
Communications in Science and Technology 7(1) (2022) 62–72

COMMUNICATIONS IN

SCIENCE AND TECHNOLOGY
Homepage: cst.kipmi.or.id

© 2022 KIPMI

Concise convolutional neural network model for fault detection

Muhammad Firdausi*, Shafiq Ahmad

Industrial Engineering Department, King Saud University, Riyadh 12662, Saudi Arabia

Article history:
Received: 7 March 2022 / Received in revised form: 19 June 2022 / Accepted: 26 June 2022

Abstract

Fault detection is an urgent need for maintenance to obtain the optimal scheduling of production activities, improve system reliability, and reduce
operation and maintenance costs. Many studies published in recent years focus on machine learning models to detect any system anomalies in
line with the era of big data and the fourth industrial revolution (Industry 4.0). Say, a working condition of bearing can be monitored and then
any fault can be detected using the vibration analysis of bearing acceleration data. Most of the published works are presented based upon the
knowledge of signal processing in which the result depends heavily on feature extraction. It becomes a challenge then to apply a machine learning
algorithm directly to the raw acceleration data as it has been successfully applied to raw data in other science and engineering domains. In this
article, a concise Convolutional Neural Networks-based deep learning model is proposed for bearing fault detection. The proposed model was
concise with 98% less number of parameters compared to other well-known models. It produced 21.21% and 7.03% better accuracy and fault
detection rate, respectively. The model was also tested in different operating parameter environments and still gave an excellent result. Since the
proposed concise architecture of the model needed short training time, it is deemed suitable for application on manufacturing floor where the
pace of production moves fast and the change of the production machine configuration likely occurs.

Keywords: Fault detection; Ball bearing; Deep learning; Convolutional neural network; vibration

1. Introduction

Industrial machines, which can consist of hundreds of parts

are expected to have high availability time. To make the most

of it and reduce operational costs, any possible unexpected

situations should be anticipated and the machine condition

should be monitored [1]. Early detection in an emerging

harmful problem is essential for anticipating machine idle time

to save the time and cost from taking corrective actions for any

unscheduled maintenance [2].

Rotating machinery is widely used in domestic and

industrial applications. As one of the fundamental types of

mechanical systems, its reliabilities affect the entire system [3].

Based on several surveys conducted by the IEEE Industry

Application Society, bearing fault is the most common fault

type and contributes to more than 50% of all machine failures

[4]. Since bearings are typically working in a tough working

environment, they are prone to fail during operation. If the

defect is not detected in time, it may cause unexpected

downtime of the machinery and even lead to catastrophic

damage. Therefore, bearing health monitoring is deemed

essential for the safe and reliable operation of the machinery

and production [5].

A huge amount of vibration data from rolling bearing

operations can be collected thanks to the development of

advanced sensing technologies and computing systems [6]. As

the data are generally collected faster than diagnosticians can

analyze it. There is an urgent need for diagnosis methods that

can effectively analyze the massive data and automatically

provide the accurate diagnosis results. This kind of method is

called as intelligent fault diagnosis method in which artificial

intelligence techniques are used for distinguishing machinery

health conditions [7].

This huge vibration data can be analyzed thoroughly to

obtain the condition of the machine, thanks to the advancement

of Machine Learning methods. Multiple Restricted Boltzmann

Machine (RBM) units were stacked to build a Deep Belief

Networks (DBN) in [8] to analyze the vibration data of

induction motors. The Fast Fourier Transform (FFT) was used

for transforming the input signal into the frequency domain due

to DBN modeling difficulty in functioning the input units’

correlation. To improve the diagnosis efficiency, a modified-t-

distributed stochastic neighbor embedding (M-tSNE) was

developed for reducing the input dimension. They applied their

method to the artificially-generated fault bearing vibration

signal by Electro-Discharge Machining (EDM). The model of

3 hidden layers containing 400 hidden layer units each was

trained for 500 epochs to get the accuracy result of 93.18%

before feature reduction and 96.36% after feature reduction.

However, many trials are still needed to estimate the feature

dimension reduction size of M-tSNE, which is an obvious

factor for the accuracy improvement in their model.

The emergence of Convolutional Neural Network (CNN),

which is motivated by the visual cortex [9] is marked a starting

era of successful machine learning [10]. As a subset of the

* Corresponding author.

Email: 438106660@student.ksu.edu.sa

https://doi.org/10.21924/cst.7.1.2022.746

mailto:438106660@student.ksu.edu.sa
https://doi.org/10.21924/cst.7.1.2022.746

Firdausi et al. / Communications in Science and Technology 7(1) (2022) 62–72 63

machine learning domain, CNN-based deep learning

architectures have been tremendously successful in many

practical applications in which the main domain is in computer

vision [11]–[14]. Several research works were going toward

Transfer Learning that used a popular pre-trained CNN model

in computer vision and deployed it in the domain of fault

detection. [15] made the use of AlexNet architecture

comprising five convolution layers and three fully-connected

layers to predict bearing health conditions. They fed the model

with features extracted by Ensemble Empirical Mode

Decomposition (EEMD) and enveloped decomposition and

generated 2-Dimension time-frequency images by wavelet

transform. The total parameters of AlexNet were

approximately 60 million trainable parameters. ResNet-50

architecture was employed for bearings and centrifugal pump

fault detection by [16]. The ResNet-50 architecture consisted

of 51 layers and 23 million trainable parameters in which they

trained the model from layer 49 until the last layer with the

machine fault datasets. The result was comparable with the

state-of-theart deep learning application for fault detection in

which they altered the raw vibration data into RGB images with

3 Dimension matrix. However, each of the red, green, and blue

elements produced by their methods was the same to each

other.

