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Abstract

Partial discharges (PDs) constitute important phenomena in a Gas-Insulated System (GIS) that warrant recognition (and, subsequently,
mitigation) for being the obvious symptoms of system degradation. This paper proposes the dimensional analysis application based upon
Buckingham π theorem for characterizing PDs provoked by the presence of metallic particles adhering to the spacer surface in a GIS employing
SF6 (Sulphur hexafluoride). The ultimate goal of the analysis is to formulate the relationships that express three PD indicator quantities, namely
current, charge, and energy, in terms of six independent quantities that collectively influence these indicators. These six quantities (henceforth
referred to as the influencing, determining or affecting variables) include the level of applied voltage, the SF6 pressure, the length and position of
the particle on the spacer, the duration of voltage application, and the gap between electrodes. To compute the pertinent dimensionless products,
we implemented three computational methods based on matrix operations. These three methods produced the precisely same dimensionless
products, which were subsequently used for constructing the models depicting the relationships between each of the three PD dependent
quantities and the common six determining variables. The models derived provide partial quantitative information and facilitate qualitative
reasoning about the considered phenomenon.
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1. Introduction

Gas-Insulated Systems utilizing Sulphur hexafluoride (SF6
GISs, for short) have been widely used for power substations
worldwide, especially in densely-populated areas with very lim-
ited vacant spaces. The reason is that the dielectric strength of
SF6 is much higher than that of air (typically three to four time),
an advantage allowing a substantial compression of the substa-
tion size [1]. Moreover, the SF6 gas poses no dangerous detri-
mental threat to health since it enjoys the desirable feature of
being both non-flammable and non-toxic. It also has good arc-
quenching properties and advanced heat transfer characteristics
[2, 3].

However, any GIS cannot be optimally used to advantage
with defects presence within it. One of the most notorious GIS
defects is related to the presence of one or more metallic par-
ticles, which may be introduced into the GIS during manufac-
turing, installation, and/or operation. In certain conditions, such
contaminants can adhere, stick, or attach to the insulation spac-
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ers. If the electric field in the vicinity of the spacer is greatly
enhanced, partial discharges (PDs) may increase, whose most
inadvertent effect is the total breakdown of the insulators [4–6].

In some previous works [7, 8], Budiman et al. showed that
PDs initiated by the presence of a contaminating particle in a
GIS are heavily dependent on the particle length and its posi-
tion on the spacer surface. Thus, the information regarding the
PDs’ characteristics has been utilized to estimate the particle
length and its position. Budiman et al. also expressed concern
in [9] that the presence of metallic particles inside a GIS can
also cause the enhancement and the non-uniformity of the elec-
tric field around the GIS spacer.

The quantities related to (and acting as indicators for) the PD
phenomenon in a GIS are obviously determined by a number of
other factors. These affecting factors include the level of applied
voltage, the SF6 pressure, the gap between the parallel-plate
electrodes, and (possibly) several other factors. In the presence
of a contaminating metallic particle, the length and the position
of the particle are also among the affecting factors [8].

However, no aforementioned previous works have formu-
lated quantitative relationships expressing the dependence of the
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PD quantities (indicators) on the affecting quantities. Most pre-
vious studies on PD analysis in GIS were mainly focused on
how to recognize the PD pattern and to establish the PD model
using the collected experimental data. This kind of research may
utilize the conventional electrical signal [10], the VHF/UHF sig-
nal [11–16], and the accoustic signal [17] emitted by the PD.
Other methods of measurement can also be utilized. However,
AI-based pattern recognition techniques utilized in these stud-
ies were data-driven, in which they required sufficient data as
the input, without which the recognition result was highly prone
to errors.

Departing from the above mentioned gap, this study aimed to
establish an appropriate mathematical formulation/model of the
PD phenomenon in the GIS without a need for bulk experimen-
tal data. Instead of data-driven methods, we have to resort to an
alternative adequate technique that might still provide the par-
tial quantitative information and facilitate qualitative reasoning,
without demanding so stringent theoretical requirements.

We asserted that dimensional analysis (DA) can serve for
such a purpose, since all it needs is a proper identification of all
the genuine determinants of the studied phenomenon together
with the knowledge of the dimensions of the pertinent physi-
cal quantities with respect to an appropriate dimensional basis.
Dimensional analysis is suitable for the exploration of phenom-
ena that are not easily amenable to exact analysis. The exam-
ples of these phenomena include the estimation of the profit-loss
sharing contracts [18], the modeling of aeolian sand bearing ca-
pacity [19], and the estimation of temperature at a point of an
infrared dryer [20].

In power engineering-related studies, DA has not been ex-
tensively used. To the best of our knowledge, only few papers
about DA in power systems can be found. The example of these
few papers include [21, 22]. In [21], DA was applied for corona
discharge analysis, but the insulating medium used was air and
the electroce configuration was not specifically described. In
turn, we have tried to give a detailed self-contained exposition
of DA application to the considered phenomenon. We employed
several matrix-based methods for DA implementation, and elab-
orated at its findings, relating them to the earlier experimental
investigations.

The remainder of this paper is structured as follows. Section
2 describes the necessary materials and the methods used, em-
phasizing the basics of DA. Subsequently, Sections 3 presents a
detailed exposition of DA application for our GIS problem. Our
exposition covered three equivalent computational competitive
(albeit equivalent) methods. Section 3 also provides a qualita-
tive discussion and interpretation of the results obtained. Fi-
nally, Section 4 concludes the paper.

