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Abstract 

Fault detection is an urgent need for maintenance to obtain the optimal scheduling of production activities, improve system reliability, and reduce 
operation and maintenance costs. Many studies published in recent years focus on machine learning models to detect any system anomalies in 
line with the era of big data and the fourth industrial revolution (Industry 4.0). Say, a working condition of bearing can be monitored and then 
any fault can be detected using the vibration analysis of bearing acceleration data. Most of the published works are presented based upon the 
knowledge of signal processing in which the result depends heavily on feature extraction. It becomes a challenge then to apply a machine learning 
algorithm directly to the raw acceleration data as it has been successfully applied to raw data in other science and engineering domains. In this 
article, a concise Convolutional Neural Networks-based deep learning model is proposed for bearing fault detection. The proposed model was 
concise with 98% less number of parameters compared to other well-known models. It produced 21.21% and 7.03% better accuracy and fault 
detection rate, respectively. The model was also tested in different operating parameter environments and still gave an excellent result. Since the 
proposed concise architecture of the model needed short training time, it is deemed suitable for application on manufacturing floor where the 
pace of production moves fast and the change of the production machine configuration likely occurs. 
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1. Introduction  

Industrial machines, which can consist of hundreds of parts 

are expected to have high availability time. To make the most 

of it and reduce operational costs, any possible unexpected 

situations should be anticipated and the machine condition 

should be monitored [1]. Early detection in an emerging 

harmful problem is essential for anticipating machine idle time 

to save the time and cost from taking corrective actions for any 

unscheduled maintenance [2]. 

Rotating machinery is widely used in domestic and 

industrial applications. As one of the fundamental types of 

mechanical systems, its reliabilities affect the entire system [3]. 

Based on several surveys conducted by the IEEE Industry 

Application Society, bearing fault is the most common fault 

type and contributes to more than 50% of all machine failures 

[4]. Since bearings are typically working in a tough working 

environment, they are prone to fail during operation. If the 

defect is not detected in time, it may cause unexpected 

downtime of the machinery and even lead to catastrophic 

damage. Therefore, bearing health monitoring is deemed 

essential for the safe and reliable operation of the machinery 

and production [5]. 

A huge amount of vibration data from rolling bearing 

operations can be collected thanks to the development of 

advanced sensing technologies and computing systems [6]. As 

the data are generally collected faster than diagnosticians can 

analyze it. There is an urgent need for diagnosis methods that 

can effectively analyze the massive data and automatically 

provide the accurate diagnosis results. This kind of method is 

called as intelligent fault diagnosis method in which artificial 

intelligence techniques are used for distinguishing machinery 

health conditions [7]. 

This huge vibration data can be analyzed thoroughly to 

obtain the condition of the machine, thanks to the advancement 

of Machine Learning methods. Multiple Restricted Boltzmann 

Machine (RBM) units were stacked to build a Deep Belief 

Networks (DBN) in [8] to analyze the vibration data of 

induction motors. The Fast Fourier Transform (FFT) was used 

for transforming the input signal into the frequency domain due 

to DBN modeling difficulty in functioning the input units’ 

correlation. To improve the diagnosis efficiency, a modified-t-

distributed stochastic neighbor embedding (M-tSNE) was 

developed for reducing the input dimension. They applied their 

method to the artificially-generated fault bearing vibration 

signal by Electro-Discharge Machining (EDM). The model of 

3 hidden layers containing 400 hidden layer units each was 

trained for 500 epochs to get the accuracy result of 93.18% 

before feature reduction and 96.36% after feature reduction. 

However, many trials are still needed to estimate the feature 

dimension reduction size of M-tSNE, which is an obvious 

factor for the accuracy improvement in their model. 

The emergence of Convolutional Neural Network (CNN), 

which is motivated by the visual cortex [9] is marked a starting 

era of successful machine learning [10]. As a subset of the 
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machine learning domain, CNN-based deep learning 