This research work aims to develop a concise CNN-based

deep learning model for bearing fault diagnosis to make the

implementation in a real-world situation simple. The input

required for the model was designed as 50 by 50 input array,

which reduced the computation process and provided a fast

training process [35] with a flexibility to accommodate up to 3

channels input. One channel belonging to raw data and the

other 2 accompanying channels were calculated based on a

basic statistical formula. We took the benefit of more channels

input since it gave not only a better fault detection ability but

also a more stable training process. Simplicity in deep learning

implementation on fault detection aims to slightly reduce the

sole dependency on the signal processing experts who need an

extensive training in different subjects. Hence, we proposed a

concise deep learning model with a simple form of inputs.

2. Materials and Methods

This section briefly presents the vibration signal, parts of the

CNN-based deep learning model, and the input for the

architecture.

2.1. Vibration signal

Vibration signal from a bearing is measured by

accelerometer and may be used as an indicator in machines that

have some problems in quality with the bearing and as the first

indication of incoming need for repairment or replacement after

running for a long period. Bearings could act as the excitation

sources, producing time varying forces that cause system

vibration. In some cases, these forces are the result of the

imperfections of the bearings [17].

The readings from an accelerometer sensor give decimal

values varying in time. When the raw vibration signal is

plotted, given the period and sample rate of measurement for

the x-axis and acceleration for the y-axis, the appearance is

shown in figure 1 taken from a normal bearing of the KAT

datacenter in Paderborn University [18]. Whatever the

condition of a bearing and the plot is, the readings from the

accelerometer are always as a decimal number and this

condition makes the bearing fault detection with deep learning

suitable. Figure 1 illustrates the first ten data points of a signal

as a red dashed rectangle.

Fig. 1 First ten data points of a signal

2.2. Convolutional layer

The basic idea in a convolutional layer is to apply a small

filter kernel to input to learn features. Each kernel contains the

learnable weights and will be updated by the backpropagation

algorithm to reduce the loss. In this work, the initialization of

weights followed the initialization [19] and was done in the

PyTorch framework. The activation unit followed each filter to

finally generate output features. Inputs for the kernel were

called as the input local region and an identical kernel with

specific weights convolved the input from beginning to the end;

therefore, a kernel resulted in one output channel in the next

layer. The number of channels of a layer determined the depth

of that layer.

A convolutional layer works by multiplying weights in a

kernel with an input local region and it is repeated until the end

of the input layer. The process is described as follows:

The index j represents the index of a point in a local region.

Local region itself refers to a region in input array facing the

kernel. Therefore, the j added with backtick, j‘ represents index

in the kernel facing the local region. The notation r stands for

region in l(r j). This region spans from index j to j+j‘. In the

summation process, the index j+j‘will change according to j‘.

For instance, the kernel with width of 3 and moving one step

right (the second convolutional operation), will have index

ranging from 1 to 3 (the 0 is the first index in this operation). A

visual example of first convolutional operation is depicted in

figure 2.

The kernel slides throughout the input until end and an

output is produced. The first dot product as seen in figure 2 is

calculated as follows:

64 Firdausi et al. / Communications in Science and Technology 7(1) (2022) 62–72

Fig. 2 Convolutional operation

2.3. Pooling layer

In a CNN model, pooling layers are generally placed after

convolutional layers. A pooling kernel is used to compress

output from a convolutional layer to reduce the dimensionality

of the output. The main advantage of the pooling layer is to help

the CNN layer’s output to be resistant against the small input

changes. This advantage is very useful for revealing a feature

whether it is present in input data. The most commonly used

approach in pooling operation is max-pooling, reporting the

maximum value within a local region input for the pooling

kernel and outperforming other types of pooling [20]. The max-

pooling operation is described as follows:

A visual example of convolutional operation is depicted in

figure 3.

Fig. 3. Max-Pooling Operation

2.4. Activation Operation

In recent neural networks training, the default

recommendation activation function for the hidden layer is to

use the rectified linear unit or ReLU [21], as defined by the

activation function g(z) = max{0, z}. A visual example of

convolutional operation is depicted in figure 4.

Fig. 4 ReLU activation function of max-pooling output

2.5. Fully-Connected Layer

A fully connected layer receives input as a flat n×1 array

form and generates output as a linear representation of the

input. The linear expression of the fully-connected layer is:

The linear transformation of a fully connected layer from the

input layer to the output layer is called as feedforward. Here,

we provided a simple feed-forward calculation of a fully

connected layer consisting of 1 input layer, 1 hidden layer, and

1 output layer. The weights here were randomly initialized.