2. Materials and Method

2.1. The Gas-Insulated System

In this subsection, we would provide an ample description
for the GIS system whose generated PDs are to be modeled
herein, as discussed in [8]. This system is a laboratory-scale
gas chamber whose schematic is shown in Figure 1. A spacer
was located between the high voltage (HV) and the grounded
electrodes, while a single small piece of metallic material (typ-
ically, referred to in the GIS literature as a particle) was glued

on the spacer to replicate the condition in a real GIS, in which
such a metallic particle is attached to the spacer. The level of the
applied voltage was varied and various quantitative indicators of
the generated PDs were measured at different SF6 pressure val-
ues by using a special PD measurement system, which is based
on the IEC 60270 standard [23–26].

Note that the system shown in Figure 1 is a standard lab piece
of equipment that mimics a real GIS. The use of this system was
not meant as a restriction for the applicability of the developed
PD model. Instead, we simply used the system to verify the
parameters/quantities affecting the PD in a GIS. In other words,
the developed model can be generalized to any real SF6 GIS.

Fig. 1. The GIS chamber used for the experiment

In [8], Budiman et al. presented several PD distributions in-
volving a number of PD quantities. Referring to these distri-
butions, the PD quantities to be modeled in this study were se-
lected to be the PD current IPD, the PD charge QPD, and the
PD energy WPD. From the experiment conducted in [8], it was
suggested that all these three quantities in the configuration used
and under the prevailing circumstances were affected by the fol-
lowing six independent parameters/quantities: (i) applied volt-
age V , (ii) SF6 pressure P, (iii) particle length L, (iv) particle
position relative to the grounded electrode Hp, (v) gap between
electrodes/the height of the spacer Hs, and (vi) time/duration of
voltage application t. Therefore, the mathematical relationship
between each PD indicator quantity and these six parameters
can be expressed as follows,

IPD = Φ(V,P,L,Hp,Hs, t) (1)
QPD = ϕ(V,P,L,Hp,Hs, t) (2)
WPD = χ(V,P,L,Hp,Hs, t) (3)

Other important SF6 insulating parameters such as the di-
electric constant (the relative permittivity), or the absolute per-
mittivity itself were excluded in the current analysis since these
two (proportional) quantities have been known to be dependent
on the SF6 pressure value. There is a general trend that both
of these quantities increase when the SF6 pressure gets higher
[27, 28]. Thus, the SF6 pressure level is deemed sufficient to
represent each of them, i.e., to be used on behalf of any of them.
This is a plausible assumption, indeed, that is much warranted
in the present engineering approximation or our first cut at the
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problem, and might be subject to further scrutiny or verification
at a later stage.

2.2. Theory of Dimensional Analysis

Dimensional analysis (DA) is an old, well-established yet
powerful technique for qualitative reasoning and partial quan-
titative modeling. As summarized in [29, 30], DA enjoys sev-
eral attractive features, including its capability to give a physical
insight into the dependencies in physical systems, to simplify
equations describing a system, and to unify seemingly disparate
unrelated systems.

The fundamental paradigm of modern DA is established by
the dimensional group’s theorem, also known as Buckingham π

theorem, which states that an equation of n physical variables
can be reduced to another equation of (n− r) new dimension-
less variables, where r is the rank of a certain matrix called as
the dimensional matrix [30, 31]. This matrix has some rows
indexed by the physical dimensions used, columns indexed by
the initial physical variables, and its typical element is the ex-
ponent to which the pertinent physical dimension (row index) is
raised in a product expression of the pertinent variable (column
index) [30]. The new variables or the dimensionless products
constructed by DA are usually called as regimes [30].

If one has the following homogenous equation of n physical
variables,

f (x1,x2, . . . ,xn) = 0 (4)

then the reduced equation produced by DA is generally of the
form

F(π1,π2, . . . ,πn−r) = 0 (5)

where the symbols πi denote the dimensional products or the
new variables that replace the original variables xi, and F de-
notes an arbitrary function, whose determination lies outside the
scope of DA. According to (5), any of these dimensionless prod-
ucts might be conveniently expressed as an arbitrary function of
the others. If there is only one of these products (n− r = 1),
then this single product is simply a constant, a situation in which
DA is very effective, indeed. There are (n− r) variables among
the initial variables (called as regime variables), such that each
of them appears in one regime only (with a unit exponent). If
the dependence of a regime variable on other regime variables
is ignored, then the value of its dimensionless product will be
tentatively taken for a constant.

The initial task required to perform DA is to formulate the
aforementioned dimensional matrix. The required procedure is
presented as follows.

1. For all variables involved in modeling a certain system
or characterizing a specific phenomenon, i.e., x1,x2, . . . ,xn,
their physical dimensions were formulated in terms of cer-
tain basic physical dimensions. For convenience, we used
the MLT I dimensional basis utilizing the dimensions of mass
[M], length [L], time [T ], and electric current [I] as they are
the four most prominent fundamental dimensions of the In-
ternational System of Units (The SI System). Alternatively,
we could have used the LT Iφ basis, which replaces the di-
mension of mass by that of the electric potential or voltage
[φ ]. Any of these two bases suffices to express all physi-
cal quantities incurred in the entire domain of electromag-
netics (including kinetics, electricity, and magnetism as sub-

domains). In more general problems, it might be convenient
(albeit not strictly necessary) to supplement the dimensional
basis by extra dimensions such as those of temperature, num-
ber of substances in moles, or illumination intensity (the re-
maining SI fundamental dimensions), as well as those of pla-
nar and solid angles (the auxiliary SI fundamental quanti-
ties).

