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Abstract 

The study of the green reductant effects to produce reduced graphene oxide (rGO) has been successfully completed. The reduction of graphene 

oxide (GO) was carried out chemically using various reductants such as ascorbic acid (rGO-AA), gallic acid (rGO-AG), and trisodium citrate 
(rGO-NS). The GO was prepared using the Tour method at a temperature of 65℃ for 6 hours with potassium permanganate: graphite weight 
ratio 1:3.5. The results showed that rGO-AA had the highest electrical conductivity value of 755.70 S/m with a number of characteristics such 
as a surface area of 255.93 m2/g, total pore volume of 0.61 cm3/g, average pore diameter of 7.10 nm, ID/IG ratio of 1.93, and three graphene 
layers in the material nanostructure stack. Therefore, it can be concluded that the reduction of GO with ascorbic acid (rGO-AA) is the most 
effective in producing rGO. 
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1. Introduction  

Graphene is two-dimentional (2D) carbon material that 

has big potential for electrodes bases on its ability to form a 

free-standing film without any addition of a binder agent [1,2]. 

Because it has unique electronic, thermal, mechanical and 

chemical properties, graphene has potential engineering 

applications in many fields, especially energy. It is widely used 
as a support material for electrode, especially in devices where 

energy is converted (fuel cells) and stored (batteries and 

supercapacitors) [3]. Despite the advantages explained above, 

graphene also has some disadvantages. These are the synthesis 

of large quantities of graphene and it is quite difficult to control 

the particle size during synthesis [4]. It is also very difficult to 

make composites of graphene sheets with conductive polymers 

or metal oxides. To overcome these difficulties, studies on 

malleable graphene structures have been carried out. Therefore, 

modified graphene, which is a derivative of graphene (graphene 

oxide (GO), reduced graphene oxide (rGO)), will replace pure 
graphene in potential applications [3].  

Graphene oxide (GO) is used for graphene synthesis and 

has a carbon atoms monolayer with covalently connected 

oxygen-containing groups [5]. The synthesis of graphene can 

be done by biological, chemical, and physical techniques. All 

of them have various strategies to isolate single graphene sheets 

with or without changing their properties, and to synthesize a 

graphene oxide reduction [6–8].  

Chemical exfoliation method can be used for high quality 

graphene synthesis from graphite [9]. The addition of 

potassium chlorate (KClO3) and nitric acid (HNO3) provided 

an increase in the weight of the sample due to the incorporation 
of hydrogen (H) and oxygen (O) was published by Benjamin 

Collins Brodie [10], the use of sulfuric acid (H2SO4) and a high 

amount of potassium chlorate (KClO4) was reported by 

Staudenmaier [11]. Meanwhile, Hummers and Offeman [12] 

proposed the use of potassium permanganate (KMnO4) and 

sulfuric acid as reagents. The H2SO4 acts as solvent to transport 

the oxidant into the graphite interlayers and an intercalation 

agent stabilizing the oxidant [13]. Marcano et al. [14] 

developed the study without NaNO3 on the differences among 

the Hummers method, modified Hummers method, and 

improved Hummers method. In 2010, Tour et al. [15] reported 
an improvement in the Hummers method using ice instead of 

liquid water to prevent the high-temperature rise thus 

promoting better and easier control of the process, and 

increasing the yield and degree of oxidation, and introducing 

phosphoric acid (H3PO4) to promote the retention of carbon 

rings in the basal. The difference of Tour method with other 

methods is based on mixturing  H2SO4 and H3PO4 (9:1 v/v) and 

further oxidation of graphite by KMnO4 [16]. The advantages 

of Tour method are to produce a more oxidized graphite oxide 

with a more regular carbon framework and larger sheet size, 

eliminates the production of toxic gases [17] and produce more 

heavily oxidized hydrophilic GO [18,19]. 
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The hydrogen sulfide (H2S) was first known reducing 

agent introduced in 1934 that has large number of reductans to 

reduce GO. Among these, hydrazine (N2H4.H2O) is the best-

known reductant in terms of giving rGO with improved 

electrical and structural properties resembling pristine 
graphene to a large extent. However, hydrazine is toxic 

reductant so many researchers have to find alternative reducing 

agents with qualities comparable to hydrazine. Reductant such 

as hydrazine, sodium borohydride, hydroquinone, and 

hydrohalic acid are also known as toxic reductant in rGO so 

they cannot be used in biochemical applications [20]. One such 

problem, which has led to the introduction of the "green 

reduction" approach in this field is the toxic nature of hydrazine 

to both the environment and the living organisms [21]. 

