𝑦 𝑓(0) = ℎ(0) . 
 

Proof: 

Results follow from the proofs of theorems (1) and (2). 

lim
𝑥→0

ℎ(𝑥) = {

0           , 𝜃 > 1
𝛼𝜆 

𝑘
   , 𝜃 = 1

 ∞       ,   𝜃 < 1

=  lim
𝑥→0

𝑓(𝑥)                           (25) 

 

3.4. Moments of GEP Distribution  

 

           The moment of a random variable for continuous 

distribution is defined as; 

 

𝐸(𝑋) = ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

0
                                                          (26) 

 

Theorem 3: The 𝑟𝑡ℎ moment of GEP distribution about the 

origin is given as follows 

 

𝐸(𝑋)𝑟 = ∑ ∑
(−1)𝑗(

𝛼

𝛽
)
𝑖

𝑖!

∞
𝑗=0

∞
𝑖=0 (

𝑖
𝑗
)
𝛼𝑘𝑟

𝑚
(
1

𝜆𝑚
)

𝑟

𝜃
𝛤 (

𝑟

𝜃
+ 1)     (27) 

 

Proof: substitute density function of GEP in (9) into (26) 

 

 

𝐸(𝑋)𝑟

= ∫ 𝑥𝑟
𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

∑∑
(−1)𝑗 (

𝛼

𝛽
)
𝑖

𝑖!

∞

𝑗=0

(
𝑖
𝑗
)

∞

𝑖=0

(𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

𝑚

𝑑𝑥
∞

0

 

=∑∑
(−1)𝑗 (

𝛼

𝛽
)
𝑖

𝑖!

∞

𝑗=0

(
𝑖
𝑗
)

∞

𝑖=0

∫
𝛼𝜆𝜃

𝑘𝜃
𝑥𝑟+𝜃−1 (𝑒−𝜆(

𝑥

𝑘
)
𝜃

)

𝑚

𝑑𝑥
∞

0

 

 

Let y= 𝑚𝜆 (
𝑥

𝑘
)
𝜃

, then by transformation𝑥 = 𝑘 (
𝑦

𝜆𝑚
)
1/𝜃

 

𝑑𝑥 =
𝑘𝜃

𝜆𝑚𝜃𝑥𝜃−1
𝑑𝑦 

=∑∑
(−1)𝑗 (

𝛼

𝛽
)
𝑖

𝑖!

∞

𝑗=0

∞

𝑖=0

(
𝑖
𝑗
)∫

𝛼𝜆𝜃

𝑘𝜃
𝑥𝑟+𝜃−1𝑒−𝑦

𝑘𝜃

𝜆𝑚𝜃𝑥𝜃−1
𝑑𝑦

∞

0

 

=∑∑
(−1)𝑗 (

𝛼

𝛽
)
𝑖

𝑖!

∞

𝑗=0

∞

𝑖=0

(
𝑖
𝑗
)∫

𝛼

𝑚
(𝑘 (

𝑦

𝜆𝑚
)
1/𝜃

)

𝑟

𝑒−𝑦𝑑𝑦
∞

0

 

=∑∑
(−1)𝑗 (

𝛼

𝛽
)
𝑖

𝑖!

∞

𝑗=0

∞

𝑖=0

(
𝑖
𝑗
)∫

𝛼𝑘𝑟

𝑚
(
1

𝜆𝑚
)
𝑟/𝜃

𝑦𝑟/𝜃𝑒−𝑦𝑑𝑦
∞

0

 

𝐸(𝑋)𝑟 =∑∑
(−1)𝑗 (

𝛼

𝛽
)
𝑖

𝑖!

∞

𝑗=0

∞

𝑖=0

(
𝑖
𝑗
)
𝛼𝑘𝑟

𝑚
(
1

𝜆𝑚
)

𝑟

𝜃

𝛤 (
𝑟

𝜃
+ 1) 

where  𝑚 = 𝛽(𝑗 + 1) 

3.5. Mean, Variance, and Coefficient of Variation of the GEP  

         The mean is the first moment about the origin obtained 

when 𝑟 = 1 and is given by 

𝐸(𝑋) = ∑ ∑
(−1)𝑗(

𝛼

𝛽
)
𝑖

𝑖!