2. Based upon Buckingham theorem [30], each dimensionless
product constructed by multiplying each of the original vari-
ables (raised to a specific power) is of the form

π = kxy1
1 xy2

2 . . .xyn
n (6)

which can be converted into the following equation by taking
the dimensions for all the quantities involved, namely

1 = [π] = [x1]
y1 [x2]

y2 . . . [xn]
yn (7)

where k is a dimensionless constant ([k] = 1) and
y1,y2, . . . ,yn are n unknown (albeit related) exponents, which
are yet to be partially determined. As seen shortly, some of
these exponents are expressible in terms of the rest.

3. Another notation p is defined, which represents the cardinal-
ity of the employed dimensional set, i.e., the number of basic
physical quantities initially defined in the modeling. For the
MLT I dimensional basis adopted herein, p = 4.

4. The obtained dimensional equation in step 2 is converted into
a set of p equations in the following unknown exponents,

f1(y1,y2, . . . ,yn) = 0
f2(y1,y2, . . . ,yn) = 0

...
fp(y1,y2, . . . ,yn) = 0

(8)

The set of equations in (8) is a purely homogenous linear set
of equations in the unknown exponents, a fact that suggests
its replacement by a single homogeneous matrix equation,
involving a p-by-n dimensional matrix ℜ (p < n) and a vec-
tor Y = [y1y2 . . .yn]

T of unknown exponents, that is

ℜY = 0 (9)

We temporarily assumed that the equations (8) are linearly
independent; hence, the dimensional matrix ℜ is of full
rank (has a rank r = p < n). However, if r < p, we re-
placed p by r, and retained only r linearly independent equa-
tions out of the set of equations (8). The literature abounds
with techniques that assume that the rank r is known from
the outset (or assume it might be computed, say through
computationally-intensive repeated determinant computation
[32]). We pointed out that one of the computational meth-
ods suggested herein, namely the Gauss-Jordan method bor-
rowed from [30], has the distinct advantage of not requiring
a prior knowledge of r. This method proceeds towards its so-
lution without making any distinctions between p and r, and
detects that r is less than p exactly according to the num-
ber of all-0 rows it generates. If no such rows are generated
(mostly the case in small DA problems) then the assumption
that r and p are the same is justified. Otherwise, p is decre-
mented by the number of all-0 rows generated, so as to rep-
resent r correctly. As a bonus, the method of Gauss-Jordan
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elimination enjoys the additional advantage of deciding (with
no extra computations) which r out of the p equations in (8)
(i.e., which r out of the p rows of the dimensional matrix) to
retain.
During this stage, both row interchanging and column in-
terchanging may be recommended for shaping the first p
columns of the dimensional matrix to be as similar as possi-
ble to an identity matrix. The obtained matrix is to be taken
herein as the designated dimensional matrix, which has a size
of p×n. Equation (9) is rewritten as (9a) to show the dimen-
sional matrix structure, and to partition it into two matrices
A and B, the former of which is a square matrix.

 A B




y1
y2
...

yn

=


0
0
...
0

 (9a)

The size of A and B in (9a) are p× p and p× (n− p), re-
spectively. Note that (9a) is written in the conventional form
of writing a matrix equation. This form does not facilitate
the reading of the constituent scalar equations, and might
lead its reader to fallaciously assume that p and n are equal.
Therefore, we will not abide by this conventional form when
writing the detailed equations. Corresponding to the parti-
tioning of the dimensional matrix, the set of unknown in-
dices {y1,y2, . . . ,yn} in (9a) is partitioned into two disjoint
sets [30]:

(a) A set of basis indices comprising the first p indices, that
is {y1,y2, . . . ,yp}

(b) A set of regime indices comprising the remaining (n−
p) indices, that is {yp+1,yp+2, . . . ,yn}

The reasons of partitioning the dimensional matrix as shown
in (9a), and the corresponding partitioning of the vector of
indices will be clarified further as we proceed in this section.
As previously mentioned, it is desirable to shape the sub-
matrix A in (9a) to be as close as possible to an identity ma-
trix. We noted that some authors have given higher priority to
placing all variables required to act as the regimes in the sub-
matrix B in (9a). These variables are also frequently referred
to as output variables, since each of them appears only in a
single dimensionless product. We will not insist on placing a
variable destined to be a regime variable in the sub-matrix B
in (9a). We will rely on a simple procedure (outlined in [30])
to restore any desired variable to a regime role.
Given a system with n variables whose dimensional matrix
is full rank, the number of possible sets of output variables is
the number of selecting (n− p) objects out of n objects (with
neither order nor repetition), which is C(n,n− p) or n choose
(n− p). This number equals the number of genuinely dis-
tinct ways of partitioning the dimensional matrix. If the di-
mensional matrix is not full rank, then this number becomes
C(n,n− r). Further elaboration about this point might be
found in [30].

After the dimensional matrix was established, all dimension-
less products πi were computed. Three methods were used in
this paper for this purpose through the following steps.