architectures have been tremendously successful in many 

practical applications in which the main domain is in computer 

vision [11]–[14]. Several research works were going toward 

Transfer Learning that used a popular pre-trained CNN model 

in computer vision and deployed it in the domain of fault 

detection. [15] made the use of AlexNet architecture 

comprising five convolution layers and three fully-connected 

layers to predict bearing health conditions. They fed the model 

with features extracted by Ensemble Empirical Mode 

Decomposition (EEMD) and enveloped decomposition and 

generated 2-Dimension time-frequency images by wavelet 

transform. The total parameters of AlexNet were 

approximately 60 million trainable parameters. ResNet-50 

architecture was employed for bearings and centrifugal pump 

fault detection by [16]. The ResNet-50 architecture consisted 

of 51 layers and 23 million trainable parameters in which they 

trained the model from layer 49 until the last layer with the 

machine fault datasets. The result was comparable with the 

state-of-theart deep learning application for fault detection in 

which they altered the raw vibration data into RGB images with 

3 Dimension matrix. However, each of the red, green, and blue 

elements produced by their methods was the same to each 

other. 

This research work aims to develop a concise CNN-based 

deep learning model for bearing fault diagnosis to make the 

implementation in a real-world situation simple. The input 

required for the model was designed as 50 by 50 input array, 

which reduced the computation process and provided a fast 

training process [35] with a flexibility to accommodate up to 3 

channels input. One channel belonging to raw data and the 

other 2 accompanying channels were calculated based on a 

basic statistical formula. We took the benefit of more channels 

input since it gave not only a better fault detection ability but 

also a more stable training process. Simplicity in deep learning 

implementation on fault detection aims to slightly reduce the 

sole dependency on the signal processing experts who need an 

extensive training in different subjects. Hence, we proposed a 

concise deep learning model with a simple form of inputs. 

2. Materials and Methods 

This section briefly presents the vibration signal, parts of the 

CNN-based deep learning model, and the input for the 

architecture. 

2.1. Vibration signal 

Vibration signal from a bearing is measured by 

accelerometer and may be used as an indicator in machines that 

have some problems in quality with the bearing and as the first 

indication of incoming need for repairment or replacement after 

running for a long period. Bearings could act as the excitation 

sources, producing time varying forces that cause system 

vibration. In some cases, these forces are the result of the 

imperfections of the bearings [17]. 

The readings from an accelerometer sensor give decimal 

values varying in time. When the raw vibration signal is 

plotted, given the period and sample rate of measurement for 

the x-axis and acceleration for the y-axis, the appearance is 

shown in figure 1 taken from a normal bearing of the KAT 

datacenter in Paderborn University [18]. Whatever the 

condition of a bearing and the plot is, the readings from the 

accelerometer are always as a decimal number and this 

condition makes the bearing fault detection with deep learning 

suitable. Figure 1 illustrates the first ten data points of a signal 

as a red dashed rectangle. 

 

 

 

 

 

Fig. 1 First ten data points of a signal 

2.2. Convolutional layer 

The basic idea in a convolutional layer is to apply a small 

filter kernel to input to learn features. Each kernel contains the 

learnable weights and will be updated by the backpropagation 

algorithm to reduce the loss. In this work, the initialization of 

weights followed the initialization [19] and was done in the 

PyTorch framework. The activation unit followed each filter to 

finally generate output features. Inputs for the kernel were 

called as the input local region and an identical kernel with 

specific weights convolved the input from beginning to the end; 

therefore, a kernel resulted in one output channel in the next 

layer. The number of channels of a layer determined the depth 

of that layer.  

A convolutional layer works by multiplying weights in a 

kernel with an input local region and it is repeated until the end 

of the input layer. The process is described as follows: 

 

 

 

 

 

 

 

 

 

 

The index j represents the index of a point in a local region. 

Local region itself refers to a region in input array facing the 

kernel. Therefore, the j added with backtick, j‘ represents index 

in the kernel facing the local region. The notation r stands for 

region in l(r j). This region spans from index j to j+j‘. In the 

summation process, the index j+j‘will change according to j‘. 

For instance, the kernel with width of 3 and moving one step 

right (the second convolutional operation), will have index 

ranging from 1 to 3 (the 0 is the first index in this operation). A 

visual example of first convolutional operation is depicted in 

figure 2. 

The kernel slides throughout the input until end and an 

output is produced. The first dot product as seen in figure 2 is 

calculated as follows: 
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Fig. 2 Convolutional operation 

2.3. Pooling layer 

In a CNN model, pooling layers are generally placed after 

convolutional layers. A pooling kernel is used to compress 

output from a convolutional layer to reduce the dimensionality 

of the output. The main advantage of the pooling layer is to help 

the CNN layer’s output to be resistant against  the small input 

changes. This advantage is very useful for revealing a feature 

whether it is present in input data. The most commonly used 

approach in pooling operation is max-pooling, reporting the 

maximum value within a local region input for the pooling 

kernel and outperforming other types of pooling [20]. The max-

pooling operation is described as follows: 

 

A visual example of convolutional operation is depicted in 

figure 3. 