∞
𝑗=0

∞
𝑖=0 (

𝑖
𝑗
)
𝛼𝑘

𝑚
(
1

𝜆𝑚
)

1

𝜃
𝛤 (

1

𝜃
+ 1)          (28) 

 

The second moment is given by 

𝐸(𝑋2) =∑∑
(−1)𝑗 (

𝛼

𝛽
)
𝑖

𝑖!

∞

𝑗=0

∞

𝑖=0

(
𝑖
𝑗
)
𝛼𝑘2

𝑚
(
1

𝜆𝑚
)

2

𝜃

𝛤 (
2

𝜃
+ 1) 

The variance by definition is 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − (𝐸(𝑥))2 

 

=

{
 
 

 
 ∑ ∑

(−1)𝑗(
𝛼

𝛽
)
𝑖

𝑖!

∞
𝑗=0

∞
𝑖=0 (

𝑖
𝑗
)
𝛼𝑘2

𝑚
(
1

𝜆𝑚
)

2

𝜃
𝛤 (

2

𝜃
+ 1)

− {∑ ∑
(−1)𝑗(

𝛼

𝛽
)
𝑖

𝑖!

∞
𝑗=0 (

𝑖
𝑗
)∞

𝑖=0
𝛼𝑘

𝑚
(
1

𝜆𝑚
)

1

𝜃
𝛤 (

1

𝜃
+ 1)}

2        (29) 

The coefficient of variance is defined as 

𝑐𝑣 =  
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛
=

𝜎

𝜇
                                              (30) 

The coefficient of variance for GEP is given by 

𝑐𝑣 =
𝜎

∑ ∑
(−1)𝑗(

𝛼
𝛽
)
𝑖

𝑖!
∞
𝑗=0 (

𝑖
𝑗
)
𝛼𝑘

𝑚
(
1

𝜆𝑚
)

1
𝜃𝛤(

1

𝜃
+1)∞

𝑖=0

                               (31) 

where 𝜎 is the square root of 𝑉𝑎𝑟(𝑋)in 

3.6. Moment Generating Function of GEP Distribution 

 

         Theorem 4: Let 𝑋  be a five parameter Gompertz 

Exponential Pareto random variable with probability density 
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function 𝑔(𝑥), the moment generating function of 𝑋 denoted as 

𝑀𝑥(𝑡) is given by 

𝑀𝑋(𝑡) = ∑
𝑡𝑠

𝑠!

∞
𝑠,𝑖,𝑗=0

(−1)𝑗(
𝛼

𝛽
)
𝑖

𝑖!
(
𝑖
𝑗
)
𝛼𝑘𝑟

𝑚
(
1

𝜆𝑚
)

𝑟

𝜃
𝛤 (

𝑟

𝜃
+ 1)       (32) 

Proof: 

The moment generating function for a continuous random 

variable 𝑋 is defined by 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑥) = ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥

∞

0
                                    (33)     

𝑒𝑡𝑥 =∑
𝑡𝑠𝑥𝑠

𝑠!

∞

𝑠=0

 

𝐸(𝑒𝑡𝑥) = ∑
𝑡𝑠

𝑠!

∞
𝑠=0 𝐸(𝑋𝑠)(34)  

By substituting the  𝐸(𝑋𝑠) in (28) into (34), the desired result 

for the proof was obtained. 

3.7. Characteristic Function of GEP Distribution 

 

             The characteristics function for a GEP random variable  

𝑋 was obtained in a similar fashion as the moment generating 

function and is given by 

𝜑(𝑖𝑡) = ∑
(−1)𝑗(

𝛼

𝛽
)
𝑞

𝑞!

∞
𝑠,𝑖,𝑗=0 (

𝑞
𝑗)

(𝑖𝑡)𝑠

𝑠!

𝛼𝑘𝑟

𝑚
(
1

𝜆𝑚
)

𝑟

𝜃
𝛤 (

𝑟

𝜃
+ 1)    (35) 

 

3.8. Order Statistics from GEP Distribution 

 

             This sub-section is used for the derivation of 𝑠𝑡ℎ order 

statistics and the special cases for the maximum and minimum. 