2.2.1. Method 1

This method is based on the procedure outlined in [30]. The ba-
sic philosophy of this method is to integrate the determination
of the rank r of the dimensional matrix and the selection of r
linearly-independent equations with the solution process itself.
To achieve this purpose, we applied the Gauss-Jordan elimina-
tion procedure, using row interchange when necessary to avoid
pivoting on zero. In this procedure, the same elementary row op-
erations were applied to the entire dimensional matrix [30, 33].
As a result, sub-matrix A was converted into a unit matrix, while
sub-matrix B was converted into a sub-matrix D, as shown in
Figure 2.

Fig. 2. Illustration of the dimensional matrix transformation via Gauss-Jordan
elimination in which the same elementary row operations are applied to the

entire matrix

The rank of the dimensional matrix r is the size of the unit
sub-matrix to which A is converted, while the size of D is r(n−
r). As stated earlier, r ≤ p, so that either r = p (for which case,
it is acceptable to ignore the distinction between r and p), or
r < p (for which case, (p− r) all-0 rows emerge at the bottom
of the processed matrix, and we ignored these rows by resetting
p to r). The values of the basic indexes y1,y2, . . . ,yr are then
calculated in terms of the regime indexes as follows,

y1 =−d11yr+1−d12yr+2− ...−d1,n−ryn

y2 =−d21yr+1−d22yr+2− ...−d2,n−ryn

...
yr =−dr1yr+1−dr2yr+2− ...−dr,n−ryn

(10)

where di j are the elements of the matrix D and i = 1,2, ,r; j =
1,2, ,n− r.

The values of the basis indexes y1,y2, . . . ,yr from (10) were
substituted into (6), while the remaining indexes (the regime in-
dexes) yr+1,yr+2, . . . ,yn were left as they were. Afterwards, the
quantities with the same exponent were grouped together as a
single product until the following form was obtained,

π = kπ
yr+1
1 π

yr+2
2 . . .πyn

n−r (11)

The dimensionless products πi (1 ≤ i ≤ n − r) were ex-
tracted from (11) by assigning orthonormal values to the ele-
ments of the set of regime indices {yr+1,yr+2, . . . ,yn}, namely
{1,0, . . . ,0},{0,1, . . . ,0}, . . . ,{0,0, . . . ,1}. This meant that
(n− r) independent dimensionless products or regimes were
obtained for this particular partitioning of the indices into ba-
sis and regime indices. Other independent set of dimensional
products (with a specific required selection of regime variables)
might also be obtained through an appropriate choice of (n− r)
independent points in the (n− r)-dimensional space of regime
indices yr+1,yr+2, . . . ,yn [30]. Such points are deemed indepen-
dent if none of them can be expressed as a weighted sum of the
others. This means that we might deviate from the usual prac-
tice of selecting orthonormal points in the (n− r)-dimensional
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space of regime indices if we need a basis variable to act as a
regime one. As seen shortly, each of the three output variables
considered herein happened to appear in a single dimensionless
product at no extra manipulation cost.

2.2.2. Method 2

This method, as explained in [29], is similar to method 1, but
differs in the way the dimensional matrix is transformed as it
uses a computationally less-efficient (albeit conceptually easier
to grasp) procedure. We produced an r-by-r unit matrix through
left multiplication of the submatrix A by its inverse, that is

Ir×r =

{
(A[1 : r,1 : r])−1A[1 : r,1 : r] r < p
A−1A r = p

(12)

It is clear that the matrix A[1 : r,1 : r] is non-singular as it is of
full rank, and it might be identified as A when r = p. Similar
to what was done in method 1, operations implemented on sub-
matrix A should also be done on sub-matrix B, that is

D =

{
(A[1 : r,1 : r])−1B′ r < p
A−1B r = p

(13)

where
B′ = [A[1 : r,r+1 : p] B[1 : r,1 : n− p]] (14)

Using the product of the two matrices Ir×r and D transposed, to-
gether with a unit matrix I(n−r)×(n−r), we consructed a new ma-
trix of the indexes used in the dimensionless products, as shown
in Figure 3.

Fig. 3. Matrix constructed for πi calculation in the direct transformation
method.

From the matrix in Figure 3, the dimensionless products πi
were calculated as follows,

πi = xr+i

r

∏
j=1

x
ci j
j (15)

for i = 1,2, ,n− r, where ci j are the elements of submatrix C.

2.2.3. Method 3

Method 3 is much similar to method 2, in which the target was
still to create a matrix of the structure shown in Figure 3. The
difference was that such a matrix was formed directly from sub-
matrices A and B, without undergoing the transformation illus-
trated in Figure 2.

As in method 2, prior knowledge of the rank of the submatrix
A is required. Assuming A is non-singular and the rank of A is
known,

C =

{(
(A[1 : r,1 : r])−1(−B′)

)T r < p(
A−1(−B)

)T r = p
(16)

The dimensionless products πi were then calculated using (15).

2.3. Summary of the Method

The whole steps we used in establishing the PD model are
summarized by the flowchart shown in Figure 4. Note that the
workflow depicted in Figure 4 is for a single PD quantity. There-
fore, it was repeated for all three PD quantities in (1)-(3).

Fig. 4. Workflow that establishes the DA model of each PD quantity studied
herein.