RGO has several properties such as good catalyst-support 

interaction, mesoporous structure, good electrical conductivity, 

large surface area, and good corrosion resistance that can be 
used for support materials that can strongly influence 

durability, electrocatalyst performance, and efficiency in 

polymer electrolyte membrane fuel cells [22]. The other 

application of rGO is the combination of metal oxide and rGO 

that can improve chemical functionality and compatibility as 

chemical sensors [23]. 

Materials that can also be used as reducing agents include 

green tea extract [24], Chrysanthemum [25], carrot extract [26], 

orange peel [27], pomegranate [28], Lycium barbarum [29], 

Azotobacter chroococcum [30], sodium citrate [31], caffeic 

acid [32], ascorbic acid [33], glycine [34], alanine [35], and 
bovine serum albumin [36], or gallic acid [37]. The use of 

ascorbic acid as a reducing agent, compared to other green 

reducing agents, has a conductivity value that is almost similar 

to that of hydrazine [38].  

The above reductants that have higher conductivity than 

others are gallic acid, sodium citrate, and ascorbic acid. Gallic 

acid (3,4,5- trihydroxyl-benzoic acid) is a polyphenol naturally 

found in fruits (graphes, strawberries, bananas) and various 

plants (oak bark, tea leaves, gallnut) [39]. This molecule has 

been used in reducing and stabilizing agents in nanoparticle 

synthesis as it contains more than two hydroxyl groups that can 

reduce metal ions [40,41]. Ascorbic acid has been widely used 
as a reducing agent in the synthesis process of nanomaterials 

such as metal oxide and metal nanoparticles [42,43]. Sodium 

citrate is simultaneously used as an environmentally friendly 

reducing agent for the effective reduction of both GO and good 

size distribution [44]. 

Conductivity rGO with ascorbic acid that has been 

synthesized by  Xu et al [45] is 733 S/m. The method is used 

with other reductant (galic acid and sodium citrate) with an 

expectation that it can improve their conductivy. 

The first known environmentally friendly reducing agent 

is ascorbic acid (2010) that has been verified to be the best 
alternative to toxic hydrazine and is being studied currently 

[46]. This study is mainly focused on the chemical reduction of 

GO by ascorbic acid, gallic acid, and sodium citrate, which is 

non-toxic and affordable to produce green rGO that can be used 

for support material of catalyst in PEMFC.  

2. Materials and Methods 

2.1. Materials 

 

Hydrochloric acid (HCl) (Merck), sulfuric acid (H2SO4) 

(Merck), graphite (Merck), phosphoric acid (H3PO4) (Merck), 

potassium permanganate (KMnO4) (Merck), hydrogen 

peroxide (H2O2) (Merck), silver nitrate (AgNO3) (Merck), 

barium chloride (BaCl2) (Merck), ascorbic acid (Merck), 

trisodium citrate (Merck), gallic acid (Merck), ammonia 

solution (Merck), ethanol (Merck), deionized water (onemed) 

and bi-distilled water and phosphate-buffered saline (PBS) was 

utilized. 

 

2.2 Instrumentations 

 

X-ray diffraction (XRD) (Bruker D2 Phaser 

diffractometer) using the Cu Kα as the irradiation (k = 0.15405 
nm) at a 2θ scan range of 5–90° to detect crystal size. Fourier 

Transform Infrared (FTIR) (Shimadzu Prestige 21) to analyze 

the functional group of graphene oxide with a range of 400–

4000 cm-1 using KBr pellets. Scanning Electron Microscope-

Energy Dispersive X-ray (SEM-EDX, JEOL JSM-6510) to 

show the surface morphology of graphene oxide and C/O ratio. 

