Biochar supported photocatalyst (mangrove biochar-TiO2) for organic pollutants removal via synergetic adsorption-photocatalytic process

Main Article Content

Nadya Ummi Azizah
Dessy Ariyanti
Dina Lesdantina
Erwan Adi Saputra
Vimal Chandra Srivastava

Abstract

Access to clean water remains a global challenge, which is made worse by the contamination of chemical dyes. The recent innovations of wastewater treatment have been introduced, such as combined biochar with TiO2 photocatalyst. This study proposed to degrade mainly organic pollutants from dyed wastewater using adsorption-photocatalytic of biochar-supported photocatalyst TiO2 (BSP). Mangroves were converted into biochar via hydrothermal carbonization process and combined with TiO2 by a sol-gel method. The composite was then characterized by SEM-EDX, FTIR, and XRD. The degradation performance of the BSPs was optimized with the addition of Titanium (IV) Isopropoxide (TTIP) solution in biochar for 15-25 mL, solution photocatalyst dosage 0.5–1 g/L, initial dyed water concentration at 10 ppm, pH 5.2, and UV-irradiation time from 30 to 240 min in a photocatalytic reactor. The phenomenon of organic pollutants removal was observed based upon the mechanism and dominance of the process and the degradation reaction rate of organic pollutants in dyed wastewater. Methylene blue used as a model dye was degraded 100% through the adsorption-photocatalysis process using BSP. The highest effective degradation performance was found in BSP 20 that had a functional group area of 4.39923 m²/g, a catalyst loading of 0.5 g/L, and the highest degradation rate at k = 0.021 min?¹. In subsequent development, the synergistic interaction between biochar and TiO2 presents a promising avenue for the development of advanced wastewater treatment systems targeting the removal of organic pollutants, particularly in textile industry.

Downloads

Download data is not yet available.

Article Details

How to Cite
Azizah, N. U., Ariyanti, D., Lesdantina, D., Saputra, E. A., & Srivastava, V. C. (2025). Biochar supported photocatalyst (mangrove biochar-TiO2) for organic pollutants removal via synergetic adsorption-photocatalytic process. Communications in Science and Technology, 10(1), 209-217. https://doi.org/10.21924/cst.10.1.2025.1619
Section
Articles

References

World Wildlife Foundation, Water Scarcity, (2023). https://www.worldwildlife.org/threats/water-scarcity.

B. Pratap, S. Kumar, S. Nand, I. Azad, R.N. Bharagava, L.F. Romanholo Ferreira, V. Dutta, Wastewater generation and treatment by various eco-friendly technologies: Possible health hazards and further reuse for environmental safety, Chemosphere 313 (2023) 137547.

R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, J. Sun, A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicol. Environ. Saf. 231 (2022) 113160.

A.P. Periyasamy, Textile Dyes in Wastewater and its Impact on Human and Environment: Focus on Bioremediation, Water, Air, Soil Pollut. 236 (2025) 562.

E. Weidner, E. Karbassiyazdi, A. Altaee, T. Jesionowski, F. Ciesielczyk, Hybrid Metal Oxide / Biochar Materials for Wastewater Treatment Technology?: A Review, (2022).

S. Kathi, A. El Din Mahmoud, Trends in effective removal of emerging contaminants from wastewater: A comprehensive review, Desalin. Water Treat. 317 (2024) 100258.

F. Amalina, A. Syukor, A. Razak, S. Krishnan, H. Sulaiman, A.W. Zularisam, M. Nasrullah, Journal of Hazardous Materials Advances Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review, J. Hazard. Mater. Adv. 7 (2022) 100134.

I. Ben Salem, M. El Gamal, M. Sharma, S. Hameedi, F.M. Howari, Utilization of the UAE date palm leaf biochar in carbon dioxide capture and sequestration processes, J. Environ. Manage. 299 (2021) 113644.

X. Wang, Y. Li, H. Wang, Y. Wang, A. Biswas, H. Wai Chau, J. Liang, F. Zhang, Y. Bai, S. Wu, J. Chen, H. Liu, G. Yang, A. Pulatov, Targeted biochar application alters physical, chemical, hydrological and thermal properties of salt-affected soils under cotton-sugarbeet intercropping, Catena 216 (2022).

