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Abstract 

Human gaze is a promising input modality for being able to be used as natural user interface in touchless technology during Covid-19 pandemic. 
Spontaneous gaze interaction is required to allow participants to directly interact with an application without any prior eye tracking calibration. 
Smooth pursuit eye movement is commonly used in this kind of spontaneous gaze-based interaction. Many studies have been focused on various 
object selection techniques in smooth pursuit-based gaze interaction; however, challenges in spatial accuracy and implementation complexity 
have not been resolved yet. To address these problems, we then proposed an approach using difference patterns between gaze and dynamic 
objects' trajectories for object selection named Difference Gaze Pattern method (DGP). Based on the experimental results, our proposed method 
yielded the best object selection accuracy of 80.86 ± 9.57% and success time of 5,885 ± 1,097 ms. The experimental results also showed the 
robustness of object selection using difference patterns to spatial accuracy and it was relatively simpler to be implemented. The results also 
suggested that our proposed method can contribute to spontaneous gaze interaction. 
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1. Introduction  

Interaction between human and computer applications is no 

longer unusual. The most pervasive human-computer 

interaction probably is the way humans touch the smartphones 

to control some phone applications. Furthermore, humans seem 

to have given trust, to some extent, to several phone 

applications [1]. Another typical interaction is by using the 

keyboard and mouse to interact with a personal computer. 

Interaction with computers using the brain through the brain-

computer interface has also been studied extensively [2]. Other 

than those input modalities, interactions using voice and gaze 

are some choices that can be considered. Moreover, due to the 

Covid-19 pandemic, more people are looking forward to 

touchless technology [3]. Since these past few years, voice-

based touchless technology has been common; however, 

interaction using voice is less discreet compared to gaze. As a 

consequence, some people may prefer to have interaction 

through gaze. Interaction using gaze is also promising as the 

gaze is fast and quite intuitive in which people tend to look at 

an object they are interested in before taking any other actions 

[4,5].  

Over the last decades, human gaze has been studied as an 

alternative input modality to interact with computer 

applications. In the early stage, the gaze was studied to replace 

the role of mouse and keyboard—either for pointing or for 

selection—by fixating at a certain button [4–7]. Fixation has 

been used to describe a type of eye movement during which we 

fixate our gaze at a certain object of interest for at least 300ms 

[8]. Gaming and assistive technology are two applications that 

are mostly based on fixation-based gaze interaction for pointing 

and selection purposes [9,10]. 

Despite its current popularity, fixation-based gaze 

interaction greatly depends on spatial accuracy [11,12]. Prior 

eye tracking calibration for each participant is needed before 

further interaction can be performed smoothly. Therefore, this 

technique may not be suitable for spontaneous gaze interaction 

as performing calibration before using an application might be 

quite inconvenient. 

Gaze interaction based on smooth pursuit eye movement can 

be beneficial as an alternative technique for spontaneous 

interaction. Smooth pursuit refer to a slow eye movement 

during pursuing a moving object with a velocity of 10 - 30 

degrees per second, just like when we gaze at a flying plane in 

the sky [8]. The most prevalent gaze interaction technique 

based on smooth pursuit is called Pursuits [15–17] that  

measures a similarity between a participant’s gaze and moving 

objects trajectories based on their correlation value. As a 

consequence, the spatial accuracy of the gaze does not matter. 

Pursuits indicates that prior eye tracking calibration is not 

essential; hence, the smooth pursuit-based technique is more 

suitable for spontaneous gaze interaction. 

A number of studies have been focused on smooth pursuit-
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based interaction, particularly various techniques for object 

selection purpose. The most common technique is based on 

correlation value, the Pearson’s Product-Moment Correlation 

(PPMC) [3,14–22]. Other various approaches are Euclidean 

Distance, deep learning, and 2D correlation [13,23,24]. 

Object selection based on Euclidean Distance has achieved 

sufficient accuracy [13]. The technique is also relatively simple 

to be implemented as it requires no denoising method [14]. 