3. Dimensional Analysis Application: Steps, Results, and
Discussion

In this section, we present the detailed operations to calcu-
late the dimensionless products of the GIS variables to be inter-
related by DA herein. These variables have been defined ear-
lier in (1)-(3), and are listed again, along with their dimensions
(within the MLT I dimensional basis), in Table 1.

Each of the first three indicator quantities in Table 1 is de-
pendent on all the last six independent quantities and will be
modeled separately. After the dimensionless products of each
PD indicator quantity was calculated, the corresponding model
was formulated.

3.1. Derivation of the PD current model

First, we explored the dependence of the PD current on the
six independent variables. Using (6), we obtained the dimen-
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Table 1. Dimensions of GIS quantities to be inter-related by DA

Quantity Symbol Unit Dimension

PD current IPD A M0L0T 0I1

PD charge QPD C M0L0T 1I1

PD energy WPD J M1L2T−2I0

Applied voltage V V M1L2T−3I−1

SF6 pressure P Pa M1L−1T−2I0

Particle length L m M0L1T 0I0

Particle position relative to grounded Hp m M0L1T 0I0

electrode
Gap between electrodes Hs m M0L1T 0I0

Duration of voltage application t s M0L0T 1I0

sionless product

πI = kIa1
PDV b1Pc1Ld1He1

p H f1
s tg1 (17)

or
[πI ] = [IPD]

a1 [V ]b1 [P]c1 [L]d1 [Hp]
e1 [Hs]

f1 [t]g1 (18)

where [πI ] = 1. Substituting the dimension of each quantity into
(18), we obtained

M0L0T 0I0 =(M0L0T 0I1)a1(M1L2T−3I−1)b1(M1L−1T−2I0)c1

(M0L1T 0I0)d1(M0L1T 0I0)e1(M0L1T 0I0) f1

(M0L0T 1I0)g1

(19)

or, equivalently

M0L0T 0I0 =Mb1+c1L2b1−c1+d1+e1+ f1T−3b1−2c1+g1 Ia1−b1 (20)

The product πI was dimensionless if the following scalar equa-
tions were satisfied simultaneously

b1 + c1 = 0 (21a)
2b1− c1 +d1 + e1 + f1 = 0 (21b)
−3b1−2c1 +g1 = 0 (21c)
a1−b1 = 0 (21d)

Equations (21) can be converted into the following matrix form,


0 1 1 0 0 0 0
0 2 −1 1 1 1 0
0 −3 −2 0 0 0 1
1 −1 0 0 0 0 0





a1
b1
c1
d1
e1
f1
g1


=


0
0
0
0

 (22)

The matrix equation (22) can be written immediately from Ta-
ble 1. Each matrix vector is a listing of the dimensional expo-
nents for the quantity it designates. At this initial stage, each
matrix entry is a small integer. Equation (22) can be further
re-configured into the following form,


1 0 0 0 0 0 1
−1 1 0 0 1 1 2
−2 0 1 0 0 0 −3
0 0 0 1 0 0 −1


︸ ︷︷ ︸

dimensional matrix



c1
d1
g1
a1
e1
f1
b1


=


0
0
0
0

 (23)

The required dimensional matrix has been constructed in (23),
in which column interchanging was used so that the 4-by-4 ma-
trix formed by the first four columns resembled an identity ma-
trix as much as possible. We did not insist on selecting a1 as a
regime index from the outset, though ultimately we wanted it to
be so. From (23), it is known according to (9) that

A1 =


1 0 0 0
−1 1 0 0
−2 0 1 0
0 0 0 1

 ; B1 =


0 0 1
1 1 2
0 0 −3
0 0 −1

 (24)

Subsequent operations based on each of the three methods
described in the previous section are presented as follows.

3.1.1. πi computation with method 1

To perform the required transformation shown in Figure 2,
we applied Gauss-Jordan elimination (using row interchange if
needed to avoid pivoting on a zero value). The detailed elemen-
tary row operations for this elimination are explicitly shown in
the left margin of Table 2. To avoid the trouble caused by the
conventional layout in (9a), this table does not write the vector
of indices as a column vector to the right of the dimensional
matrix, but writes it as a row vector on top of it, a trick that con-
siderably facilitates the visual reading of the scalar equivalent
of a matrix equation [34]. Table 2 also omits the equality sign
in (5) and adds the zero vector in the R.H.S. of (5) as an ex-
tra vector for the dimensional matrix resulting in what is called
an augmented dimensional matrix [30]. The layout in Table 2
effectively resembles the way a matrix equation is stored in a
computing machine.

Table 2. Application of Gauss-Jordan elimination in the DA for the PD current

c1 d1 g1 a1 e1 f1 b1
(1) 1 0 0 0 0 0 1 0
(2) -1 1 0 0 1 1 2 0
(3) -2 0 1 0 0 0 -3 0
(4) 0 0 0 1 0 0 -1 0
(1) 1 0 0 0 0 0 1 0

(2)+(1) 0 1 0 0 1 1 3 0
(3)+2(1) 0 0 1 0 0 0 -1 0

(4) 0 0 0 1 0 0 -1 0

From Table 2, it is observed that no all-0 row is generated.
This observation revealed that the rank of the dimensional ma-
trix in (23) was indeed 4. Therefore, r = p = 4. Applying (10),
we obtained

c1 = b1 (25a)
d1 =−e1− f1−3b1 (25b)
g1 = b1 (25c)
a1 = b1 (25d)

Substituting back the values of c1,d1,g1,a1 into (17) yields

πI = kIb1
PDV b1P−b1L−e1− f1−3b1He1

p H f1
s tb1 (26)

or

πI = k
(

Hp

L

)e1
(

Hs

L

) f1( IPDVt
PL3

)b1

(27)
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Thus

πI1 =
Hp

L
, πI2 =

Hs

L
, πI3 =

IPDVt
PL3 (28)

We were fortunate that the output variable IPD appeared in a sin-
gle dimensionless product at no extra manipulation cost. Other-
wise, we would replace the three independent dimensional prod-
ucts in (28) by three others, which were still independent, but
with the appearance of IPD confined to one of them.