 

Fig. 3. Max-Pooling Operation 

2.4. Activation Operation 

In recent neural networks training, the default 

recommendation activation function for the hidden layer is to 

use the rectified linear unit or ReLU [21], as defined by the 

activation function g(z) = max{0, z}. A visual example of 

convolutional operation is depicted in figure 4. 

 

 

 

 

 

 

Fig. 4 ReLU activation function of max-pooling output 

2.5. Fully-Connected Layer 

A fully connected layer receives input as a flat n×1 array 

form and generates output as a linear representation of the 

input. The linear expression of the fully-connected layer is: 

 

 

 

 

 

 

 

 

The linear transformation of a fully connected layer from the 

input layer to the output layer is called as feedforward. Here, 

we provided a simple feed-forward calculation of a fully 

connected layer consisting of 1 input layer, 1 hidden layer, and 

1 output layer. The weights here were randomly initialized. 

 

 

 

 

 

 

Given a fully connected (FC) layer that had input neurons 

called x1 and x2 and their values, two neurons in the hidden 

layer were called as h1 and h2, and three output neurons were 

called as Normal (y1), Fault 1 (y2), and Fault 2 (y3). The 

number of output neurons was the same as the number of 

categories in the dataset. Then, five bias neurons were added to 

the network, called as b1 and b2 for the hidden layer; and b2, 

b4, b5 for the output one. Each neuron connection contained 

weight and its values were randomly initialized, from W1 to 

W12. To obtain the value for two neurons in the hidden layer 

(h1 and h2) first, we picked data from table 1, observation 1 

with a health condition and we calculated it based on Equation 

3: 

h1 = x1×w1 + x2×w2 + b1 = 0.04×-2.5 + 0.42×0.6 + 1.6 = 

1.752  

h2 = x1×w3 + x2×w4 + b2 = 0.04×-1.5 + 0.42×0.4 + 0.7 = 

0.808 

Every time a value is produced for a neuron, an activation 

function is applied to that value before succeeding calculation. 

The activation function transforms an output value into the 

input value for the next layer. This function determines whether 

a neuron is active and enables a CNN model to adapt to the non-

linearity of the data. ReLU activation function is applied to the 

values of the neurons in the hidden layer. Therefore, the output 

of h1 and h2 is presented as follows: 

a (1(1,1)) = max{0, 1.752} = 1.752  

a (1(2,1)) = max{0, 0.808} = 0.808 

Then, we calculated the value for three output neurons y1, 

y2 and y3 in the output layer with the linear expression of 

formula 3: 

y1 = h1×w5 + h2×w6 + b3 = 1.3872  

y2 = h1×w7 + h2×w8 + b4 = 0.0032  

y3 = h1×w9 + h2×w10 + b5 = 0.1352 

In this example, to determine what the fully connected (FC) 

layer predicts based on two inputs x1 = 0.04 and x2 = 0.42 it 

was firstly to calculate the probability output value after 

applying the activation function. In the hidden layer, we used 

ReLU for the activation function but for the output layer, ReLU 
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could lead a network to stop learning because it could always 

produce value outputs of 0 and no gradient at all for updating 

the weights [22]. For activation function in the output layer, 

softmax function is a better choice to work on classification 

task [21] for representing the probability distribution over n 

different classes and a penalty of a prediction could be 

calculated. The formula for softmax is presented as follows: 

 

 

 

 

 

 

 

The probability of each prediction obtained from the 

softmax activation function is presented as follows: 

 

 

 

 

With the same way of calculation, we obtained:  

Softmax(y2) = 0.1631  

Softmax(y3) = 0.1861 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Fully-connected layer with feed-forward 

Figure 5 shows the complete FC calculation result. The final 

prediction made by the networks was decided by the largest 

value from the last activation function. Therefore, with input x1 

= 0.04 and x2 = 0.42 the model prediction was normal condition 

with the probability of 0.6508. If we supplied the network with 

the inputs of observation 2 and observation 3 from table 1, we 

ended up with all predictions of three observations as shown in 

table 2. 