Transmission electron microscopy (TEM, JEOL JEM-1400) to 

determine graphene nanosheet's structure. Raman Spectrometer 

(LabRAM HR Evolution, Horiba), Thermogravimetric 

Analyzer (Linseis, STA PT 1600), Surface Area Analyzer 

(JWGB Meso 112), the electronic transition condition of GO 

was measured by UV-Vis Spectrophotometer 1800 from 
Shimadzu Scientific and LCR meter (EUCOL U2826),  

 

2.3 Procedure 

 

2.3.1 Synthesis of graphene oxide 

 

 Our method was adapted from Chasanah’s method [47] 

with certain crucial modifications. Initially, graphite flakes and 

KMnO4 (1:3.5 w/w) were mixed in a mortar and pestle for 5 

minutes and kept at a temperature below 5°C. A separate 

solution of H2SO4 and phosphoric acid H3PO4 (9:1 v/v) was 
prepared and kept at a temperature below 5°C. The acid 

solution was then added to the mixture of graphite flakes and 

KMnO4 with continuous stirring (using a magnetic stirrer). 

Once being obtained, the solution was heated at 65°C and left 

for 6 h with continuous stirring. After 6 h, the solution was 

allowed to cool until reaching a room temperature. This was 

then added to a beaker containing 200 ml of deionized water 

ice. The mixture was added 4 ml of H2O2 while stirring. The 

mixture was washed with HCl (2x) and ethanol (2x) with 

intermediate centrifugation (at 5,000 rpm for 5 minutes). The 

precipitate was washed with PBS until pH 7. The neutral 

solution was checked by AgNO3 and BaCl2 to detect the 
presence of SO4

2- ion and the presence of Cl- ion, respectivelly. 

If it formed white precipitate in the mixture, the solution was 

washed again using aquabidest until it was free of impurities. 

After the solution was impurities free, the solution was 

centrifuged again at 5000 rotations per minute (rpm) for 5 

minutes to split the precipitate and solution. The precipitate 

formed was dried at 70oC for 24 hours.  

 

2.3.2 Synthesis reduced graphene oxide 

 

Synthesis rGO was adapted from Xu’s method [45] .GO 
suspension (300 mL, 0.1 mg·mL-1) and ascorbic acid (AA)  

(300 mg) were mixed, and then ammonia solution (25% w/w) 

was added to adjust the pH of the suspension to 9–10. After 30 
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min of sonicated, the GO suspension was heated to 95°C under 

stirring for 2 h, resulting in rGO. The produced rGO, designated 

as rGO-AA, was then washed process with distilled water until 

it became neutral. The process was repeated with a different 

reductant such as trisodium citrate denoted as rGO-NS and 

gallic acid denoted as rGO-AG. 

3. Results and Discussion 

XRD characterization (Figure1) was used to investigate 

the modification of interlayer induced in graphite-related 

materials. Although GO and rGO were the same material based 

on carbon atoms, both showed a different diffractogram pattern 

due to differences in arrangement and the existing additional 

atoms. The GO diffraction pattern exhibited an intense peak 

around 9.78ᵒ [48], which disappeared after GO reduction. The 

wider peak was observed for rGO-AA at 2𝛳= 24.37, rGO-AG 

at 2𝛳= 25.91, and rGO-NS at 2𝛳= 23.04 because of removing 

the oxygen-containing functional groups during the chemical 

reduction of GO [49]. This indicated that the 𝜋-conjugated 

graphene structure was significantly reestablished in the 

synthesized rGOs (the epoxide rings opening). Apart from this, 

a peak (100) was observed at regions 2𝛳= 42.7 for GO and 

2𝛳=42.8 (rGO-AA), 2𝛳= 43.2 (rGO-AG), and 2𝛳= 43.1 for 

rGO-NS [50]. 