Given a fully connected (FC) layer that had input neurons

called x1 and x2 and their values, two neurons in the hidden

layer were called as h1 and h2, and three output neurons were

called as Normal (y1), Fault 1 (y2), and Fault 2 (y3). The

number of output neurons was the same as the number of

categories in the dataset. Then, five bias neurons were added to

the network, called as b1 and b2 for the hidden layer; and b2,

b4, b5 for the output one. Each neuron connection contained

weight and its values were randomly initialized, from W1 to

W12. To obtain the value for two neurons in the hidden layer

(h1 and h2) first, we picked data from table 1, observation 1

with a health condition and we calculated it based on Equation

3:

h1 = x1×w1 + x2×w2 + b1 = 0.04×-2.5 + 0.42×0.6 + 1.6 =

1.752

h2 = x1×w3 + x2×w4 + b2 = 0.04×-1.5 + 0.42×0.4 + 0.7 =

0.808

Every time a value is produced for a neuron, an activation

function is applied to that value before succeeding calculation.

The activation function transforms an output value into the

input value for the next layer. This function determines whether

a neuron is active and enables a CNN model to adapt to the non-

linearity of the data. ReLU activation function is applied to the

values of the neurons in the hidden layer. Therefore, the output

of h1 and h2 is presented as follows:

a (1(1,1)) = max{0, 1.752} = 1.752

a (1(2,1)) = max{0, 0.808} = 0.808

Then, we calculated the value for three output neurons y1,

y2 and y3 in the output layer with the linear expression of

formula 3:

y1 = h1×w5 + h2×w6 + b3 = 1.3872

y2 = h1×w7 + h2×w8 + b4 = 0.0032

y3 = h1×w9 + h2×w10 + b5 = 0.1352

In this example, to determine what the fully connected (FC)

layer predicts based on two inputs x1 = 0.04 and x2 = 0.42 it

was firstly to calculate the probability output value after

applying the activation function. In the hidden layer, we used

ReLU for the activation function but for the output layer, ReLU

Firdausi et al. / Communications in Science and Technology 7(1) (2022) 62–72 65

could lead a network to stop learning because it could always

produce value outputs of 0 and no gradient at all for updating

the weights [22]. For activation function in the output layer,

softmax function is a better choice to work on classification

task [21] for representing the probability distribution over n

different classes and a penalty of a prediction could be

calculated. The formula for softmax is presented as follows:

The probability of each prediction obtained from the

softmax activation function is presented as follows:

With the same way of calculation, we obtained:

Softmax(y2) = 0.1631

Softmax(y3) = 0.1861

Fig. 5 Fully-connected layer with feed-forward

Figure 5 shows the complete FC calculation result. The final

prediction made by the networks was decided by the largest

value from the last activation function. Therefore, with input x1

= 0.04 and x2 = 0.42 the model prediction was normal condition

with the probability of 0.6508. If we supplied the network with

the inputs of observation 2 and observation 3 from table 1, we

ended up with all predictions of three observations as shown in

table 2.

2.6. Backpropagation for training the model

Figure 5 shows how a feed-forward neural network predicts

a target by giving a specific input. In fact, the true probabilities

of all category of the specific input, with x1 = 0.04 and x2 =

0.42 are [normal = 1; fault 1 = 0; fault 2 = 0] because we know

that the input belongs to normal condition.

There is a discrepancy between the predicted probabilities

generated by the network and the true probabilities and the

predicted values are quite different from the real values. The

way a network to predict correctly is by having good weight

values for a specific dataset. Hence, we needed to repeatedly

train the model by tweaking the weights and biases until the

output values were nearly similar to the target values. The

training process mostly involves a backpropagation (BP)

algorithm to fit a neural network model with the training data.

BP computes the gradient of the loss function (in this work we

used cross-entropy loss) with respect to the weights and biases

of every neuron connection. The algorithm aims to tweak the

weights, so the model can learn how to map the specific inputs

to outputs. The steps of backpropagation calculation are

presented as follows:

1) Calculating the total loss of the network. First, we

calculated the cross-entropy (CE) for each prediction. The

reason behind cross-entropy loss was that it heavily penalized

a wrong prediction enabling a network to take a bigger step to

minimize the loss. The formula for CE is shown as follows:

Therefore, CE calculation for all categories is:

CEnormal = -1 × log(Predictednormal) + -0 ×log(Predictedf

ault1) + -0 ×log(Predictedf ault2) = 0.4295

CEfault1 = -0 × log(Predictednormal) + -1 ×log(Predictedf

ault1) + -0 ×log(Predictedf ault2) = 0.6859

CEfault2 = -0 × log(Predictednormal) + -0 ×log(Predictedf

ault1) + -1 ×log(Predictedf ault2) = 0.5514

Total loss =CEnormal +CEf ault1 +CEf ault2 = 0.4295 +

0.6859 + 0.5514 = 1.6668 and the information of all CEs and

loss is shown in table 3.