Suppose we have  𝑋1, 𝑋2, … , 𝑋𝑛 as a random sample of size 𝑛 

from the GEP distribution with the CDF and PDF given as 

𝐹(𝑥) 𝑎𝑛𝑑 𝑓(𝑥) respectively, 

let 𝑋(1:𝑛), 𝑋(2:𝑛), … , 𝑋(𝑛:𝑛) be the appropriate order statistics 

designed from the arrangement of the random variables in order 

of magnitude, then the probability density function of the order 

statistics 𝑋(𝑠:𝑛) of observation in the 𝑠𝑡ℎ position from the 

sample as defined by several authors including David and 

Nagaraja. [29], Arnold et al.[30] is given by  

 

𝑓𝑋𝑠:𝑛(𝑥) =
𝑛

(𝑠−1)!(𝑛−𝑠)!
𝐹(𝑥)𝑠−1(1 − 𝐹(𝑥))𝑛−𝑠𝑓(𝑥)           (36)                                                               

 

Using the 𝐹(𝑥) and 𝑓(𝑥) in (5) and (6) respectively, the 

distribution of the 𝑠𝑡ℎ order statistics for Gompertz exponential 

Pareto is derived as 

{
 
 

 
 𝑓𝑋𝑠:𝑛(𝑥) =  

𝑛

(𝑠−1)!(𝑛−𝑠)!

𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

(𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

× 𝑒
𝛼

𝛽
[1−(𝑒−𝜆(𝑥 𝑘⁄ )𝜃)

−𝛽

]

𝑛−𝑠+1

[1 − 𝑒
𝛼

𝛽
[1−(𝑒−𝜆(𝑥 𝑘⁄ )𝜃)

−𝛽

]
]

𝑠−1

.

(37)    

The order statistics for minimum observation is derived when 

𝑠 = 1  and is given by 

𝑓𝑋1:𝑛(𝑥) =

 
𝑛𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

(𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

 (𝑒
𝛼

𝛽
[1−(𝑒−𝜆(𝑥 𝑘⁄ )𝜃)

−𝛽

]
)

𝑛

.         (38)                    

The maximum order statistics is derived when  𝑠 = 𝑛 

𝑓𝑋𝑛:𝑛(𝑥) =  
𝑛𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

(𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

𝑒

𝛼

𝛽
[1−(𝑒

−𝜆(
𝑥
𝑘)
𝜃

)

−𝛽

]

 

                       × (1 − 𝑒
𝛼

𝛽
[1−(𝑒−𝜆(𝑥 𝑘⁄ )𝜃)

−𝛽

]
)

𝑛−1

                 (39) 

4.  Estimation of Parameters of GEP Distribution 

             This section is devoted to the estimation of parameters 

of GEP distribution using the maximum likelihood estimation 

(MLE) method. Let  𝑋1, 𝑋2, … , 𝑋𝑛 be independent and 

identically distributed random sample of size 𝑛 from the 

Gompertz exponential Pareto distribution with density function 

𝑓(𝑥) as given in (6) with a set of parameters 𝜑 = (𝛼, 𝛽, 𝑘, 𝜆, 𝜃).  
 

The likelihood function of the distribution is obtained as; 

 

𝑓𝑋𝑛:𝑛(𝑥) =  𝐿𝑖𝑘[𝑔(𝑥, 𝜑)] =

∏

[
 
 
 
 
𝛼𝜆𝜃

𝑘
(
𝑥

𝑘
)
𝜃−1

(𝑒−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

𝑒

𝛼

𝛽
[1−(𝑒

−𝜆(
𝑥
𝑘)
𝜃

)

−𝛽

]

]
 
 
 
 

𝑛
𝑖=1           (40) 

The log Likelihood function 𝑙𝑜𝑔𝐿𝑖𝑘[𝑔(𝑥, 𝜑)] denoted as 𝐿𝑜𝑔𝐿 

is 

𝐿𝑜𝑔𝐿 = 𝑛𝑙𝑜𝑔𝛼 + 𝑛𝑙𝑜𝑔𝜆 + 𝑛𝑙𝑜𝑔𝜃 − 𝑛𝑙𝑜𝑔𝑘𝜃 + (𝜃 − 1)∑𝑙𝑜𝑔𝑥

𝑛

1

 

            −𝛽∑ (−𝜆 (
𝑥

𝑘
)
𝜃
)𝑛

1 +
𝛼

𝛽
∑ [1 − (𝑒

−𝜆(
𝑥

𝑘
)
𝜃

)

−𝛽

]𝑛
1                 (41) 

The next step is to generate the derivatives of 𝐿𝑜𝑔𝐿 with respect 

to the parameters 

 