 

 
Fig. 1.  Diffractogram of a) GO, b) rGO-AA, c) rGO-AG, and d) rGO-NS 

Table 1. Calculation of D (average diameter), d (the average distance between 

graphene layers), and N (number of layers) of sample GO, rGO-AA, rGO-

AG, and rGO-NS.  

 

Material 
2𝝧 

(deg) 
FWHM (deg) 

D 

(nm) 
d (nm) N 

GO 9.83 1.74 4.58 0.90 5 

rGO-AA 22.79 6.75 1.20 0.38 3 

rGO-AG 25.87 2.67 3.05 0.34 8 

rGO-NS 23.05 5.12 1.58 0.38 4 

 

The interlayer distances (dGO > drGOs ) and the number 

of layers (NGO <  NrGOAG) (Table 1.) matched with the 

results in the literatur [51]; meanwhile, number of layers 

(NrGO-AA and NrGO-NS < NGO) matched with the literature 
[52]. In addition, the d-spacing of GO to all of rGO was found 

to decrease from 0.91 nm to 0.36 (rGO-AA), 0.34 (rGO-AG), 

and 0.38 (rGO-NS). This proved the efficient removal of 

oxygen-containing functional groups that would be matched 

with FTIR data. It also exposed that the thin rGO nanolayer was 

stacked together to form a thick bulk structure due to the 

presence of strong van der Waals forces between each layer 

[17,53–55]. After reduction, the XRD pattern of rGO was that 

of an amorphous material [56]. 

 

Fig. 2.  Raman image of a) GO, b) rGO-AA, c) rGO-AG, and d) rGO-NS 

Raman was used to determining the irregularities and 

defects in the crystal structure (Figure 2). The irregularity level 

was determined by the ID/IG value. The higher disorder with 

raising D band intensity than the G band was shown by the 

broadening of D and G bands [57]. The G band appeared at 

~1540 cm-1 due to the in-plane vibrations of carbon atoms with 
sp2 hybridization [58] whereas the D band appeared at ~1340 

cm-1, resulting from out-of-plane vibrations, which might be 

due to wrinkled structure and defects. Broad and short peaks 

~2700 cm-1 attributed to the splitting of a 2D peak, which 

implied the increase in the number of vibrational modes due to 

the few-layer formation of rGO [59].  

Table 2. Micro-Raman analysis of GO, rGO-AA, rGO-AG, and rGO-NS 

Material D (cm-1) G (cm-1) ID/IG 

GO 1349.19 1576.96 0.78 

rGO-AA 1349.19 1594.29 1.93 

rGO-AG 1349.19 1590.57 1.91 

rGO-NS 1347.33 1596.76 1.91 

The ratio of the peak intensity of the D and G bands 

represented the defects in GO and rGOs (Table 2). The higher 

the value, the higher the defect [60]. The ID/IGs of GO, rGO-

AA, rGO-AG, and rGO-NS were 0.78; 1.93; 1.91; 1.91, 

respectively indicating that defects of rGOs were higher than 

GO in view of the reduction process.  
 

 
Fig. 3. FTIR spectra of a) GO, b) rGO-AA, c) rGO-AG, and d) rGO-NS 
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The functional group of GO and rGO and atom bonding 

structure based on their interaction with matter was 

characterized by FTIR. The vibration from the molecules were 

produced [61]. Figure3 presents FTIR of GO, rGO-AA, rGO-

AG, and rGO-NS. The peaks at ~3400 cm-1 of GO, rGO-AA, 
rGO-AG, and rGO-NS indicated vibrations of -OH stretching. 

The spectrum of GO and rGOs of hydroxyl, carboxyl, and 

epoxy groups was present as pointed out by the characteristic 

peaks of the C=O stretching vibration at ~1700 cm-1 [51], 

unoxidized graphitic domain (C=C stretching) at ~1500 cm-1 

[62].  The epoxy groups at 1140-1180 cm-1  (C-O stretching) 

[63]. After reduction (rGO-AA, rGO-AG, and rGO-NS), the 

peak at 1725 cm-1, assigned to the C=O groups, and the peak of 

rGO-AA (~3391 cm-1) indicated O-H vibration decreased. 