However, object selection using Euclidean Distance is sensitive 

to spatial accuracy, i.e., eye tracking calibration plays an 

important role. In comparison, object selection based on deep 

learning achieves high accuracy and is insensitive to spatial 

accuracy [24]. Yet, deep learning needs a training phase that 

requires training data, making it no longer simple in terms of 

implementation. Similarly, correlation-based object selection 

techniques generally need an additional signal denoising 

method despite their sufficient accuracy and insensitivity to 

spatial accuracy [14,23]. However, both deep learning and 

correlation-based object selection techniques are lacking in 

terms of implementation simplicity due to the need of training 

phase and denoising, respectively. 

To remedy the above-mentioned gaps, we then proposed a 

novel object selection approach based on difference pattern 

named Difference Gaze Pattern method (DGP), as summarized 

in table 1. We applied a linear regression on the difference 

pattern between gaze and object trajectories and compared the 

performance of our proposed method with PPMC in terms of 

accuracy and success time as both methods require no training 

phase. We also evaluated the effect of calibration and signal 

denoising method to justify whether our proposed method was 

robust to spatial accuracy and simpler in terms of 

implementation. 

2. Materials and Methods 

2.1. Dataset 

For experimental purposes, we used the similar dataset as 

used in previous studies [22,25]. The dataset were gathered 

from 34 participants, each of whom underwent two conditions, 

i.e. uncalibrated and calibrated condition. The uncalibrated 

condition here was defined as a condition where the participant 

performed a task without prior eye tracking calibration. On the 

contrary, if the participant went through eye tracking 

calibration before performing the task, the data were 

categorized as a calibrated condition. 

In each condition, a participant was required to perform a 

task according to the stimulus as presented in figure 1. The 

stimulus consisted of four moving objects with a speed of 142 

pixels/second and the display had a 1920×1080 pixels 

resolution and each object had a size of 77×66 pixels. Object 

#1 moved horizontally from (250,100) pixels to (1600, 100) 

pixels, object #2 moved vertically from (100,100) pixels to 

(100, 950) pixels, object #3 moved horizontally from (1600, 

950) pixels to (250, 950) pixels, and object #4 moved vertically 

from (1750, 950) pixels to (1750, 100) pixels. Every 10 

seconds, one of the objects was colored orange alternately. The 

participants were tasked to follow the movement of the orange 

object with their eyes. 

A Tobii EyeX controller eye tracking sensor was used to 

record gaze coordinates on the screen when following orange 

objects. The sampling frequency of the sensor was 70 Hz. The 

eye tracker was mounted beneath a 22-inch LED monitor 

displaying the stimulus and the participant was seated 50 cm in 

front of it (see figure 2). A personal computer with Intel Core 

i3-6100 3.7 GHz processor, 8 GB RAM, and Windows 10 Pro 

64-bit operating system was used to accommodate the 

recording process. Visual Studio Community 2017 with C# 

programming language was used to display the stimulus and 

record the participants’ gaze coordinates. The gaze coordinates 

were stored along with the four moving objects coordinates for 

Table 1. Comparison of the proposed method of the current study with previous studies 

Method/Approach Accuracy Denoising User Calibration Training Phase 

Euclidean Distance [13, 14] Sufficient Not required Required Not required 

Correlation [3, 14–23] Sufficient Required Not required Not required 

Deep Learning [24] Good Not required Not required Required 

Proposed method: Difference Gaze Pattern (DGP) Sufficient Not required Not required Not required 

 

Fig.  1. Illustration of the stimulus in the experiment used to gather dataset 

Fig.  2. Experimental setup during gaze recording. Eye tracking sensor was 

mounted beneath a 22-inch LED monitor. Participant was seated 50 cm in 

front of the display 
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each timestamp. Information regarding the active button in 

which object was colored orange at the time was also provided 

in the dataset for validation purposes. 

Our current study utilized a personal computer with Intel 

Core i7-1165G7 2.8 GHz processor, 8 GB RAM, and Windows 

10 Home operating system. Visual Studio Community 2019 

was used as the integrated development environment software. 