 

 

 

 

 

 

2.6. Backpropagation for training the model 

Figure 5 shows how a feed-forward neural network predicts 

a target by giving a specific input. In fact, the true probabilities 

of all category of the specific input, with x1 = 0.04 and x2 = 

0.42 are [normal = 1; fault 1 = 0; fault 2 = 0] because we know 

that the input belongs to normal condition. 

There is a discrepancy between the predicted probabilities 

generated by the network and the true probabilities and the 

predicted values are quite different from the real values. The 

way a network to predict correctly is by having good weight 

values for a specific dataset. Hence, we needed to repeatedly 

train the model by tweaking the weights and biases until the 

output values were nearly similar to the target values. The 

training process mostly involves a backpropagation (BP) 

algorithm to fit a neural network model with the training data. 

BP computes the gradient of the loss function (in this work we 

used cross-entropy loss) with respect to the weights and biases 

of every neuron connection. The algorithm aims to tweak the 

weights, so the model can learn how to map the specific inputs 

to outputs. The steps of backpropagation calculation are 

presented as follows: 

1) Calculating the total loss of the network. First, we 

calculated the cross-entropy (CE) for each prediction. The 

reason behind cross-entropy loss was that it heavily penalized 

a wrong prediction enabling a network to take a bigger step to 

minimize the loss. The formula for CE is shown as follows: 

 

 

 

 

 

 

 

 

 

Therefore, CE calculation for all categories is: 

CEnormal = -1 × log(Predictednormal) + -0 ×log(Predictedf 

ault1) + -0 ×log(Predictedf ault2) = 0.4295 

CEfault1 = -0 × log(Predictednormal) + -1 ×log(Predictedf 

ault1) + -0 ×log(Predictedf ault2) = 0.6859  

CEfault2 = -0 × log(Predictednormal) + -0 ×log(Predictedf 

ault1) + -1 ×log(Predictedf ault2) = 0.5514 

Total loss =CEnormal +CEf ault1 +CEf ault2 = 0.4295 + 

0.6859 + 0.5514 = 1.6668 and the information of all CEs and 

loss is shown in table 3. 

 

 

 

 

 

 

 

2) Calculating the effect of change or derivative of total loss 

with respect to (wrt.) weights and biases in the output layer by 

backward pass. Doing this needs to revisit the formula of total 

loss and depict some figures. First, the total loss is defined as:  

Total CE loss = CEnormal + CEfault1 + CEfault2 

Each CE has its formula and for calculation example, we 

picked the normal category. 
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CEnormal = −1 × log(Predictednormal) + −0 × 

log(Predictedfault1) + −0 × log(Predictedfault2) = 

−log(Predictednormal) 

The term Predictednormal (pn) is defined as the output from 

the softmax function of a normal neuron in the output layer. 

Hence: 

 

 

Lastly, y1 was obtained from Equation 3, i.e. y1 = h1 × w5 

+h2 ×w6 +b3. Because the aim of BP is to tweaking weights 

and biases to minimize the total loss, we first searched the 

derivative of total loss wrt. b3: 

 

 

 

 

First, we calculated the derivative of CEnormal wrt. b3. 

 

 

 

 

 

Fig. 6. Finding how much CEnormal change wrt. b3 

Figure 6 visually depicts the flow of derivative of CEnormal 

(CEn in the figure) wrt. b3. In the middle, we had pn and y1 

representing the predicted probability of normal condition and 

input value for output neuron with label normal, respectively. 

By applying the chain rule we had: 

 

 

 

Now we calculated one-by-one all terms on the right-hand 

side of Equation 7. 

 

 

 

The derivative of or the softmax activation function is: 

 

 

Lastly, we calculated the derivative of the last term 

 

 

Hence, we were able to calculate the derivative of Equation 

7. 

 

 

Second, we calculated the derivative for CEfault1 wrt. b3 

 

 

 

 

 

 

 

 

 

Therefore, derivative of CEfault1 wrt. b3 was pn. To 

calculate pn for ∂CEf/∂b3, we used x1 and x2 from respective 

observation i.e. observation of fault 1 (x1 = 0.5; x2 = 0.37) and 

plug the input into the network. Hence we obtained pn = 0.2606 

Third, we calculated the derivative for CEf ault2 wrt. b3 

 

 

 

 

 

 

 

 

 

 

To calculate pn for ∂CEf2/∂b3, we used x1 and x2 from 

respective observation i.e. observation of fault 2 (x1 = 1; x2 = 

0.54) and plug the input to the network. Hence we obtained pn 

= 0.2119. We solved all the derivatives for total loss wrt. b3. 