However, the result of FTIR data was almost same, the 

difference was the intensity of signal confirming to alkoxy, 

alcohols , and oxygen group entering this structure owing to the 
epoxide formation  [4]. The absorption peak of GO, rGO-AA, 

rGO-AG, and rGO-NS can be seen in Table 3. 

Table 3. The absorption peak of GO, rGO-AA, rGO-AG, and rGO-NS 

Sample Functional group (cm-1) 

 O-H C=O C=C C-O 

GO 3403.54 1703.02 1564.01 1149.32 

rGO-AA 3391.97 1710.93 1517.07 1176.93 

rGO-AG 3393.9 1707.03 1521.90 1158.30 

rGO-NS 3424.76 1714.79 1494.89 1146.73 

 
Fig. 4. UV-Vis spectra of a) GO, b) rGO-AA, c) rGO-AG, and d) rGO-NS 

 

The transition of graphene can be measured by UV-Vis 

(Figure 4). The  transtition of π-π* transition for C=C of 

graphene layers was centered at around 𝝀max = ~220 nm [62] 

and the  n-π* transition at around 300 nm because of the C-O > 

C=O groups present on the graphene sheets [15]. The UV-Vis 

spectrum showed a higher value of 𝝀max for π -π* electronic 

transition as compared to n-π* because the π- π* transitions 
required less amount of energy due to the conjugation of C=C 

bonds of the graphene layers. After reduction (Figure 4b-c), the 

absorption peaks were found between ~260 nm. The UV-Vis 

absorption has red shift related to the increase of electron 

concentration and the restoration of hybridization of the sp2 

[51]. 

SAA was used for calculating the surface area and pore 

size distribution. Significant progress has been achieved lately 

in understanding the underlying mechanisms of adsorption in 

mesoporous solids, which have led to major progress in the 

textural characterization of porous materials by gas adsorption. 

The Brunauer-Emmett-Teller (BET) method is to investigate 

the structure, characterize the porosity of graphene, and the 

nitrogen adsorption-desorption isotherms [64]. Barrett-Joyner-

Halenda (BJH) method is to detect the pore size distribution 

data are illustrated as insets in Figure 5. The GO confirms type 
IV isotherm according to the IUPAC classification [64], 

indicating that GO is a layered mesoporous structure. Also, this 

isotherm indicates plate-like structures with slit-shaped pores 

displayed by H3 hysteresis. RGO-AA, rGO-AG, and rGO-NS 

confirm Type II isotherm. This isotherm describes the 

adsorption in mesoporous materials without hysteresis [22]. 

 

Fig. 5. Nitrogen adsorption-desorption isotherms of a) GO, b) rGO-AA, c) 

rGO-AG, and d) rGO-NS 

 

Fig. 6 Pore size distributions of a) GO, b) rGO-AA, c) rGO-AG, and d) rGO-

NS 

Moreover, porosity characteristics were investigated by 
the BJH method, and the pore size distribution curve is shown 

in (inset Figure 6). The pore diameter of GO, rGO-AA, rGO-

AG, and rGO-NS were also found at 3.86 nm, 2.27 nm, 3.52 

nm, and 3.10, respectively further confirming the microporous 

behavior. Moreover, rGO-AA was found to have a large BET 

surface area (255.93 m2/g) with a total pore volume (0.61 cc/g) 

(Table 4) and a highly developed hierarchical porosity network 

of narrow micropores consistent with the pore size distribution 

mesoporous (pore size 2-50 nm) behaviors respectively. The 

mean pore of GO and rGOs diameter calculated by the BET 

method was found approximately at ~7-8 nm (Table 4). It 

confirmed the presence of some mesoporous characteristics 
formed when oxygen-containing groups are reduced with 

various reducing agents. During this time, irreversible 

agglomeration occurs due to 𝜋-𝜋* stacking interaction and Van 

der Waals forces between graphene sheets. Thus, the surface 

area and pore volume will be reduced by the aggregation of 
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graphene sheets and the material obtained most probably 

becomes mesopores (pore size 2-50 nm) [65]. 