C++ programming language was used to evaluate the 

performance of the object selection methods. 

2.2. Object Selection Methods 

We defined the object selection method as an algorithm to 

figure out which moving object was followed by the 

participant’s gaze at particular period. Object selection was 

performed by measuring a similarity between gaze and object 

trajectories. Therefore, the system could perform an 

appropriate action once it recognized the selected object. In this 

study, we compared state-of-the-art object selection method 

[22] based on Pearson’s Product-Moment Correlation (PPMC) 

with a new approach based on the pattern of the difference 

between gaze and object trajectories. 

Conceptually, a gaze trajectory is defined as a sequence of n 

gaze points or coordinates written in the following 

mathematical expression: 

𝐆 = {𝐠(𝟎), 𝐠(𝟏), ⋯ , 𝐠(𝐧−𝟏)} 

(1) 

A gaze point 𝐠(𝐤) = [𝑔𝑥
(𝑘)

  𝑔𝑦
(𝑘)

] represents the spatial position of 

the 𝑘-th sample of gaze on the screen. There are also a set of 𝑚 

moving objects  

𝐁 = {𝐁𝟎, 𝐁𝟏, ⋯ , 𝐁𝐦−𝟏} 

(2) 

A moving object trajectory  

𝐁𝒋 = {𝐛𝒋(𝟎)
, 𝐛𝒋(𝟏)

, ⋯ , 𝐛𝒋(𝒏−𝟏)
} 

(3) 

is a sequence of 𝑛 coordinates of 𝑗-th object on the screen with 

𝐛𝐣(𝐤)
= [𝑏𝑥

𝑗(𝑘)

𝑏𝑦
𝑗(𝑘)

]. 

In this current study, we used 𝑚 = 4 as there were four 

moving objects in the dataset. We also empirically set 𝑛 = 180 

samples or in terms of duration, it was more or less 2.5 seconds, 

almost similar to the duration of the window used by Khamis 

et al. [19]. 

2.2.1. Pearson’s Product-Moment Correlation (PPMC) 

PPMC measures a similarity between gaze and object 

trajectories in the form of correlation values ranging from 0 to 

1. A correlation value of ‘1’ indicates that both trajectories are 

exactly alike, whereas ‘0’ implies no similarity between both 

trajectories. We specifically used correlation for 𝑋-axis 

coordinates if the object moved horizontally and 𝑌-axis 

coordinates if it moved vertically. For instance, when the object 

moved horizontally, we calculated the correlation value 

between gaze and the 𝑗-th object as follows: 

𝐶(𝐆, 𝐁𝐣) =
𝑛 (∑ 𝑔𝑥

(𝑘)
𝑏𝑥

𝑗(𝑘)
𝑛−1
𝑘=0 ) − (∑ 𝑔𝑥

(𝑘)𝑛−1
𝑘=0 ) (∑ 𝑏𝑥

𝑗(𝑘)
𝑛−1
𝑘=0 )

√[𝑛 ∑ (𝑔𝑥
(𝑘)

)
2

𝑛−1
𝑘=0 − (∑ 𝑔𝑥

(𝑘)𝑛−1
𝑘=0 )

2
] [𝑛 ∑ (𝑏𝑥

𝑗(𝑘)

)
2

𝑛−1
𝑘=0 − (∑ 𝑏𝑥

𝑗(𝑘)
𝑛−1
𝑘=0 )

2

]

 

(4) 

To decide which object was followed by a participant, the 

algorithm calculated the correlation value between each object 

and the gaze trajectories. Therefore, there were four correlation 

values for each instance. Objects with a correlation value of 

more than a threshold value would be labeled as a candidate. 

When there was more than one candidate, the algorithm 

selected an object with greater correlation value. In the 

experiment, we set a threshold value of 0.7 as suggested by 

Khamis et al. [19]. As new gaze coordinates came, the 

correlation window shifted and the same procedure was 

executed. The algorithm decides the selected object once there 

are at least 80 consecutive correlation values of the same object 

satisfying the threshold value. This is to ensure that sufficient 

time was given to the participant for making selection progress. 