𝑑𝐿𝑜𝑔𝐿

𝑑𝛼
=

𝑛

𝛼
+

𝑛

𝛽
−

1

𝛽
∑ (𝑒−𝜆(

𝑥

𝑘
)
𝜃

)

−𝛽

𝑛
1                                  (42) 

𝑑𝐿𝑜𝑔𝐿

𝑑𝛽
=∑(𝜆 (

𝑥

𝑘
)
𝜃

)

𝑛

1

−
𝑛𝛼

𝛽2
+
𝛼

𝛽2
∑(𝑒−𝜆(

𝑥

𝑘
)
𝜃

)

−𝛽𝑛

1

 

−
𝛼

𝛽
∑ (𝑒−𝜆(

𝑥

𝑘
)
𝜃

)

−𝛽

𝑙𝑜𝑔 (−𝜆 (
𝑥

𝑘
)
𝜃

)𝑛
1                                 (43) 

𝑑𝐿𝑜𝑔𝐿

𝑑𝜆
= 

𝑛

𝜆
+ 𝛽∑ (

𝑥

𝑘
)
𝜃

𝑛
1 −

𝛼

𝛽
∑ (𝑒−𝜆(

𝑥

𝑘
)
𝜃

)

−𝛽−1

(
𝑥

𝑘
)
𝜃

𝑒−𝜆(
𝑥

𝑘
)
𝜃

𝑛
1        (44) 

𝑑𝐿𝑜𝑔𝐿

𝑑𝜃
=
𝑛

𝜃
− 𝑛𝑙𝑜𝑔𝑘 +∑𝑙𝑜𝑔𝑥

𝑛

1

+ 𝛽∑(𝜆 (
𝑥

𝑘
)
𝜃

)

𝑛

1

𝑙𝑜𝑔 (
𝑥

𝑘
)
𝜃

 

−
𝛼

𝛽
∑ (𝑒−𝜆(

𝑥

𝑘
)
𝜃

)

−𝛽

𝑛
1 𝑒−𝜆(

𝑥

𝑘
)
𝜃

𝑙𝑜𝑔 (
𝑥

𝑘
)
𝜃

                              (45) 

𝑑𝐿𝑜𝑔𝐿

𝑑𝑘
= −

𝑛𝜃

𝑘
+ 𝛽∑𝜃𝜆𝑥𝜃𝑘−(𝜃+1)

𝑛

1

 

+
𝛼

𝛽
∑ (𝑒−𝜆(

𝑥

𝑘
)
𝜃

)

−𝛽−1

𝑛
1 𝑒−𝜆(

𝑥

𝑘
)
𝜃

𝜃𝜆𝑥𝜃𝑘−(𝜃+1)                   (46) 
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The parameters can be obtained by equating the normal 

equations to zero; however, analytical solutions are not merely 

prone to algebraic errors, it is also rigorous and time 

consuming.  Hence, numerical solutions to the above equations 

is obtainable through statistical software. Fisher information 

matrix for generating variances for the confidence intervals for 

the estimated parameters 𝜑̂ = (𝛼̂, 𝛽̂, 𝜆̂, 𝜃̂, 𝑘̂) can be obtained 

after second derivates of the normal equations 

 

The 100 (1 − 𝜖)% confidence intervals for parameters of GEP 

distribution are provided as follows; 

 

{
  
 

  
 𝛼̂ ± 𝑍𝜖/2√𝛪

−1
𝛼𝛼(𝛩̂),   𝛽̂ ± 𝑍𝜖/2√𝛪

−1
𝛽𝛽(𝛩̂)

𝜆̂ ± 𝑍𝜖/2√𝛪
−1
𝜆𝜆(𝛩̂)    , 𝜃̂ ± 𝑍𝜖/2√𝛪

−1
𝜃𝜃(𝛩̂)

𝑘̂ ± 𝑍𝜖/2√𝛪
−1

𝑘𝑘(𝛩̂)

                    (47) 

where 𝑍𝜖is used as the 100 (1 − 𝜖)% upper percentile of the 

standard normal distribution. 

 

5. Results and Discussion 

 

          The flexibility of GEP distribution was investigated by 

means of application to two real-life datasets, ability of the 

distribution to provide a desirable model fit compared to other 

important and existing established distributions in literatures.  