Recalling equation (6), (10), (11), (12): 

 

 

= −0.3492+0.2606+0.2119 = 0.1233 

 

 

 

 

 

 

 

 

 

 

 

 

 

The slope of 0.1233 was to update the value of bias b3 with 

a certain learning rate. The learning rate is a parameter set to 

determine the step size of each iteration in backpropagation 

toward a minimum total loss. To calculate the new value of b3 

with a learning rate η of 0.01 is presented as follows: 

Step size = slope × η = 0.1233 × 0.01 = 0.001233  

New b3 = b3 – step size = 0 - 0.001233 = -0.001233 

In the same way, we could calculate the new value for b4, 

b5, w5, w6, w7, w8, w9, and w10. All new values regarding 

weights and biases in the output layer are shown in table 4. 

3) Calculating the derivative of total loss wrt. weights and 

biases in the hidden layer. We continued the backward pass 

process for w1, w2, w3, w4, b1, and b2. The backward pass for 

w1 is shown as follows: 

To update the weights and biases in the hidden layer, we 

used the old weights and biases in the output layer before 

updating with BP. The main idea of BP in the hidden layer was 

the same as in the output layer. We calculated the derivative of 

total loss wrt. weights and biases in the hidden layer. The 

derivative is written as: 
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The process of finding the derivative was similar to the 

previous calculation but slightly different because the output of 

neurons in the hidden layer contributed to the output of multiple 

neurons in the last layer. The connection of neuron h1 with 

neuron y1, y2, and y3 implied that the output of ReLU in h1 

could affect the total loss, as presented as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second, we calculated ∂CEf1/∂ReLUh1. Following the 

previous step, we obtained: 

 

 

 

 

 

 

 

Third, ∂CEf2/∂ReLUh1 was equal to: 

 

 

Put all together: 

 

 

Now, we needed to find out ∂ReLUh1/∂inputh1 and then 

∂inputh1/∂w1 for each weight: 

 

 

 

 

 

 

 

 

The slope of -0.01174 was used to update the w1, so: 

Stepsize = slope×η = −0.01174×0.01 = −0.0001174 

Neww+ 1 = w1–stepsize = −2.5–(−0.0001174) = 

−2.4998826 

With the same steps, we could update weights and biases in 

the hidden layer, w2, w3, w4, b1, and b2. All updates are shown 

in table 5. 

We finished updating all weights and biases, calculated the 

classification probability of all input and then determined the 

total loss. We have updated all of our weights and biases 

through BP one time. Before the update, the net loss was 

1.6668. After our one BP example, the total loss then became 

1.644101. Running BP a bunch of times led to net loss toward 

0 and made the net capable of well predicting the training data. 

However, if we continued the BP process a large number of 

times, it could lead the network to have a low loss value in 

predicting the data it is used to but predict poorly the data that 

has never been seen and it is called as overfitting. 

 

 

 

 

 

 

 

 

 

 

*BP=Backpropagation 

 

 

 

 

 

 

 

2.7. Dropout 

To prevent the network from overfitting, we applied a 

method called as dropout as proposed by [23]. The dropout 

method works by deactivating neurons randomly along with 

their connections based on some probabilities p during training. 

This method proves to prevent neurons from fitting too much 

to training data. During the training phase, the weights and 

biases being updated are the active neurons only. During testing 

the network with new data, dropout is no longer applied. Based 

on experiments by Srivastava et. al. [23], a network trained with 

dropout commonly had much better generalization ability on 

classification problems during test time. A dropout example 

from the previous fully connected network with probability 

p=0.3 is presented as follows:  

Say, we randomly deactivated neuron in hidden layer from 

Figure 5 and for instance the deactivated neuron was h1; 

therefore, the values of y1, y2 and y3 are presented as follows: 

y1 = h2 ×w6 +b3 = 1.212 

y2 = h2 ×w8 +b4 = −4.2016 

y3 = h2 ×w10 +b5 = 3.9896 

2.8. Proposed Model 

The proposed model for this research is based on 

Convolutional Neural Network (CNN) taking raw signal data 

as input without any pre-processing. CNN can extract any 

relevant features from the data for the prediction task. The 

model architecture is motivated by early successful model in 

document recognition by LeCun et al [32]. The model 

comprises two convolutional layers and is ended with fully-

connected layer. These subsequent convolutional (conv) layers 



68 Firdausi et al. / Communications in Science and Technology 7(1) (2022) 62–72  

 

intersected with pooling layer after each conv layer detect 

salient features that differ between normal and faulty bearing. 