3.1.2. πi computation with method 2

Our particular arrangement for the columns of A1 paid off
herein elegantly. Since A1 was a lower triangular matrix of unit
diagonal entries, its inverse A−1

1 was also lower triangular of
unit diagonal entries, and it inherited all zero entries from A1.
Only two elements in A−1

1 remained to be determined trivially
by inspection, so that A−1

1 and the resulting D1 were given fi-
nally as

A1 =


1 0 0 0
1 1 0 0
2 0 1 0
0 0 0 1

 , D1 = A−1
1 B1 =


0 0 1
1 1 3
0 0 −1
0 0 −1

 (29)

As shown in Figure 3, matrix C1 was computed as follows.

C1 = (−Ir×rD1)
T =

 0 −1 0 0
0 −1 0 0
−1 −3 1 1

 (30)

Using (15), we calculated the dimensionless products from (30)
and recorded the resulting expressions as

πI1 =
Hp

L
, πI2 =

Hs

L
, πI3 =

IPDVt
PL3 (28a)

which were exactly the same as those in (28).

3.1.3. πi computation with method 3

In method 3, matrix C1 was computed directly using (16). For
r = p,

C1 = (A−1
1 (−B1))

T =

 0 −1 0 0
0 −1 0 0
−1 −3 1 1

 (31)

Since the resulting matrix was exactly the same as that in (30),
the dimensionless products πI1, πI2, and πI3 were also exactly
the same as those in (28).

After all dimensionless products were calculated, the task left
was to formulate a model of the PD current. The PD current IPD
was embedded in πI3 only. Therefore, we wrote

πI3 = k1Φ(πI2,πI3) (32)

By substitution of (28) into (32), we obtained the model of IPD
as follows,

IPD =
k1PL3

Vt
Φ

(
Hp

L
,

Hs

L

)
(33)

where k1 is an unknown dimensionless constant, and Φ is an un-
known function. Further experiments might aid in determining
these two unknowns.

3.2. Derivation of the PD charge model

In a way similar to that of the derivation of the PD current
model, the PD charge derivation was started by formulating a π

equation dictated by (6) as follows,

πQ = kQa2
PDV b2Pc2Ld2He2

p H f2
s tg2 (34)

or

1 = [πQ] = [QPD]
a2 [V ]b2 [P]c2 [L]d2 [Hp]

e2 [Hs]
f2 [t]g2 (35)

Substituting the dimensions of each quantity into (35) results in

M0L0T 0I0 =(M0L0T 1I1)a2(M1L2T−3I−1)b2(M1L−1T−2I0)c2

(M0L1T 0I0)d2(M0L1T 0I0)e2(M0L1T 0I0) f2

(M0L0T 1I0)g2

(36)

or, equivalently

M0L0T 0I0 =Mb2+c2L2b2−c2+d2+e2+ f2T a2−3b2−2c2+g2

Ia2−b2
(37)

The product πQ is dimensionless if the following four equations
are satisfied.

b2 + c2 = 0 (38a)
2b2− c2 +d2 + e2 + f2 = 0 (38b)
a2−3b2−2c2 +g2 = 0 (38c)
a2−b2 = 0 (38d)

Equations (38a) and (38d) are similar to (21a) and (21b), respec-
tively.

The dimensional matrix for the current case is shown in the
following matrix equation,


1 0 0 1 0 0 0
−1 1 0 2 0 1 1
−2 0 1 −3 1 0 0
0 0 0 −1 1 0 0


︸ ︷︷ ︸

dimensional matrix



c2
d2
g2
b2
a2
e2
f2


=


0
0
0
0

 (39)

The submatrices A2 and B2 extracted from the dimensional ma-
trix in (39) are

A2 =


1 0 0 1
−1 1 0 2
−2 0 1 −3
0 0 0 −1

 ; B2 =


0 0 0
0 1 1
1 0 0
1 0 0

 (40)

As in the derivation of the PD current model, we presented
here three methods for computing the dimensional products πi.