2) Calculating the effect of change or derivative of total loss

with respect to (wrt.) weights and biases in the output layer by

backward pass. Doing this needs to revisit the formula of total

loss and depict some figures. First, the total loss is defined as:

Total CE loss = CEnormal + CEfault1 + CEfault2

Each CE has its formula and for calculation example, we

picked the normal category.

66 Firdausi et al. / Communications in Science and Technology 7(1) (2022) 62–72

CEnormal = −1 × log(Predictednormal) + −0 ×

log(Predictedfault1) + −0 × log(Predictedfault2) =

−log(Predictednormal)

The term Predictednormal (pn) is defined as the output from

the softmax function of a normal neuron in the output layer.

Hence:

Lastly, y1 was obtained from Equation 3, i.e. y1 = h1 × w5

+h2 ×w6 +b3. Because the aim of BP is to tweaking weights

and biases to minimize the total loss, we first searched the

derivative of total loss wrt. b3:

First, we calculated the derivative of CEnormal wrt. b3.

Fig. 6. Finding how much CEnormal change wrt. b3

Figure 6 visually depicts the flow of derivative of CEnormal

(CEn in the figure) wrt. b3. In the middle, we had pn and y1

representing the predicted probability of normal condition and

input value for output neuron with label normal, respectively.

By applying the chain rule we had:

Now we calculated one-by-one all terms on the right-hand

side of Equation 7.

The derivative of or the softmax activation function is:

Lastly, we calculated the derivative of the last term

Hence, we were able to calculate the derivative of Equation

7.

Second, we calculated the derivative for CEfault1 wrt. b3

Therefore, derivative of CEfault1 wrt. b3 was pn. To

calculate pn for ∂CEf/∂b3, we used x1 and x2 from respective

observation i.e. observation of fault 1 (x1 = 0.5; x2 = 0.37) and

plug the input into the network. Hence we obtained pn = 0.2606

Third, we calculated the derivative for CEf ault2 wrt. b3

To calculate pn for ∂CEf2/∂b3, we used x1 and x2 from

respective observation i.e. observation of fault 2 (x1 = 1; x2 =

0.54) and plug the input to the network. Hence we obtained pn

= 0.2119. We solved all the derivatives for total loss wrt. b3.

Recalling equation (6), (10), (11), (12):

= −0.3492+0.2606+0.2119 = 0.1233

The slope of 0.1233 was to update the value of bias b3 with

a certain learning rate. The learning rate is a parameter set to

determine the step size of each iteration in backpropagation

toward a minimum total loss. To calculate the new value of b3

with a learning rate η of 0.01 is presented as follows:

Step size = slope × η = 0.1233 × 0.01 = 0.001233

New b3 = b3 – step size = 0 - 0.001233 = -0.001233

In the same way, we could calculate the new value for b4,

b5, w5, w6, w7, w8, w9, and w10. All new values regarding

weights and biases in the output layer are shown in table 4.

3) Calculating the derivative of total loss wrt. weights and

biases in the hidden layer. We continued the backward pass

process for w1, w2, w3, w4, b1, and b2. The backward pass for

w1 is shown as follows:

To update the weights and biases in the hidden layer, we

used the old weights and biases in the output layer before

updating with BP. The main idea of BP in the hidden layer was

the same as in the output layer. We calculated the derivative of

total loss wrt. weights and biases in the hidden layer. The

derivative is written as:

Firdausi et al. / Communications in Science and Technology 7(1) (2022) 62–72 67

The process of finding the derivative was similar to the

previous calculation but slightly different because the output of

neurons in the hidden layer contributed to the output of multiple

neurons in the last layer. The connection of neuron h1 with

neuron y1, y2, and y3 implied that the output of ReLU in h1

could affect the total loss, as presented as follows:

Second, we calculated ∂CEf1/∂ReLUh1. Following the

previous step, we obtained:

Third, ∂CEf2/∂ReLUh1 was equal to:

Put all together:

Now, we needed to find out ∂ReLUh1/∂inputh1 and then

∂inputh1/∂w1 for each weight:

The slope of -0.01174 was used to update the w1, so:

Stepsize = slope×η = −0.01174×0.01 = −0.0001174

Neww+ 1 = w1–stepsize = −2.5–(−0.0001174) =

−2.4998826

With the same steps, we could update weights and biases in

the hidden layer, w2, w3, w4, b1, and b2. All updates are shown

in table 5.

We finished updating all weights and biases, calculated the

classification probability of all input and then determined the

total loss. We have updated all of our weights and biases

through BP one time. Before the update, the net loss was

1.6668. After our one BP example, the total loss then became

1.644101. Running BP a bunch of times led to net loss toward

0 and made the net capable of well predicting the training data.

However, if we continued the BP process a large number of

times, it could lead the network to have a low loss value in

predicting the data it is used to but predict poorly the data that

has never been seen and it is called as overfitting.

*BP=Backpropagation

2.7. Dropout

To prevent the network from overfitting, we applied a

method called as dropout as proposed by [23]. The dropout

method works by deactivating neurons randomly along with

their connections based on some probabilities p during training.