Conv layer learns multiple features in parallel for a given input 

and it is common for a conv layer to learn from 32 to 512 filters 

to get their features [33]. The number of features (or output) 

from a conv layer, called as feature map, in this architecture is 

set to 32 for the first conv layer, and 64 for the second one are 

inspired by VGG-model [13] where the authors used smallest 

size of filter possible to capture the features in the beginning, 

and went bigger afterward. 

In our CNN model (figure 7), there are two main parts. The 

first part is the convolution part and the second one is the fully 

connected layers. We had two convolutional layers each of 

which was followed by the max-pooling layer. The activation 

function used for both convolutional layers was ReLU. The 

usage of maxpooling layers ensures that the most important 

features are selected. All functions of the proposed model are 

described in table 7. 

The size of the kernel was set as 4 on all the convolution and 

pooling layer plus a padding of 1 to benefit from generalization 

capabilities of even-sized kernels at little computational cost 

[34]. The stride of 1 in convolutional layer to catch fine features 

from the data and stride of 2 in pooling layer is to sufficiently 

reduce the dimension of the input data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Results and Discussion 

We separated the whole dataset into two different parts: the 

training data set and the testing dataset. The training dataset 

aims to be a way for the model to learn the vibration data until 

it can classify the normal bearing and the faulty one. The 

learning process of the model is to repeatedly see the same 

training dataset as much as a hyperparameter called as epoch is 

set. Hyperparameters setting for the training phase are shown 

in table 8.  

 

 

 

 

 

 

 

We used a random train-test split of 80%-20% respectively 

and then reported the average prediction accuracy. The training 

dataset refers to a dataset used for training the model with 

feedforward and backpropagation repeatedly until the number 

of epochs is reached. During the training phase, the model was 

fed with the training dataset multiple times until the loss score 

was lowered. The test dataset aimed to know the prediction 

ability of the model after training on the dataset that the model 

has not seen before; it is called as generalization. In the test 

phase, the model was fed by the test dataset and did the 

feedforward but not the back pass or backpropagation. 

Therefore, there were no parameters updated during the test 

phase. 

For this dataset, the signals of 256,000 data points were 

clipped at the beginning and the ending by 3000 data points to 

avoid noise disturbance [24]. Then, 250,000 data points per 

signal were reshaped into the smaller signals of shape 50 × 50 

2D arrays, which resulted in 100 smaller signals from each 

original signal. The considered input shape was based on 

approximation on how many a bearing rotated in a second. In 

our setting, the operating parameters of the test rig were in the 

speed of 1500 revolutions per minute, load torque of 0.7 Nm, 

and radial force of 1000 N. The speed of a bearing was 1500 

revolutions per minute leading to 100 revolutions in 4 seconds. 

Hence, a signal containing 2500 data points is represented as a 

bearing revolution. 

To recap we had 29 bearings coming with 3 health 

conditions, 20 times of signal measurement for each bearing, 

and smaller 50 × 50 2D arrays signals from each measurement 

counted into 59,317 signals in total in which 47,453 signals 

belonged to the training dataset and the remaining 11,864 

signals belonged to test dataset. Each row in the figure 

represented a single signal and each column was the 2500 data 

points of each signal (features). The figure was clipped in the 

middle to accommodate the page width (represented as three 

Fig. 7. Proposed model for fault diagnosis 
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red bold dots). Therefore, in total, we had 59,317 rows and 

2501 columns (include the Condition column). The Condition 

column consisted of IR, normal, and OR, which stand for 

bearings condition of inner ring fault, normal, and outer ring 

fault, respectively. 

As the problem’s nature was classification, we used 

Crossentropy loss [25] for the loss function, as we provided in 

Chapter 4. The whole network was trained for 100 epochs with 

a batch size of 128 on a Google colaboratory GPU machine. 