Table 4. BET analysis results of GO, rGO-AA, rGO-AG, and rGO-NS 

Material GO rGO-AA rGO-AG rGO-NS 

Surface area (m2/g) 91.54 255.93 19.18 3.78 

Pore diameter (nm) 7.17 7.10 7.97 8.52 

Total pore volume (cc/g) 0.41 0.61 0.08 0.03 

SEM-EDX device was used to detect the element 

composition and the material topography. The SEM image 
analyses of GO, rGO-AA, rGO-AG, and rGO-NS are given in 

Figure 7. All of the materials had the almost same morphology. 

Both GO and rGO had irregular sheet-like structures, and were 

randomly aggregated together, tightly connected, and 

overlapping [16]. 

Table 5. Carbon-oxygen ratio (C/O) for GO, rGO-AA, and rGO-NS 

Material %C %O C:O ratio 

GO 55.65 45.35 1.25 

rGO-AA 83,36 16.74 4.98 

rGO-AG 76.40 23.60 3.23 

rGO-NS 77.96 22.04 3.53 

In the EDX analysis (Table 5) of the materials, the carbon-

oxygen ratio (C:O) of GO which was 1.25. After reduction 

from GO to rGO, the C:O ratio of rGO increased to 4.98 (rGO-

AA), 3.23 (rGO-AG), and 3.53 (rGO-NS). These rGOs showed 

that the functional groups in their structures were found less 

than GO. RGOs come to a structure between GO and graphene. 

These values was matched previous research [66] and the data 

were matched with FTIR data. 

Table 6 presents the quantified atomic concentration of all 
phases and functional groups using by XPS [66] analysis. The 

atomic ratio of carbon to oxygen (C/O) of GO prepared by Tour 

method quantified by Al-Gaashani et al.’s [66] XPS was 

calculated to be 1.63. This ratio is in close confirming with our 

values calculated using EDX analysis as shown in Table 5 and 

Table 6. From the XPS analysis, the concentration of atomic (at 

%) of the oxygen-containing moieties, such as carboxyl, and 

carbonyl. After reducing to rGO, the C/O ratio significantly 

increased from 1.63 to 2.77, indicating that part of GO was 

successfully reduced to rGO [66]. The XPS data as confirmed 

by EDX data that C/O ratio from GO to rGO increased from 
1.25 to 3.23- 4.98 also confirmed with XRD and FTIR data. 

Table 6. Comparing XPS data by literature [66] with C/O by EDX data 

 

  
(a) (b) 

  
(c) (d) 

Fig. 8. TEM images of a) GO, b) rGO-AA, c) rGO-AG, and rGO-NS 

  

(a) (b) 

  
(c) (d) 

Fig. 7. SEM images of a) GO, b) rGO-AA, c) rGO-AG, and d) rGO-NS 

Material Peaks 

Atomic 

conc. 

(%) 

Phase 

group 

C/Ob

y XPS 
Ref. 

C/O 

by 

edx 

GO (1) C1s 20.24 C-C 

1.63 

[66] 

1.25 

 (2) C1s 35.95 C-O 

 (3) C1s 4.80 C=O 

 (4) C1s 0.97 O-

C=O 

 (5) C1s - 𝜋-𝜋* 

satellit

e 

 (1) O1s 1.61 O-

C=O 

 (2) O1s 6.06 C=O 

 (3) O1s 22.55 C-OH 

 (4) O1s 7.82 C-OC 

      