This method proves to prevent neurons from fitting too much

to training data. During the training phase, the weights and

biases being updated are the active neurons only. During testing

the network with new data, dropout is no longer applied. Based

on experiments by Srivastava et. al. [23], a network trained with

dropout commonly had much better generalization ability on

classification problems during test time. A dropout example

from the previous fully connected network with probability

p=0.3 is presented as follows:

Say, we randomly deactivated neuron in hidden layer from

Figure 5 and for instance the deactivated neuron was h1;

therefore, the values of y1, y2 and y3 are presented as follows:

y1 = h2 ×w6 +b3 = 1.212

y2 = h2 ×w8 +b4 = −4.2016

y3 = h2 ×w10 +b5 = 3.9896

2.8. Proposed Model

The proposed model for this research is based on

Convolutional Neural Network (CNN) taking raw signal data

as input without any pre-processing. CNN can extract any

relevant features from the data for the prediction task. The

model architecture is motivated by early successful model in

document recognition by LeCun et al [32]. The model

comprises two convolutional layers and is ended with fully-

connected layer. These subsequent convolutional (conv) layers

68 Firdausi et al. / Communications in Science and Technology 7(1) (2022) 62–72

intersected with pooling layer after each conv layer detect

salient features that differ between normal and faulty bearing.

Conv layer learns multiple features in parallel for a given input

and it is common for a conv layer to learn from 32 to 512 filters

to get their features [33]. The number of features (or output)

from a conv layer, called as feature map, in this architecture is

set to 32 for the first conv layer, and 64 for the second one are

inspired by VGG-model [13] where the authors used smallest

size of filter possible to capture the features in the beginning,

and went bigger afterward.

In our CNN model (figure 7), there are two main parts. The

first part is the convolution part and the second one is the fully

connected layers. We had two convolutional layers each of

which was followed by the max-pooling layer. The activation

function used for both convolutional layers was ReLU. The

usage of maxpooling layers ensures that the most important

features are selected. All functions of the proposed model are

described in table 7.

The size of the kernel was set as 4 on all the convolution and

pooling layer plus a padding of 1 to benefit from generalization

capabilities of even-sized kernels at little computational cost

[34]. The stride of 1 in convolutional layer to catch fine features

from the data and stride of 2 in pooling layer is to sufficiently

reduce the dimension of the input data.

3. Results and Discussion

We separated the whole dataset into two different parts: the

training data set and the testing dataset. The training dataset

aims to be a way for the model to learn the vibration data until

it can classify the normal bearing and the faulty one. The

learning process of the model is to repeatedly see the same

training dataset as much as a hyperparameter called as epoch is

set. Hyperparameters setting for the training phase are shown

in table 8.

We used a random train-test split of 80%-20% respectively

and then reported the average prediction accuracy. The training

dataset refers to a dataset used for training the model with

feedforward and backpropagation repeatedly until the number

of epochs is reached. During the training phase, the model was

fed with the training dataset multiple times until the loss score

was lowered. The test dataset aimed to know the prediction

ability of the model after training on the dataset that the model

has not seen before; it is called as generalization. In the test

phase, the model was fed by the test dataset and did the

feedforward but not the back pass or backpropagation.

Therefore, there were no parameters updated during the test

phase.

For this dataset, the signals of 256,000 data points were

clipped at the beginning and the ending by 3000 data points to

avoid noise disturbance [24]. Then, 250,000 data points per

signal were reshaped into the smaller signals of shape 50 × 50

2D arrays, which resulted in 100 smaller signals from each

original signal. The considered input shape was based on

approximation on how many a bearing rotated in a second. In

our setting, the operating parameters of the test rig were in the

speed of 1500 revolutions per minute, load torque of 0.7 Nm,

and radial force of 1000 N. The speed of a bearing was 1500

revolutions per minute leading to 100 revolutions in 4 seconds.

Hence, a signal containing 2500 data points is represented as a

bearing revolution.

To recap we had 29 bearings coming with 3 health

conditions, 20 times of signal measurement for each bearing,

and smaller 50 × 50 2D arrays signals from each measurement

counted into 59,317 signals in total in which 47,453 signals

belonged to the training dataset and the remaining 11,864

signals belonged to test dataset. Each row in the figure

represented a single signal and each column was the 2500 data

points of each signal (features). The figure was clipped in the

middle to accommodate the page width (represented as three

Fig. 7. Proposed model for fault diagnosis

Firdausi et al. / Communications in Science and Technology 7(1) (2022) 62–72 69

red bold dots). Therefore, in total, we had 59,317 rows and

2501 columns (include the Condition column). The Condition

column consisted of IR, normal, and OR, which stand for

bearings condition of inner ring fault, normal, and outer ring

fault, respectively.

As the problem’s nature was classification, we used

Crossentropy loss [25] for the loss function, as we provided in

Chapter 4. The whole network was trained for 100 epochs with

a batch size of 128 on a Google colaboratory GPU machine.

We fed the model with raw data and calculated the loss and

accuracy of the model. The accuracy is a ratio of correct

prediction for all classes to the total observations and in our

case, is defined as:

where:

TP1,2,3 = True Prediction of class 1, 2, and 3

FPall = False Prediction from all class

The 100 epochs training process with raw data input took a

time of 27 minutes and 38 seconds with a loss of 0.00014514.