We fed the model with raw data and calculated the loss and 

accuracy of the model. The accuracy is a ratio of correct 

prediction for all classes to the total observations and in our 

case, is defined as: 

 

 

 

where: 

TP1,2,3 = True Prediction of class 1, 2, and 3 

FPall = False Prediction from all class 

The 100 epochs training process with raw data input took a 

time of 27 minutes and 38 seconds with a loss of 0.00014514. 

In line with the results of the training phase, the accuracy on 

the training dataset maxed out was at 99.6% with a loss of 

0.0170. 

To know more about the effect of input data on the training 

result, we added some additional channels to the input. 

Originally, we had the input of raw acceleration data in the 

shape of 50 × 50 data points. Then, we made a new channel 

called as mean channel and median channel. The establishment 

of the two new channels was by making use of a sliding window 

with a length of 10 as a filter with a shift by the length of 1. For 

every given sample of raw signal data, the filter scanned 

through the whole sample data from the front to the end. The 

size of the mean and median windows depended on the size of 

the single original input data. Here, the decision of the windows 

size of 10 was to fairly accommodate the size of the original 

input data of 2500. In other words, the size of 0.4% of the 

original data is adequate for the mean and median windows. 

These two parameters provided a balance combination to 

represent data, the mean for measuring the central tendency and 

the median was to make the addition input insensitive to the 

outlier data point. The statistical parameters were chosen based 

on the computational cost and their advantages. For the sake of 

simplicity, the example of generating mean and median 

channels from raw data with a sliding window of length 3 is 

depicted in figure 9. 

The three different channels could provide us several 

combinations of input i.e. input of raw channel, raw plus mean 

channels, raw plus median channels, and all three channels. In 

summary, we trained the model with four different inputs and 

recap the loss at the end of the training, the time needed for 

running 100 epochs in table 9. 

It was found out that an additional channel could make the 

training process longer but give an improvement in the training 

phase - in terms of lower loss and better accuracy. The 

combination of raw signal and its median resulted in better loss 

and more accuracy than the combination of raw signal and its 

mean. Therefore, we could assess that median of signal 

presented a better feature of bearing fault. Next, the loss score 

of the whole training process is depicted in figure 8. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Loss across the different inputs 

 

 

 

 

 

 

 

 

 

Fig. 9. Mean and median input channel generator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. False Alarm Rate (FAR) 

To augment accuracy as an evaluation metric, we also 

calculated the FAR metrics, which is the ratio of falsely 

predicting positive observations to all observations in actual 

positive class. An example of this metric answer is of all 

bearings that predicted fault, how many are not fault. To 

calculate the FAR metrics, first, we established a confusion 

matrix containing the prediction and the true class label in a 

single matrix. To establish the confusion matrix, we employed 

the model trained with 3 channels input and recorded the 

predicted class and the ground truth class. The confusion matrix 

is shown in figure 10. TN is True Negative or the model 

correctly predicts a bearing as normal bearing, where FN (False 

Negative) is the opposite, and the model predicts a bearing as 

normal but it is faulty. Likewise, TP is True Positive where the 

model correctly predicts a bearing as faulty bearing and FP is 

False Positive where a bearing is falsely classified as a faulty 

bearing which the true condition of the bearing is normal. 
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The labels of N, IR, and OR in figure 10 stand for Normal 

bearing, Inner Fault bearing, and Outer fault bearing, 

respectively. The green and red rounded rectangles indicate 

both the two true values, True Positive and True Negative (TP 

and TN), and two false values, False Positive and False 

Negative (FP and FN) respectively. FP means that the model 

predicts the input signal as IR or OR; however, the actual 

condition of bearing is N. Here, we considered a misprediction 

of ground truth from IR predicted as OR and vice versa as a 

true positive since the main objective of fault detection is to 

distinguish a fault from a normal one. This is the primary 

concern in practical applications for the operators on-site [26]. 

The FAR metric is calculated by the following formula: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Confusion matrix of the model 

3.2. Fault Detection Rate (FDR) 

The last metric to consider the performance of the fault 

detection model is Fault Detection Rate (FDR), which is 

calculated based on faulty data. In literature, FDR is called as 

Recall or sensitivity [27]. In general, the higher the FDR score, 

the better a model. FDR is the opposite of FAR, which is a ratio 

of correctly predicted positive observations over all 

observations in positive class. The question to be answered by 

the FDR metric is about, of all positive observations, how many 

percent a model can predict fault bearing from a dataset. To 

calculate FDR, we used the same confusion matrix as to 

calculate FAR. The formula for FDR is presented as follows: 

 

 

 

The two metrics calculation along with the summarized 

confusion matrix is provided in table 10. 