rGO (1) C1s 41.76 C-C 

2.77 
3.23-

4.98 

 (2) C1s 23.03 C-O 

 (3) C1s 5.98 C=O 

 (4) C1s 2.68 O-

C=O 

 (5) C1s - 𝜋-𝜋* 

satellit

e 

 (1) O1s 2.13 O-

C=O 

 (2) O1s 8.24 C=O 

 (3) O1s 12.53 C-OH 

 (4) O1s 3.65 C-OC 
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The surface studies on the morphology properties of 

synthesized graphene oxide and graphene were examined by 

TEM micrograph as shown in Figure 8. The morphology of GO 

and rGOs emerged as semi-transparent, which described that 

the material was not stable under high energy beam. 
Morphology GO and rGO revealed thick flat flake layers, rough 

surface, not crumpled, and irregular shape [67]. Moreover, 

unorganized particle size and irregular shape were caused by 

the cracking of structure that occurred during the reduction 

process [68]. 

Table 7. Conductivity calculation for GO, rGO-AA, and rGO-NS 

Material GO rGO-AA rGO-AG rGO-NS 

Conductivity 

(S/m) 
1.9x10-2 755.70 11.21 8.48 

Table 7 shows the electrical properties of GO, rGO-AA, 

rGO-AG, and rGO-NS Good electrical conductivity is 

produced when only exists a small amount of oxygen functional 

groups [69]. As seen in Table 7 rGOs showed good electrical 
conductivity compared to graphene oxide (GO). RGO 

experienced higher conductivity than graphene oxide due to no 

interference in restoring the carbon sp2 network [70]. rGO-AA 

was found to have the best conductivity value [21], then 

followed by rGO-AG and rGO-NS probably because ascorbic 

acid (rGO-AA), gallic acid (rGO-AG), and trisodium citrate 

(rGO-NS) had pKa value of 4.17; 4.50; and 6.40, respectively. 

The lower the pKa value, the higher the conductivity matched 

with the literature [71]. The factors that influence the 

conductivity of an acid are its strength, i.e. how much the acid 

dissociates in solution (how many hydrogen ions are produced) 

and how well the charged ions themselves conduct an electric 
current. Conductivity is related to ion mobility, which is higher 

if the ion is smaller. Furthermore, ascorbic acid has four 

hydroxyl groups, gallic acid has three hydroxyl groups, and 

trisodium citrate has only one hydroxyl group. 

 

Fig. 9 Correlation between surface area and electrical conductivity 

The removal of functional groups during the rapid GO 

reduction process increased electrical conductivity by 

improving orientation by repairing defects. These improved 

electrical conductivity values in rGOs were achieved due to the 

increase in surface area, as can be seen in Figure 9. [72]. The 

efficiency of the reduction process varies the surface area of a 
graphene derivative and its associated conductivity due to 

different populations of oxygen functional group [73–75]. 

Based on this fact, rGO with lower electrical conductivity has 

a higher proportion of oxygen-containing fractions [76]. It can 

be concluded that the functional groups in the rGO samples 

contributed to different surfaces with defect-induced carbon 

atoms. This would be the basis for obtaining structurally 

adapted properties [72]. Ascorbic acid (rGO-AA) is a stronger 

reducing agent than gallic acid (rGO-AG) and trisodium citrate 

(rGO-NS). 

 

Fig. 10. TGA profile of a) GO, b) rGO-AA, c) rGO-AG, and d) rGO-NS 

TGA has been used to characterize the elimination of bulk 

oxygen group content. Figure 10 shows the TGA curves of the 

GO and rGO material under a nitrogen atmosphere with a 

heating rate of 10°C/min. The TGA curve of the GO showed a 

lower apparent mass loss at 100°C, which is thought to be due 

to evaporation of absorbed water due to the higher 

hydrophobicity of the GO sample [77]. The other mass loss at 

101-225℃ indicated the removal of less stable oxygenated 

functional groups such as epoxies and carbon dioxide. In the 

temperature range, 226-550℃ is the pyrolysis of more stable 

oxygenated functions, such as carbonyl and carboxyl groups. 

Meanwhile, above 550℃ is the decomposition of the 
components of material carbon [26]. 