2.2.2. Difference Gaze Pattern (DGP) 

Different from PPMC, our new approach calculated the 

difference between both gaze and object trajectories, applied 

linear regression, and defined its slope or gradient value. We 

also determined a threshold value to decide the selected 

candidate. 

Figure 3 shows an illustration of our approach. The 

difference between each object and gaze trajectories was 

calculated resulting in new trajectories. We then applied linear 

regression and calculated the slope value. When the gaze 

followed a certain moving object, the difference should be 

constant, unless noise was present. Applying linear regression 

on the difference trajectory will generate a linear line whose 

slope is close to zero. On the contrary, when our gaze did not 

follow a certain object, the slope would be far from zero. 

Our study used 𝑋-axis coordinates to calculate the difference 

between gaze and object trajectories in the horizontal direction. 

On the other hand, 𝑌-axis coordinates were used if the objects 

move in the vertical direction. Suppose there is an object 

trajectory as written in (3) that moves horizontally and a gaze 

trajectory stated in (1). Since they moved horizontally, we 

calculated the difference of each coordinate of the 𝑘-th sample 

𝑑(𝑘) as follows: 

𝑑(𝑘) = 𝑏𝑥
𝑗(𝑘)

− 𝑔
𝑥

(𝑘) 

(5) 

Subsequently, we used (5) to calculate the slope value of the 

difference pattern between gaze and the 𝑗-th object that moved 

along 𝑋-axis direction as follows: 

 

𝑆(𝐆, 𝐁𝐣) =
𝑛(∑ (𝑘)𝑑(𝑘)𝑛−1

𝑘=0 ) − (∑ 𝑘𝑛−1
𝑘=0 )(∑ 𝑑(𝑘)𝑛−1

𝑘=0 )

𝑛(∑ (𝑘)2𝑛−1
𝑘=0 ) − (∑ 𝑘𝑛−1

𝑘=0 )2
 

(6) 
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We empirically used a threshold value of 2.0. When the 

absolute value of |𝑆(𝐆, 𝐁𝐣)| was less than 2.0, the object was 

treated as candidate. When there was more than one candidate, 

the algorithm chose the object with the least slope value. The 

other procedures were similar to those applied in PPMC. The 

method implementation is summarized in figure 4. 

2.3. Signal Denoising Method 

In our previous study, signal denoising was required to 

improve object selection accuracy as it affected the correlation 

value [22]. In the current study, we also investigated the effect 

of signal denoising on the performance of object selection 

using both PPMC and Difference Pattern. We observed a 

simple and classic denoising method, the first-order infinite 

impulse response (IIR) filter. 

Our study used first-order digital IIR filter defined as 

follows: 

�̂�(𝑘) = (𝜔𝑐𝑇)𝑔(𝑘) + 𝑒−𝜔𝑐𝑇�̂�(𝑘−1) 
(7) 

where 𝑔(𝑘) denotes the current 𝑘-th gaze point, whereas �̂�(𝑘) 

and �̂�(𝑘−1) present the current 𝑘-th and previous (𝑘 − 1)-th 

denoised gaze points, respectively. We used 𝜔𝑐 = 𝜋  rad/s, the 

same value used in the previous study [22]. 

2.4. Performance Metrics 

To evaluate the performance of our proposed method, we 

used two metrics namely accuracy and success time. 

2.4.1. Accuracy 

In this study, we defined a task as a procedure when a set of 

gaze (1) and four object trajectories (3) were calculated to 

obtain a selected object candidate. Once a new gaze point 

arrived and the sliding window had moved, another new task 

was performed. On the other hand, the dataset provided the 

information of the active button that was followed by a 

participant’s gaze at each timestamp. Thus, the active button 

acted as the ground truth for the experiment. The selected 

object candidate of each task was compared with the ground 

truth. When the selected candidate matched the ground truth, 

the task was considered a successful task and vice versa. We 

measured the accuracy as a percentage ratio between the 

number of successful tasks and the number of total tasks. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑎𝑠𝑘𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑡𝑎𝑠𝑘𝑠
× 100% 

(8) 

Fig.  3. The patterns of difference between gaze trajectory and (a) object #1; 

(b) object #2; (c) object #3; (d) object (4). In this case, the gaze was following 

the movement of object #1 

Fig.  4. Implementation of the object selection method using Difference Gaze 

Pattern (DGP) 
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The accuracy implies that the probability of the system can 

correctly ‘guess’ the object selected by the participants. 