R.K. Mishra, K. Mohanty, A review of the next-generation biochar production from waste biomass for material applications, Sci. Total Environ. 904 (2023) 167171.

E. Cárdenas-Aguiar, G. Gascó, M. Lado, A. Méndez, J. Paz-Ferreiro, A. Paz-González, Characterization of Biochar from Beach-Cast Seaweed and Its Use for Amelioration of Acid Soils, Land 13 (2024).

K. Liu, A. Zhang, X. Liu, T. Liang, X. Li, K. Hu, F. Ji, H. Li, X. Chen, X. Fu, N,S-codoped carbon microporous structures derived from dead ginkgo leaves as efficient oxygen reduction reaction catalysts for Al-air batteries, New J. Chem. 48 (2024) 12423–12433.

M. Naderi, M. Vesali-Naseh, Hydrochar-derived fuels from waste walnut shell through hydrothermal carbonization: characterization and effect of processing parameters, Biomass Convers. Biorefinery 11 (2021) 1443–1451.

M. Omenesa, M. Nasir, M. Ibrahim, N. Asshifa, A. Ali, M.H. Hussin, Synthesis and fabrication of palm kernel shell-derived modified electrodes?: A practical step towards the industrialization of microbial fuel cells, Chem. Eng. J. 475 (2023) 146321.

W.R. Khan, M.O. Aljahdali, Elemental Composition of Above and Belowground Mangrove Tissue and Sediment in Managed and Unmanaged Compartments of the Matang Mangrove Forest Reserve, Plants 11 (2022).

R. Ray, T.K. Jana, Carbon sequestration by mangrove forest: One approach for managing carbon dioxide emission from coal-based power plant, Atmos. Environ. 171 (2017) 149–154.

H. Thi, C. Marchand, J. Aimé, D. Hoai, P. Nguyen, N. Xuan, N. Thi, K. Cuc, Belowground carbon sequestration in a mature planted mangroves ( Northern Viet Nam ), For. Ecol. Manage. 407 (2018) 191–199.

I. Sulthonuddin, H. Herdiansyah, Sustainability of Batik wastewater quality management strategies: analytical hierarchy process, Appl. Water Sci. 11 (2021) 1–12.

W. Wang, D. Li, S. Zuo, Z. Guan, H. Xu, S. Ding, D. Xia, Colloids and Surfaces A?: Physicochemical and Engineering Aspects Discarded-leaves derived biochar for highly efficient solar water evaporation and clean water production?: The crucial roles of graphitized carbon, Colloids Surfaces A Physicochem. Eng. Asp. 639 (2022) 128337.

D. Guo, D. Feng, Y. Zhang, Z. Zhang, J. Wu, Y. Zhao, Synergistic mechanism of biochar-nano TiO 2 adsorption-photocatalytic oxidation of toluene, Fuel Process. Technol. 229 (2022) 107200.

M.A. Martins, M. Otero, C. Patrícia, D. Pereira, V.I. Esteves, D.L.D. Lima, Biochar-TiO 2 magnetic nanocomposites for photocatalytic solar-driven removal of antibiotics from aquaculture effluents, 294 (2021).

M. Ulfa, I.U. Hasanah, H. Bahruji, Understanding the regenerating capacity on photodegradation of methylene blue of titania supported mesoporous silica with the aid of gelatin-P123 as bitemplate, Commun. Sci. Technol. 9 (2024) 282–290.

Z. Liu, A. Quek, S. Kent Hoekman, R. Balasubramanian, Production of solid biochar fuel from waste biomass by hydrothermal carbonization, Fuel 103 (2013) 943–949.

E. Miliotti, D. Casini, L. Rosi, G. Lotti, A.M. Rizzo, D. Chiaramonti, Lab-scale pyrolysis and hydrothermal carbonization of biomass digestate: Characterization of solid products and compliance with biochar standards, Biomass and Bioenergy 139 (2020) 105593.