The MLE of the model parameters was obtained using the 

AdequacyModel package in R statistical software Marinho et 

al. [31]. The  goodness-of-fit measures for selection of the best 

model to the data included the Akaike Information Criteria 

(AIC), Bayesian Information Criteria (BIC), Consistent Akaike 

Information Criterion (CAIC), Hannan-Quinn Information 

Criteria(HQIC), the P- values, Kolgomorov Smirnoff (K-S) 

statistics and the Log-Likelihood (𝐿𝐿) function. The 

distribution with the best performance is expected to have the 

lowest goodness-of-fit estimates for model selection criteria. 

     The Goodness-of-fit statistics are the standard model 

selection criteria employed by authors and researchers in 

making decision about competing distributions. They are 

contained in several related works including Khaleel et al. [23]. 

The goodness-of-fit statistics are defined as follows  

 

𝐴𝐼𝐶 = −2L +2m 

𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑚(𝑚 + 1)

(𝑛 − 𝑚 − 1)
 

𝐶𝐴𝐼𝐶 = −2𝐿 +
2𝑚𝑛

(𝑛 + 1)
 

𝐵𝐼𝐶 = −2L + mlog(n) 
 

𝐻𝑄𝐼𝐶 = −2L + 2mlog(log (n)) 

𝑚 is the number of parameters in the model and for GEP, 𝑚 =
5 , 𝑛 is the sample size 

𝐿  is the log-likelihood 𝐿𝐿 function obtained from data analysis 

using R-Software.  

The p-value and Kolmogorov Statistics are statistics 

corresponding to the goodness-of-fit criteria, which are the 

estimated values obtained from data application using R-

software.  

5.1. Application to Bladder Cancer Data 

 

     Patients with bladder cancer are identified with a disease 

characterized with the multiplication of abnormal cells without 

control in the bladder. This dataset from Lee and Wang [32] is 

the remission (in months) of a random sample of 128 patients 

with bladder cancer. It has been widely applied by notable 

researchers to test the performance of many newly developed 

convoluted probability distributions including Salem [13], 

Elbatal et al. [33],  Ateeq et al.[34], leren et al. [17] using PG, 

and most recently by Ogunde et al. [28] using GGTT. The GEP 

distribution is applied to the data and compared with EP, EEP, 

KEP, GGTT, GoIE, GoLom and the (PG) Power Gompertz 

distributions. Table 1 depicts the estimates of the parameters of 

the distributions. 

 
Table 1. Maximum likelihood estimates- bladder cancer data 

 

Models     𝛼̂              𝛽̂              𝜆̂             𝜃            𝑘̂ 

GEP       0.8757   -0.1477    0.3461    1.2336     3.1633    

KEP      2.1485     0.7157    0.6263    0.7526     1.8282 

EEP       3.1911        -          1.2545    0.6165     3.9288 

GGTT   24.1803    0.5783        -         6.1335     0.3086   

GoIE      0.0190    1.0088     0.1826        -              - 

GoLo     1.5042    0.0199     0.3563    3.8073        - 

EP            -            -              0.9349    1.0591     8.8323 

PGD      0.0950     0.0024        -          1.0377         - 

 

The estimated goodness-of-fit statistics for the selection of 

distribution with the best performance in modeling the data are 

presented in table 2. 

 
Table 2. Goodness-of-fit estimates for bladder cancer data 

 

Models   LL          AIC         BIC        K-S      P-value 

GEP      410.82   831.63      845.89    0.048      0.9248    

KEP      410.92   831.86      846.12    0.051      0.8916 

EEP       410.94   829.63     841.04    0.052      0.8741 

GGTT   413.59   835.18     846.58    0.058      0.7837   

GoIE     413.63   833.26     841.82    0.076      0.4520 

GoLo    413.92   835.85     847.26    0.095      0.2013 

EP         414.18   834.26     842.82    0.069      0.5841 

PG        414.82  835.62       844.18    0.071     0.5321 

 

Table 2 reveals that the GEP has the highest P-value with 

corresponding smallest values of goodness of fit measures and 

the result has shown that the new distribution has the capability 

of fitting the data more than the other distributions. 
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The graphical display of the estimated density and CDF 

plots for the competing distributions with application to the 

bladder cancer data are shown in figure 5 and figure 6 

respectively.  