3.2.1. πi computation with method 1

The Gauss-Jordan elimination procedure for the dimensional
matrix in (39) is shown in Table 3.
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Table 3. Application of Gauss-Jordan elimination in the DA for the PD charge

c2 d2 g2 b2 a2 e2 f2
(1) 1 0 0 1 0 0 0 0
(2) -1 1 0 2 0 1 1 0
(3) -2 0 1 -3 1 0 0 0
(4) 0 0 0 -1 1 0 0 0
(1) 1 0 0 1 0 0 0 0

(2)+(1) 0 1 0 3 0 1 1 0
(3)+2(1) 0 0 1 -1 1 0 0 0

(4) 0 0 0 -1 1 0 0 0
(1)+(4) 1 0 0 0 1 0 0 0

(2)+3(4) 0 1 0 0 3 1 1 0
(3)-(4) 0 0 1 0 0 0 0 0

-(4) 0 0 0 1 -1 0 0 0

From Table 3, it is known that the rank of the dimensional
matrix in (39) is 4. Therefore, r = p = 4. The application of
(10) resulted in

c2 =−a2 (41a)
d2 =−3a2− e2− f2 (41b)
g2 = 0 (41c)
b2 = a2 (41d)

Substituting back the values of c2,d2,g2,b2 into (34) yields

πQ = kQa2
PDV a2P−a2L−3a2−e2− f2He2

p H f2
s (42)

or

πQ = k
(

QPDV
PL3

)a2
(

Hp

L

)e2
(

Hs

L

) f2
(43)

Thus

πQ1 =
QPDV
PL3 , πQ2 =

Hp

L
, πQ3 =

Hs

L
(44)

3.2.2. πi computation with method 2

The inverse of the matrix A2 in (40) is also easy to obtain, most
conveniently by applying the same elementary row operations
in Table 3 to I4×4. Along with D2, it is

A2 =


1 0 0 1
1 1 0 3
2 0 1 −1
0 0 0 −1

 , D2 =A−1
2 B2 =


1 0 0
3 1 1
0 0 0
−1 0 0

 (45)

As shown in Figure 3, matrix C2 was computed as follows.

C2 = (−Ir×rD2)
T =

−1 −3 0 1
0 −1 0 0
0 −1 0 0

 (46)

Using (15), the dimensionless products were calculated from
(46) with the resulting expressions as follows.

πQ1 =
QPDV
PL3 , πQ2 =

Hp

L
, πQ3 =

Hs

L
(44a)

which were exactly the same as those in (44).

3.2.3. πi computation with method 3

In method 3, matrix C2 was computed directly using (16). For
r = p,

C2 = (A−1
2 (−B2))

T =

−1 −3 0 0
0 −1 0 0
0 −1 0 0

 (47)

Since the resulting matrix was exactly the same as that in (46),
the dimensionless products πQ1, πQ2, and πQ3 were also exactly
the same as those in (44).

Because the PD charge QPD was embedded solely in πQ1, we
could conveniently write

πQ1 = k2ϕ(πQ2,πQ3) (48)

By substitution of (44) into (48), the model of the PD charge
results as

QPD =
k2PL3

V
ϕ

(
Hp

L
,

Hs

L

)
(49)

where k2 is an unknown dimensionless constant, and ϕ is an
unknown function. Again, further experiments might aid in de-
termining these two unknowns.

3.3. Derivation of the PD energy model

The third PD-related quantity to be modeled herein is the
energy released during PD occurrence. The π expression for
the PD energy, as dictated by (6) and with the utilization of data
in Table 1, is given as follows.

πW = kW a3
PDV b3Pc3Ld3He3

p H f3
s tg3 (50)

or
[πW ] = [WPD]

a3 [V ]b3 [P]c3 [L]d3 [Hp]
e3 [Hs]

f3 [t]g3 (51)

With [πW ] = 1 and the dimensions of each quantity in the right-
hand side of (51) being substituted for by the values in Table 1,
the following expression is obtained,

M0L0T 0I0 =Ma3+b3+c3L2a3+2b3−c3+d3+e3+ f3

T−2a3−3b3−2c3+g3 I−b3
(52)

Based on (52), the product πW could be rendered dimensionless
if the following set of equations was simultaneously met,

a3 +b3 + c3 = 0 (53a)
2a3 +2b3− c3 +d3 + e3 + f3 = 0 (53b)
−2a3−3b3−2c3 +g3 = 0 (53c)
−b3 = 0 (53d)

The matrix equation for (53) is presented as follows.


1 0 0 1 1 0 0
2 1 0 2 −1 1 1
−2 0 1 −3 −2 0 0
0 0 0 −1 1 0 0


︸ ︷︷ ︸

dimensional matrix



a3
d3
g3
b3
c3
e3
f3


=


0
0
0
0

 (54)
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The sub-matrices A3 and B3 are

A3 =


1 0 0 1
2 1 0 2
−2 0 1 −3
0 0 0 −1

 ; B3 =


1 0 0
−1 1 1
−2 0 0
0 0 0

 (55)

As in the derivation of the PD current and the PD charge
models, we also implemented our three methods for computing
the dimensional products πi.

3.3.1. πi computation with method 1

The Gauss-Jordan elimination procedure for the dimensional
matrix in (54) is shown in Table 4.

Table 4. Application of Gauss-Jordan elimination in the DA for the PD energy

a3 d3 g3 b3 c3 e3 f3
(1) 1 0 0 1 1 0 0 0
(2) 2 1 0 2 -1 1 1 0
(3) -2 0 1 -3 -2 0 0 0
(4) 0 0 0 -1 0 0 0 0
(1) 1 0 0 1 1 0 0 0

(2)-2(1) 0 1 0 0 -3 1 1 0
(3)+2(1) 0 0 1 -1 0 0 0 0

-(4) 0 0 0 1 0 0 0 0
(1)-(4) 1 0 0 0 1 0 0 0

(2) 0 1 0 0 3 1 1 0
(3)+(4) 0 0 1 0 0 0 0 0

(4) 0 0 0 1 0 0 0 0

From Table 4, the rank of the dimensional matrix in (54) is
again 4. Therefore, r = p = 4. The application of (10) yielded

a3 =−c3 (56a)
d3 = 3c3− e3− f3 (56b)
g3 = 0 (56c)
b3 = 0 (56d)