 

 

 

 

 

 

 

3.3. Result in different datasets 

This section presents the test of the trained model to detect 

the fault from other datasets with different operating 

parameters. The steps are the same as training and testing the 

model and the result is shown in table 11. The combination 

code includes N: speed (rpm); M: load torque (Nm); F: radial 

force (N) where the details of the combination refers to [18] 

Our proposed model achieved a satisfactory result for 

accuracy and FDR scores of above 99% in all operating 

parameter combinations. However, in an environment with 

lower parameter values of speed, load torque, and radial force, 

it was found that the model architecture encountered slight 

difficulty when it predicted a real normal bearing. Given the 

base result for comparison is the parameter combination of 

speed: 1500 rpm; load torque: 0.7 Nm; and radial force: 1000N 

(combination number 4), FAR scores showed that a lower value 

of radial force deteriorates more followed by load torque and 

speed. The ability of the model to predict a real normal bearing 

as normal for lower parameter values of radial force, load 

torque, and speed, decreased from 0.45% to 1.699%, 1.171%, 

and 1.123%, respectively. 

3.4. Result Comparison 

Finally, we compared the result between the proposed model 

and other works from previous authors working with the same 

dataset. Other works such as [28] employing Multi-Layer 

Perceptron (MLP) and Deep Belief Network (DBN); 

TrainingInterference for CNN (TICNN) [29]; Wasserstein 

distance guided representation learning for domain adaptation 

(WDGRL) and triplet loss guided adversarial domain 

adaptation method (TLADA) [30]. The complete comparison 

is depicted in figure 11. 

Our proposed model achieved a better result in terms of 

accuracy, FDR, and FAR with a maximum value of 21.21% 

better accuracy, and 7.03% better FDR. Note that work by [30] 

employing WDGRL and TLADA was done with a smaller 

dataset in which they achieved a better FAR value; however, it 

is obvious that a model tested with a bigger dataset will have 

more probability to error than with a smaller dataset although 

our accuracy and FDR are still better. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Result comparison 

 

4. Conclusions 

The main objective of this work is to develop a machine 

learning model for fault detection. We proposed a deep learning 
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model with a concise architecture that had some impressive 

results compared with the previous works. The proposed model 

can analyze the raw acceleration data directly and requires 

almost no knowledge about digital signal processing to process 

the input data. However, a trade-off relationship between 

input’s channel number, training time, and prediction results is 

evident, as the more input channel would make the training 

time longer yet yield better results. Thus, it is important to 

understand the relationship and to utilize the most suitable input 

for a specific condition. 

In addition, to demonstrate the impact of the proposed 

research model, we highlighted the key areas, which we have 

investigated based on the available scientific literature. Authors 

in [31] did a comprehensive survey and they found that most of 

the models provided in the literature were being trained in a 

single operation parameter, whereas in this research work, we 

have demonstrated the ability of the proposed model to predict 

across different operating parameters, as a significant 

contribution. 

Furthermore, the proposed model is presented in a concise 

architecture and the proposed architecture will be easy to 

implement in real-world applications by practitioners. In 

comparison with several well-known CNN-based architectures 

like AlexNet [11] containing approximately 60 million 

trainable parameters, VGG-16 Net [13] with 138 million 

parameters, ResNet [14] with 23 million parameters, GoogLe 

Net [12] comprising seven million parameters, our proposed 

model contained only 1.3 million parameters and still provided 

the considerably satisfying results. Time for training the CNN 

model from scratch was rather long (even up to six days of 

training just for 90 epochs) for several deeper architectures, 

such as AlexNet, VGG-16 Net, ResNet, and GoogleLe Net. The 

proposed concise architecture, which in practice needed no 

more than 30 minutes of training time from scratch for 100 

epochs, is more likely fit in the needs on manufacturing floor 

where the pace of production moves fast. 

A further enhancement of the model development is to 

explore more about the generalization ability, which is one of 

the most challenging tasks for a machine learning model [21]. 

The generalization ability of a model means that the model can 

perform its ability well even on data that have not been seen 

before. In the domain of machine fault detection, it would be a 

model, which can detect a fault in different machines, not the 

same as the model was trained for. 
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