 
Fig. 5. The fitted densities of GEP with some competing models 

 
Fig. 6. The fitted cdfof GEP with some competing models 

 

Figure 5 depicts the density plot and figure 6 shows the CDF 

plots of the competing models, which also supports the results 

from the computations in table 3 that GEP is the best choice 

among the distributions for modeling the dataset. 

 

5.2. Application to flood peaks of the Wheaton River data 

 

           The second dataset represents 72 exceedances for the 

period of 1958-1984 of flood peaks (in 𝑚3/𝑠) of the Wheaton 

River near Carcross in Yukon Territory, Canada. The data is 

available in many of the literatures where it has been applied 

including Bourguignon et al. [5] using KP,   Chhetri et al. [6] 

using KTP and Aryal [14] using BEP distributions. Table 3 

contains the values of estimated parameters. 

 
Table 3. Maximum likelihood estimates-Wheaton river data 

Models            𝛼̂              𝛽̂              𝜆̂             𝜃            𝑘̂ 

GEP           14.6439   5.7435    0.0063     0.7422       0.5941   

TEP            0.8779         -         0.7726     0.6829      31.6923         

WEP(new) 0.5172         -         0.0167    1.6831        0.9854 

KEP           0.8596    0.7174     0.4998    0.8983        3.7821 

BEP           0.5482    0.4984     0.0332    1.2985        0.7474 

EEP           1.7893         -          0.2104    0.8919        1.9940 

EP                    -           -           0.1790     0.8649        1.8640 

KTP          9.4442     74.899     0.0012     0.0039       0.1278 

KP            18.695      8.5151        -          0.0027        0.2680 

Table 4 shows the estimated values of goodness-of-fit 

measures for selecting the best model. The result in table 4 

showed that GEP distribution had the lowest goodness-of-fit 

measures and the highest p-value with corresponding 

Kolmogorov Smirnoff test statistics.  

Table 4. Goodness-of-fits estimates for Wheaton river data 

Models          LL        AIC         BIC         K-S       P-value 

GEP             249.89   509.77      521.16    0.095     0.5307 

WEP (new)  250.57    509.13     518.23    0.103     0.4348 

TEP             250.71   509.44      518.55    0.195     0.0086 

KEP            250.72    511.56     522.94     0.105     0.4038 

BEP            250.98    511.96     523.34       -               - 

EEP            251.35    511.50     520.60     0.107     0.3792 

EP               251.47    508.94     515.77     0.136     0.1374 

KTP            253.97    517.94     529.32     0.131     0.1723 

KP              256.43    520.87     529.97     0.135     0.1471 

Figure 7 and figure 8 represent the graphical display of the 

estimated density and CDF plots respectively for the competing 

distributions with an application to the Wheaton river data. 

The graphical visualization from the plots of estimated density 

in figure 7 and CDF in figure 8 strengthened the result depicted 

in table 4 showing that GEP distribution is the best choice for 

modeling the flood peaks dataset due to the superior goodness-

of-fit statistics. 

6. Conclusion 

          This article develops the Gompertz Exponential 

Pareto (GEP) distribution as a new generalization of EP model. 

The distribution generalizes some lifetime distributions 

existing in literatures. Several mathematical properties of the 

new distribution were investigated. Unlike the Gompertz 

distribution, which is characterized by a monotone increasing 
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failure rate, the GEP distribution possesses a flexible 

characteristic that makes it suitable for modeling phenomena 

with constant failure rates, decreasing and increasing failure 

rates. 

 
Fig. 7. The fitted densities of GEP with some competing models 

 
Fig. 8. The fitted densities of GEP with some competing models 

 

           The usefulness of the proposed distribution for modeling 

the heavy-tailed random phenomena was explored by 

applications to two real-life datasets from the field of medicine 

and hydrology. Results from data analysis revealed the superior 

performance of the GEP distribution with the highest goodness-

of-fit model selection criteria for describing the real-life 

datasets. The potentials of the proposed distribution make it a 

good choice in several other areas of applications such as in 

analyzing and modeling risks associated with heavy-tailed 

transactions in actuarial and insurance, finance, medicine, and 

some extreme events in meteorology and epidemiology. The 

mean and variance of the GE distribution by Adewara et al. [20] 

were obtained in an integral form; however, the results from 

GEP had the capacity to provide adequate characterizations for 

the GE distribution with an explicit solution.  
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