In line with the results of the training phase, the accuracy on

the training dataset maxed out was at 99.6% with a loss of

0.0170.

To know more about the effect of input data on the training

result, we added some additional channels to the input.

Originally, we had the input of raw acceleration data in the

shape of 50 × 50 data points. Then, we made a new channel

called as mean channel and median channel. The establishment

of the two new channels was by making use of a sliding window

with a length of 10 as a filter with a shift by the length of 1. For

every given sample of raw signal data, the filter scanned

through the whole sample data from the front to the end. The

size of the mean and median windows depended on the size of

the single original input data. Here, the decision of the windows

size of 10 was to fairly accommodate the size of the original

input data of 2500. In other words, the size of 0.4% of the

original data is adequate for the mean and median windows.

These two parameters provided a balance combination to

represent data, the mean for measuring the central tendency and

the median was to make the addition input insensitive to the

outlier data point. The statistical parameters were chosen based

on the computational cost and their advantages. For the sake of

simplicity, the example of generating mean and median

channels from raw data with a sliding window of length 3 is

depicted in figure 9.

The three different channels could provide us several

combinations of input i.e. input of raw channel, raw plus mean

channels, raw plus median channels, and all three channels. In

summary, we trained the model with four different inputs and

recap the loss at the end of the training, the time needed for

running 100 epochs in table 9.

It was found out that an additional channel could make the

training process longer but give an improvement in the training

phase - in terms of lower loss and better accuracy. The

combination of raw signal and its median resulted in better loss

and more accuracy than the combination of raw signal and its

mean. Therefore, we could assess that median of signal

presented a better feature of bearing fault. Next, the loss score

of the whole training process is depicted in figure 8.

Fig. 8. Loss across the different inputs

Fig. 9. Mean and median input channel generator

3.1. False Alarm Rate (FAR)

To augment accuracy as an evaluation metric, we also

calculated the FAR metrics, which is the ratio of falsely

predicting positive observations to all observations in actual

positive class. An example of this metric answer is of all

bearings that predicted fault, how many are not fault. To

calculate the FAR metrics, first, we established a confusion

matrix containing the prediction and the true class label in a

single matrix. To establish the confusion matrix, we employed

the model trained with 3 channels input and recorded the

predicted class and the ground truth class. The confusion matrix

is shown in figure 10. TN is True Negative or the model

correctly predicts a bearing as normal bearing, where FN (False

Negative) is the opposite, and the model predicts a bearing as

normal but it is faulty. Likewise, TP is True Positive where the

model correctly predicts a bearing as faulty bearing and FP is

False Positive where a bearing is falsely classified as a faulty

bearing which the true condition of the bearing is normal.

70 Firdausi et al. / Communications in Science and Technology 7(1) (2022) 62–72

The labels of N, IR, and OR in figure 10 stand for Normal

bearing, Inner Fault bearing, and Outer fault bearing,

respectively. The green and red rounded rectangles indicate

both the two true values, True Positive and True Negative (TP

and TN), and two false values, False Positive and False

Negative (FP and FN) respectively. FP means that the model

predicts the input signal as IR or OR; however, the actual

condition of bearing is N. Here, we considered a misprediction

of ground truth from IR predicted as OR and vice versa as a

true positive since the main objective of fault detection is to

distinguish a fault from a normal one. This is the primary

concern in practical applications for the operators on-site [26].

The FAR metric is calculated by the following formula:

Fig. 10. Confusion matrix of the model

3.2. Fault Detection Rate (FDR)

The last metric to consider the performance of the fault

detection model is Fault Detection Rate (FDR), which is

calculated based on faulty data. In literature, FDR is called as

Recall or sensitivity [27]. In general, the higher the FDR score,

the better a model. FDR is the opposite of FAR, which is a ratio

of correctly predicted positive observations over all

observations in positive class. The question to be answered by

the FDR metric is about, of all positive observations, how many

percent a model can predict fault bearing from a dataset. To

calculate FDR, we used the same confusion matrix as to

calculate FAR. The formula for FDR is presented as follows:

The two metrics calculation along with the summarized

confusion matrix is provided in table 10.

3.3. Result in different datasets

This section presents the test of the trained model to detect

the fault from other datasets with different operating

parameters. The steps are the same as training and testing the

model and the result is shown in table 11. The combination

code includes N: speed (rpm); M: load torque (Nm); F: radial

force (N) where the details of the combination refers to [18]

Our proposed model achieved a satisfactory result for

accuracy and FDR scores of above 99% in all operating

parameter combinations. However, in an environment with

lower parameter values of speed, load torque, and radial force,

it was found that the model architecture encountered slight

difficulty when it predicted a real normal bearing. Given the

base result for comparison is the parameter combination of

speed: 1500 rpm; load torque: 0.7 Nm; and radial force: 1000N

(combination number 4), FAR scores showed that a lower value

of radial force deteriorates more followed by load torque and

speed. The ability of the model to predict a real normal bearing

as normal for lower parameter values of radial force, load

torque, and speed, decreased from 0.45% to 1.699%, 1.171%,

and 1.123%, respectively.