Z. Zhang, Z. Zhu, B. Shen, L. Liu, Insights into biochar and hydrochar production and applications: A review, Energy 171 (2019) 581–598.

Y. Yue, X. Yue, X. Tang, L. Han, J. Wang, S. Wang, C. Du, Synergistic adsorption and photocatalysis study of TiO2 and activated carbon composite, Heliyon 10 (2024) e30817.

J. Shi, W. Huang, H. Zhu, J. Xiong, H. Bei, S. Wang, Facile Fabrication of Durable Biochar / H 2 ? TiO 2 for Highly E ffi cient Solar-Driven Degradation of Enro fl oxacin?: Properties , Degradation Pathways , and Mechanism, (2022).

X. Zhang, L. Zhang, A. Li, Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal, J. Environ. Manage. 206 (2018) 989–998.

M.M. Mian, G. Liu, Recent progress in biochar-supported photocatalysts: Synthesis, role of biochar, and applications, RSC Adv. 8 (2018) 14237–14248.

S. Chandra, P. Jagdale, I. Medha, A.K. Tiwari, M. Bartoli, A. De Nino, F. Olivito, Biochar-supported tio2-based nanocomposites for the photocatalytic degradation of sulfamethoxazole in water—a review, Toxics 9 (2021).

S. Zhang, X. Lu, Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent, Chemosphere 206 (2018) 777–783.

T. Fazal, A. Razzaq, F. Javed, A. Hafeez, N. Rashid, U.S. Amjad, M.S. Ur Rehman, A. Faisal, F. Rehman, Integrating adsorption and photocatalysis: A cost effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite, J. Hazard. Mater. 390 (2020) 121623.

S. Silvestri, N. Stefanello, A.A. Sulkovski, E.L. Foletto, Preparation of TiO2 supported on MDF biochar for simultaneous removal of methylene blue by adsorption and photocatalysis, J. Chem. Technol. Biotechnol. 95 (2020) 2723–2729.

D. Van Thuan, T.T.H. Chu, H.D.T. Thanh, M.V. Le, H.L. Ngo, C.L. Le, H.P. Thi, Adsorption and photodegradation of micropollutant in wastewater by photocatalyst TiO2/rice husk biochar, Environ. Res. 236 (2023) 116789.

W. Liu, B. Wang, M. Zhang, Effect of Process Parameters on the Microstructure and Performance of TiO2-Loaded Activated Carbon, ACS Omega 6 (2021) 35076–35092.

Y. Liu, X. Dai, J. Li, S. Cheng, J. Zhang, Y. Ma, Recent progress in TiO2-biochar-based photocatalysts for water contaminants treatment: strategies to improve photocatalytic performance, RSC Adv. 14 (2024) 478–491.

D.I. Lestari, A.T. Yuliansyah, A. Budiman, Adsorption studies of KOH-modified hydrochar derived from sugarcane bagasse for dye removal: Kinetic, isotherm, and thermodynamic study, Commun. Sci. Technol. 7 (2022) 15–22.

J. Wang, Y. Chen, RSC Advances, (2023) 24237–24249.

H. Hosseini-Monfared, Y. Mohammadi, R. Montazeri, S. Gasemzadeh, R.S. Varma, Effect of biochar on the photocatalytic activity of nitrogen-doped titanium dioxide nanocomposite in the removal of aqueous organic pollutants under visible light illumination, Nanochemistry Res. 6 (2021) 79–93.

S. Pasieczna-Patkowska, M. Cichy, J. Flieger, Application of Fourier Transform Infrared (FTIR) Spectroscopy in Characterization of Green Synthesized Nanoparticles, Molecules 30 (2025) 1–36.

A.M. Abodif, L. Meng, S. Ma, A.S.A. Ahmed, N. Belvett, Z.Z. Wei, Mechanisms and Models of Adsorption?: TiO 2 ? Supported Biochar for Removal of 3 , 4-Dimethylaniline, (2020).