Table 8. Calculation of %loss mass of GO, rGO-AA, rGO-AG, and rGO-NS 

Material 

% loss 

(≤100 
oC) 

%loss 

(101-225o 

) 

%loss 

(226-

550o) 

%loss 

(551-

900o) 

residue 

GO 15.48 25.2746 14.98 25.56 18.69 

rGO-AA 9.86 7.0486 24.74 33.12 25.22 

rGO-AG 0.55 1.0326 13.79 29.58 55.05 

rGO-NS 4.96 11.5135 18.26 25.14 40.12 

The GO showed a large mass loss (~19%) in the range of 

100–900°C; while rGO-AA (~25%), rGO-AG (~55%) and 

rGO-NS (~40%) have been attributed to the loss of oxygen 

functional groups [77] (see Table 8). This showed that more 

oxygen-containing functional groups of rGO-AG were 

removed by heat treatment, resulting in higher thermal stability 
than that followed by rGO-NS and rGO-AA. The improvement 

in thermal stability became more dramatic with varying 

reducing agent. Additionally, it can be seen that rGO-AA had a 

much larger mass loss than rGO-AG and rGO-NS, which were 

inconsistent with FTIR, conductivity, EDX and SAA results, 

possibly due to unstable inert gas flow in the device. 

Nevertheless, all rGO samples exhibited greater loss of oxygen 

functional groups than GO [78]. 

4. Conclusion 

Graphene oxide was successfully prepared in our 

experiment by means of Tour method. The reduction of GO by 

various reductants such as ascorbic acid, gallic acid, and 
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trisodium citrate produced rGO-AA,  rGO-AG, and rGO-NS, 

respectively. The atomic C/O ratio of GO increased from 1.25 

to 4.98 (rGO-AA), 3.23 (rGO-AG), and 3.53 (rGO-NS) very 

close to the theoretically calculated value. Most of the hydroxyl 

(-OH) groups can be removed from the surface of GO using 

ascorbic acid (rGO-AA) and form a C=C structure, leading to 

the electrical conductivity of GO increasing from 1.9x10-2 to 

755.70 S/m. However, the –OH groups bonded to the surface 

of GO could not be optimally reduced by gallic acid (rGO-AG) 

and trisodium citrate (rGO-NS), matching with electrical 

conductivity just increase 11.21 and 8.48 S/m, respectively. 

Additionally, some C–H still existed in RGOs. This result was 

also validated by SAA. The surface area of GO was 91.53 m2/g 

increased by 255.93 m2/g (rGO-AA) but the result of rGO-AG 

and rGO-NS were 19.18 and 3.78 m2/g, respectively. From the 

XRD data, GO had five layers that could be reduced by ascorbic 

acid (rGO-AA) to three layers and trisodium citrate (rGO-NS) 

to four layers but using gallic acid (rGO-AG) it had outlier data 

(eight layers). The ID/IGs of GO, rGO-AA, rGO-AG, and rGO-

NS were 0.78; 1.93; 1.91; 1.91, respectively indicating that 

defects of rGOs were higher than GO because of the reduction 

process. The absorption peak of GO centered at around 𝝀max 

= ~220 nm and shoulder was observed at around 300 nm, and 

the absorption peaks were found between ~260 nm after 

reduction (rGOs). The GO exhibited a major mass loss (~19%) 

in the range of 100–900°C; meanwhile, rGO-AA (~25%), rGO-

AG (~55%), and rGO-NS (~40%) have been attributed to the 

loss of oxygen functional groups.  Moreover, it can be seen that 

rGO-AA had much more mass loss than that of rGO-AG and 

rGO-NS which were contradictive with FTIR, conductivity, 

EDX, and SAA results. All of the materials had almost the same 

morphology from SEM and TEM analysis. Therefore, it can be 

concluded that the reduction of GO with ascorbic acid is the 

most effective in producing rGO. RGO-AA had the biggest 

surface area and the highest conductivity that can be used for 

catalyst support material in PEMFC. 
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