2.4.2. Success Time 

Besides accuracy, another important metric to measure the 

performance of the object selection method is success time. 

Success time indicates how long a participant has to wait until 

the targeted object is selected. In this study, we measured the 

success time by calculating the difference between the first 

timestamp of gaze point the last timestamp when an object was 

decided to be selected by the system. 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒 (𝑚𝑠) = 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(𝑚𝑠) − 𝑓𝑖𝑟𝑠𝑡 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(𝑚𝑠) 
(9) 

3. Results and Discussion 

3.1. Performance of Object Selection Methods 

We evaluated our proposed method by comparing its 

performance with previous study [22]. Since we also aimed to 

observe the effect of denoising, we compared their performance 

in two conditions, i.e. with and without a signal denoising 

method. 

3.1.1. Without Signal Denoising Method 

In this condition, we applied both object selection methods 

without any prior signal denoising process. We also conducted 

a statistical test to evaluate the difference between conditions. 

Most of the distributions of performance measurement results 

were not normally distributed. Thus, we used Wilcoxon 

statistical test. 

Figure 5 presents the comparison of the accuracy between 

both methods, each of which was in two different calibration 

conditions. In general, the accuracy of object selection using 

DGP was significantly higher than using PPMC and it was 

applied for both calibrated (𝑍 = −4.505, 𝑝 < .05) and 

uncalibrated (𝑍 =  −4.915, 𝑝 <  .05) conditions. It meant that 

in a system with no denoising step, the DGP method was 

superior. On the other hand, there were no significant 

differences between calibrated and uncalibrated conditions in 

both PPMC (𝑍 =  −1.599, n.s.) and DGP (𝑍 =  −1.281, n.s.) 

methods. In other words, both PPMC and DGP were robust to 

spatial accuracy. Thus, performing eye tracking calibration 

before selecting an object may not be necessary. 

Figure 6 shows the comparison in the performance between 

our proposed and previous methods in terms of success time. 

The success time of object selection using DGP was generally 

lower than PPMC, although it was significant only in 

uncalibrated condition (𝑍 = −2.966, 𝑝 < .05). Spatial 

calibration also did not significantly lower the success time 

duration in both PPMC (𝑍 = −0.077, 𝑛. 𝑠.) and DGP (𝑍 =
−1.445, 𝑛. 𝑠.). Therefore, prior eye tracking calibration may 

not be needed and DGP performed better than PPMC in a 

system with no signal denoising process. This success time 

perspective was also in line with the accuracy results. 

3.1.2. With First-Order IIR as Denoising Method 

 

Figure 7 shows the comparison of accuracy in different 

object selection methods and calibration conditions while using 

first-order IIR as a denoising method. Here, there were no 

significant differences of accuracy between calibrated and 

uncalibrated conditions in both PMMC (𝑍 = −0.043, 𝑛. 𝑠.) and 

DGP (𝑍 = −1.325, 𝑛. 𝑠.). Compared with the results presented 

in Fig. 5, there was the significant improvement of accuracy of 

object selection using PPMC both in calibrated (𝑍 =
−3.838, 𝑝 < .05) and uncalibrated (𝑍 =  −4.505, 𝑝 < .05) 

conditions. This was because PPMC demanded a similar 

trajectory between gaze and object, where signal denoising held 

an important role. On the contrary, the accuracy of object 

selection using DGP significantly decreased with the 

application of the same filter, both in calibrated (𝑍 =
−4.095, 𝑝 < .05) and uncalibrated (𝑍 = −4.163, 𝑝 < .05) 

conditions. We assumed that some important information 

needed in the selection method may be lost due to signal 

Fig.  5. Accuracy of object selection without denoising method 

Fig.  6. Success time of object selection without denoising method 
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denoising. Hence, the accuracy decremented. Based on these 

experimental results, PPMC needed a signal denoising method 

to achieve higher object selection accuracy while DGP did not 

require any additional signal denoising. 