M. Karamifar, S. Sabbaghi, M.S. Mohtaram, K. Rasouli, M. Mohsenzadeh, H. Kamyab, A. Derakhshandeh, L. Dolatshah, H. Moradi, S. Chelliapan, Ultrasonic-assisted synthesis of TiO2/MWCNT/Pani nanocomposite: Photocatalyst characterization and optimization of efficient variables in the degradation of benzene via RSM-CCD, Powder Technol. 432 (2024) 119176.

D. Castilla-Caballero, A. Hernandez-Ramirez, S. Vazquez-Rodriguez, J. Colina-Márquez, F. Machuca-Martínez, J. Barraza-Burgos, A. Roa-Espinosa, A. Medina-Guerrero, S. Gunasekaran, Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications, J. Environ. Chem. Eng. 11 (2023).

F. Scarpelli, T.F. Mastropietro, T. Poerio, N. Godbert, Mesoporous TiO2 Thin Films: State of the Art, Titan. Dioxide - Mater. a Sustain. Environ. (2018).

J. Zheng, J. Cai, S. Li, R. Li, M. Huang, Regulation of a rutile/anatase TiO2 heterophase junction in situ grown on Ti3C2Tx MXenes with remarkable photocatalytic properties, New J. Chem. 48 (2024) 15830–15838.

M. Abdu, A. Worku, S. Babaee, P. Diale, T.A. Msagati, J.F. Nure, The development of TiO2-biochar composite material for photodegradation of basic blue 41 and erichrome black T azo dyes from water, Surfaces and Interfaces 62 (2025) 106156.

K. Yadav, S. Jagadevan, Influence of torrefaction and pyrolysis on engineered biochar and its applicability in defluoridation: Insight into adsorption mechanism, batch adsorber design and artificial neural network modelling, J. Anal. Appl. Pyrolysis 154 (2021) 105015.

X. Dong, Y. Chu, Z. Tong, M. Sun, D. Meng, X. Yi, Ecotoxicology and Environmental Safety Mechanisms of adsorption and functionalization of biochar for pesticides?: A review, Ecotoxicol. Environ. Saf. 272 (2024) 116019.

A. Fakhar, S.J.C. Galgo, R.C. Canatoy, M. Rafique, R. Sarfraz, A.A. Farooque, M.I. Khan, Advancing modified biochar for sustainable agriculture: a comprehensive review on characterization, analysis, and soil performance, Biochar 7 (2025).

A.M. Abodif, A.M. Abodif, L. Meng, S. Ma, A.S.A. Ahmed, N. Belvett, Z.Z. Wei, D. Ning, Mechanisms and Models of Adsorption: TiO2-Supported Biochar for Removal of 3,4-Dimethylaniline, ACS Omega 5 (2020) 13630–13640.

X. Shu, X. Liu, Efficacy and mechanism of nano-biochar supported TiO2 in removing dichloroacetic acid from swimming pools, Rev. Mater. 29 (2024).

F. Riyanti, H. Hasanudin, A. Rachmat, W. Purwaningrum, P.L. Hariani, Photocatalytic degradation of methylene blue and Congo red dyes from aqueous solutions by bentonite-Fe3O4 magnetic, Commun. Sci. Technol. 8 (2023) 1–9.

M. Gar, A. Taw, S. Ookawara, Journal of Environmental Chemical Engineering Enhancement of photocatalytic activity of TiO 2 by immobilization on activated carbon for degradation of pharmaceuticals, 4 (2016) 1929–1937.

D. Ariyanti, M. Maillot, W. Gao, Journal of Environmental Chemical Engineering Photo-assisted degradation of dyes in a binary system using TiO 2 under simulated solar radiation, J. Environ. Chem. Eng. 6 (2018) 539–548.

S. Alomairy, L. Gnanasekaran, S. Rajendran, W.F. Alsanie, Biochar supported nano core-shell (TiO2/CoFe2O4) for wastewater treatment, Environ. Res. 238 (2023) 117169.

Y. Du, X. Ye, Z. Hui, D. Jiao, Y. Xie, S. Chen, J. Ding, Synergistic effect of adsorption-photocatalytic reduction of Cr(vi) in wastewater with biochar/TiO2 composite under simulated sunlight illumination, Phys. Chem. Chem. Phys. 26 (2024) 15891–15901.