Substituting back the values of a3,d3,g3,b3 into (50) yielded

πW = kW−c3
PD Pc3L3c3−e3− f3He3

p H f3
s (57)

or

πW = k
(

PL3

WPD

)c3(Hp

L

)e3
(

Hs

L

) f3
(58)

Thus

πW1 =
PL3

WPD
, πW2 =

Hp

L
, πW3 =

Hs

L
(59)

3.3.2. πi computation with method 2

The inverse of the matrix A3 in (55) was again easy to obtain,
most conveniently by applying the same elementary row opera-
tions in Table 4 to the unit matrixI4×4. Along with D3, it is

A3 =


1 0 0 1
−2 1 0 0
2 0 1 −1
0 0 0 −1

 , D3 = A−1
3 B3 =


1 0 0
−3 1 1
0 0 0
0 0 0


(60)

As shown in Figure 3, matrix C3 was computed as follows.

C3 = (−Ir×rD3)
T =

−1 −3 0 0
0 −1 0 0
0 −1 0 0

 (61)

Based on (15), the dimensionless products were calculated from
(61) with the following resulting expressions.

πW1 =
PL3

WPD
, πW2 =

Hp

L
, πW3 =

Hs

L
(59a)

which were exactly the same as those in (59).

3.3.3. πi computation with method 3

For r = p, matrix C3 is computed as follows.

C3 = (A−1
3 (−B3))

T =

−1 −3 0 0
0 −1 0 0
0 −1 0 0

 (62)

Since the resulting matrix was exactly the same as that in (61),
the dimensionless products πW1, πW2, and πW3 were also exactly
the same as those in (59).

The relationship among πW1, πW2, and πW3 is expressed be-
low,

πW1 = k3χ(πW2,πW3) (63)

Substituting (59) into (63) resulted in

WPD =
PL3

k3χ

(
Hp
L , Hs

L

) (64)

where k3 is an unknown dimensionless constant, and χ is an
unknown function. Again, further experiments might aid in de-
termining these two unknowns.

3.4. Discussion on the derived models

Although DA per se does not produce complete models of the
PD quantities, as further experiments are required, we can still
deduce a wealth of qualitative information from (33), (49), and
(64) [30, 31]. Equations (33), (49), and (64) assert the adverse
effect of particle length L on the GIS. This length is not only
directly proportional to each of the three PD quantities studied
in this paper, namely IPD, QPD, and WPD, but each of these PD
quantities is even directly proportional to L3, indicating any in-
crease in L corresponds to a higher increase in each of them.
For example, if L increases by a factor 2, then each of the PD
quantities increases by a factor of 8, of course provided other
variables are kept constant.

A careful observation should be made on P and V in (33)
and (49), and on P in (64). In (33) and (49), it seems illogical
that P is directly proportional and V is inversely proportional
to the respective PD quantities. In fact, when the SF6 pres-
sure P is increased (until a certain limit), its dielectric strength
gets higher and, consequently, the PD development can be sup-
pressed. Conversely, higher applied voltage V results in stronger
PD development. To compromise with this, the term P/V in
(33) and (49) and the term V in (64) should be deemed as con-
stants, rather than as determining variables.

Further observation is also carried out in (49). In retrospect,
we might have avoided the detailed derivations in Section 3.2 if
we are in a position to conjecture that the PD current is simply
the PD charge divided by the duration of voltage application.
Based on this conjecture, equation (33) can effectively lead to
equation (49). The DA role stops here, and we face two possible
courses of action, namely (a) the DA conjecture is a proven fact,
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so that DA just confirms what is already known, and (b) the DA
conjecture is just a dimensionally correct proposition that is still
in need of an analytical proof. To the best of our knowledge, this
issue is still an open question that warrants further investigation.

In passing, we stress that we deliberately employed distinct
symbols Φ, ϕ and χ for the functions in expressions (33), (49),
and (64). Our purpose is to abide by DA considerations and
allow the designated functions to be different, albeit we do not
rule out the possibility that they might be the same. In fact, past
experience indicated that these three symbols were more likely
to express the same function rather than to designate different
functions. We based the aforementioned DA conjecture on the
assumption that the two functions Φ and ϕ are the same.

4. Conclusion

In this paper, dimensional analysis has been carried out to de-
velop the models of PDs initiated by a metallic particle in a GIS.
The quantities modeled included the PD current, the PD charge,
and the PD energy. From past experiments, it is suggested that
each of these quantities is dependent on several other indepen-
dent quantities including the SF6 pressure, the applied voltage
level, the particle length, the particle position, the voltage ap-
plication duration, and the spacer height. Thus, the PD models
were built in terms of these independent quantities. The role
of dimensional analysis for the modeling task is to compute a
new set of fewer parameters, called as the dimensionless prod-
ucts, which replace the original variables. Three methods based
on matrix operations have been used for this purpose in each of
the three PD quantities. The precisely same results have been
obtained from these methods. The calculated dimensional prod-
ucts were then utilized to formulate models for the PD current,
PD charge, and PD energy. These models are not only useful for
engineering utility, but also for some theoretical work for their
verification.
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