Figure 8 depicts the effect of signal denoising on the object 

selection success time. In general, there were no significant 

differences between calibrated and uncalibrated conditions in 

both PPMC (𝑍 = −1.222, 𝑛. 𝑠.) and DGP (𝑍 = −0.504, 𝑛. 𝑠.). 
Using figure 6 as a baseline, applying signal denoising had no 

significant impact on success time both in calibrated (𝑍 =
−0.761, 𝑛. 𝑠.) and uncalibrated conditions (𝑍 = −0.402, 𝑛. 𝑠.). 
Unlike PPMC, there was a significant increase of success time 

in both calibrated (𝑍 = −2.761, 𝑝 < .05) and uncalibrated 

(𝑍 = −4.522, 𝑝 < .05) conditions when we used DGP for 

selecting an object. The results implied that applying signal 

denoising before performing object selection using DGP was 

unnecessary, rather it worsened the performance. 

3.2. Discussion 

Based on the evaluation results, there are some things worth 

noting. Firstly, both PPMC and DGP methods are robust 

against spatial accuracy. Therefore, both methods are useful for 

spontaneous gaze interaction without prior eye tracking 

calibration. Secondly, there are some advantages of DGP over 

PPMC as an object selection method. DGP achieved 

comparable accuracy to PPMC without additional signal 

denoising method, i.e., comparable accuracy to the previous 

studies [14,22,25]. Hence, DGP simplified the overall object 

selection process. It also achieved a better success time 

compared with PPMC. Thus, our proposed method may be 

worth to be evaluated further in real-time experiment with more 

complicated tasks, such as previous studies [3,15,18]. 

On the other hand, despite its advantages over PPMC, our 

proposed method is still inferior in terms of computational time 

as shown in table 2. Our proposed method’s computational time 

was found significantly higher than PPMC (𝑍 =  −5.086, 𝑝 <
 .05). DGP may be better in terms of accuracy and success time, 

yet it lacked in terms of computational time. Nonetheless, 

although its computational time was significantly higher than 

PPMC, it still could be implemented in a real-time manner. The 

Tobii EyeX Controller had a sampling period of 14ms, while 

the proposed algorithm needed 0.5346ms for completing a task. 

It means that in a real-time situation, the proposed method can 

be executed without lowering the sensor’s sampling rate. 

Table 2. Computational time of the methods used in this study 

Method Computational Time (ms/task) 

First-order IIR 0.0014 

Pearson’s Product-Moment 

Correlation 
0.2232 

Difference Gaze Pattern 0.5346 

4. Conclusion 

Spontaneous gaze interaction does not require prior eye 
tracking calibration for each participant to interact with an 
application. Gaze interaction based on smooth pursuit can 
comply with the requirement. Object selection techniques in 
smooth pursuit-based interaction have been studied over recent 
years including Pearson’s Product-Moment Correlation 
(PPMC), Euclidean Distance, deep learning, and 2D 
correlation. However, those techniques have some drawbacks 
either in terms of spatial accuracy or implementation 
complexity. Our proposed method based on a difference pattern 
was able to achieve sufficient accuracy. The method was also 
insensitive to spatial accuracy and required no additional signal 
denoising step. Therefore, the implementation of the proposed 
method is simpler and it is suitable for spontaneous gaze 
interaction. 

5. Future Work 

Our proposed method has only been evaluated in linear 

trajectories stimulus, whereas PPMC has been evaluated both 

in linear and circular trajectories [18,21,26]. Further evaluation 

and some adjustments to the method may be needed in the 

future to accommodate the different movement types of 

dynamic objects. 
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