3.4. Result Comparison

Finally, we compared the result between the proposed model

and other works from previous authors working with the same

dataset. Other works such as [28] employing Multi-Layer

Perceptron (MLP) and Deep Belief Network (DBN);

TrainingInterference for CNN (TICNN) [29]; Wasserstein

distance guided representation learning for domain adaptation

(WDGRL) and triplet loss guided adversarial domain

adaptation method (TLADA) [30]. The complete comparison

is depicted in figure 11.

Our proposed model achieved a better result in terms of

accuracy, FDR, and FAR with a maximum value of 21.21%

better accuracy, and 7.03% better FDR. Note that work by [30]

employing WDGRL and TLADA was done with a smaller

dataset in which they achieved a better FAR value; however, it

is obvious that a model tested with a bigger dataset will have

more probability to error than with a smaller dataset although

our accuracy and FDR are still better.

Fig. 11. Result comparison

4. Conclusions

The main objective of this work is to develop a machine

learning model for fault detection. We proposed a deep learning

Firdausi et al. / Communications in Science and Technology 7(1) (2022) 62–72 71

model with a concise architecture that had some impressive

results compared with the previous works. The proposed model

can analyze the raw acceleration data directly and requires

almost no knowledge about digital signal processing to process

the input data. However, a trade-off relationship between

input’s channel number, training time, and prediction results is

evident, as the more input channel would make the training

time longer yet yield better results. Thus, it is important to

understand the relationship and to utilize the most suitable input

for a specific condition.

In addition, to demonstrate the impact of the proposed

research model, we highlighted the key areas, which we have

investigated based on the available scientific literature. Authors

in [31] did a comprehensive survey and they found that most of

the models provided in the literature were being trained in a

single operation parameter, whereas in this research work, we

have demonstrated the ability of the proposed model to predict

across different operating parameters, as a significant

contribution.

Furthermore, the proposed model is presented in a concise

architecture and the proposed architecture will be easy to

implement in real-world applications by practitioners. In

comparison with several well-known CNN-based architectures

like AlexNet [11] containing approximately 60 million

trainable parameters, VGG-16 Net [13] with 138 million

parameters, ResNet [14] with 23 million parameters, GoogLe

Net [12] comprising seven million parameters, our proposed

model contained only 1.3 million parameters and still provided

the considerably satisfying results. Time for training the CNN

model from scratch was rather long (even up to six days of

training just for 90 epochs) for several deeper architectures,

such as AlexNet, VGG-16 Net, ResNet, and GoogleLe Net. The

proposed concise architecture, which in practice needed no

more than 30 minutes of training time from scratch for 100

epochs, is more likely fit in the needs on manufacturing floor

where the pace of production moves fast.

A further enhancement of the model development is to

explore more about the generalization ability, which is one of

the most challenging tasks for a machine learning model [21].

The generalization ability of a model means that the model can

perform its ability well even on data that have not been seen

before. In the domain of machine fault detection, it would be a

model, which can detect a fault in different machines, not the

same as the model was trained for.

References

1. O. Janssens, V. Slavkovikj, B. Vervisch, K. Stockman, M. Loccufier, S.
Ver-stockt, R. V. d. Walle, and S. V. Hoecke, Convolutional Neural

Network Based Fault Detection for Rotating Machinery, J. Sound Vib. 377

(2016) 331-345.
2. L. Wen, X. Li, L. Gao, and Y. Zhang, A New Convolutional Neural

Network-Based Data-Driven Fault Diagnosis Method, IEEE Trans. Ind.

Electron. 65 (2018) 5990–5998.
3. C. Lu, Y. Wang, M. Ragulskis, and Y. Cheng, Fault Diagnosis for Rotating

Machinery: A Method based on Image Processing, PloS one, 11 (2016) 1-

22.
4. J. Tao, Y. L. Liu, and D. L. Yang, Bearing Fault Diagnosis Based on Deep

Belief Network and Multisensor Information Fusion, Shock Vib. 2016

(2016) 1-9.

5. Z. Y. Chen and W. H. Li, Multisensor Feature Fusion for Bearing Fault
Di-agnosis Using Sparse Autoencoder and Deep Belief Network, IEEE

Trans Instrum Meas. 66 (2017) 1693–1702.

6. R. Zhao, D. Wang, R. Yan, K. Mao, F. Shen, and J. Wang, Machine Health
Monitoring Using Local Feature-Based Gated Recurrent Unit Networks,

IEEE Trans. Ind. Electron. 65 (2018) 1539–1548.

7. F. Jia, Y. G. Lei, J. Lin, X. Zhou, and N. Lu, Deep neural networks: A
promising tool for fault characteristic mining and intelligent diagnosis of

ro-tating machinery with massive data, Mech Syst Signal Process. 72–73

(2016) 303–315.
8. S.-Y. Shao, W.-J. Sun, R.-Q. Yan, P. Wang, and R. X. Gao, A Deep

Learning Approach for Fault Diagnosis of Induction Motors in

Manufacturing, Chin. J. Mech. Eng. 30 (2017) 1347–1356.
9. K. Fukushima, Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position. Biol.

Cybernetics, 36, (1980) 193–202.
10. Y. Le Cun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D.

Henderson, R. E. Howard and W. Hubbard, Handwritten digit recognition:

applications of neural network chips and automatic learning, IEEE
Commun. Mag. 27 (1989) 41–46.

11. A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification

with Deep Convolutional Neural Networks, Adv Neural Inf Process Syst.

25 (2012) 1-9.

12. C. Szegedy, et al., Going Deeper with Convolutions, Proc. IEEE Conf.

Com-put. Vis. Pattern Recognit. Boston, MA, USA, 2014, pp. 1-9.
13. K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for

Large-Scale Image Recognition. 3rd International Conference on Learning
Representations. San Diego, CA, USA, 2015, pp. 1-14.

14. K. He, et al., Deep Residual Learning for Image Recognition. Proc. IEEE

Conf. Comput. Vis. Pattern Recognit. Las Vegas, NV, USA, 2015, pp. 770-
778.

15. X. Shi, Y. Cheng, B. Zhang, and H. Zhang, Intelligent fault diagnosis of

bearings based on feature model and Alexnet neural network, Int. Conf.
Progn. Health Manag. Detroit, MI, USA, 2020, pp. 1–6.

16. L. Wen, X. Li, and L. Gao, A transfer convolutional neural network for

fault diagnosis based on ResNet-50, Neural Comput. Applic. 32 (2020)
6111–6124.

17. T. Harris, Boca Raton, USA: John Wiley Sons, Inc., 2001.

18. C. Lessmeier, J. K. Kimotho, D. Zimmer, and W. Sextro, Condition
Monitor-ing of Bearing Damage in Electromechanical Drive Systems by

Using Motor Current Signals of Electric Motors: A Benchmark Data Set

for Data-Driven Classification, PHM Society European Conference. 3
(2016) 1-17.

19. K. He, et al., Delving Deep into Rectifiers: Surpassing Human-Level Per-

formance on ImageNet Classification, Proc. IEEE Int. Conf. Comput. Vis.,
Santiago, Chile. 2015, pp. 1026-1034.

20. V. Suarez´-Paniagua and I. Segura-Bedmar, Evaluation of pooling

operations in convolutional architectures for drug-drug interaction
extraction, BMC Bioinformatics. 19 (2018) 39-47.

21. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. USA: MIT

Press, 2016.
22. R. Grosse, CSC321 Lecture 8 Optimization. Canada: CS University of

Toronto, 2021.

23. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks from

Overfitting, J. Mach. Learn Res. 15 (2014) 1929–1958.

24. R. Magar, L. Ghule, J. Li, Y. Zhao, and A. B. Farimani, FaultNet: A Deep
Convolutional Neural Network for Bearing Fault Classification. IEEE Ac-

cess, 9 (2021) 25189–25199.

25. Z. Zhang and M. R. Sabuncu, Generalized Cross Entropy Loss for Train-

ing Deep Neural Networks with Noisy Labels, 32nd Int. Conf. Neural Inf.

Process. Syst., NY, USA. 2018, pp. 8792–8802.

26. X. Xue and J. Zhou, A hybrid fault diagnosis approach based on mixed-
domain state features for rotating machinery, ISA Trans. 66 (2017) 284–

295.

27. D. G. Altman and J. M. Bland, Diagnostic tests. 1: Sensitivity and speci-
ficity, BMJ-Brit. Med. J. 308 (1994) 1552.

28. L. Hou, R. Jiang, Y. Tan, and J. Zhang, Input feature mappings-based deep

residual networks for fault diagnosis of rolling element bearing with
complicated dataset, IEEE Access. 8 (2020) 180967–180976.

29. Y. H. Chen, G. L. Peng, C. H. Xie, W. Zhang, C. H. Li, and S. H. Liu,

ACDIN: Bridging the gap between artificial and real bearing damages for
bearing fault diagnosis, Neurocomputing. 294 (2018) 61–71.

30. X. Wang and F. Liu, Triplet Loss Guided Adversarial Domain Adaptation

for Bearing Fault Diagnosis, Sensors, 20 (2020) 1-19.
31. J. Jiao, M. Zhao, J. Lin, and K. Liang, A comprehensive review on convo-

lutional neural network in machine fault diagnosis. Neurocomputing, 417
(2020) 36–63.

72 Firdausi et al. / Communications in Science and Technology 7(1) (2022) 62–72

32. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-Based Learning
Applied to Document Recognition, Proc. of the IEEE. 86 (1998) 2278–

2324.

33. J. Brownlee, Deep Learning for Computer Vision: Image Classification,
Ob-ject Detection and Face Recognition in Python. Independently

Published, 2019.

34. S. Wu, G. Wang, P. Tang, F. Chen, and L. Shi, Convolution with even-
sized kernels and symmetric padding. Adv. Neural Inf. Process. Syst. 32

(2019) 1-12.

35. C. R. Atmaja Perdana, H. Adi Nugroho, and I. Ardiyanto, Comparison of
text-image fusion models for high school diploma certificate classification,

Commun. Sci. Technol. 5 (2020) 5–9.

