Optimizing ground control points for UAV photogrammetry: a case study in slope stability mapping

Main Article Content

Muhammad Hafizhir Ridha
Yulian Firmana Arifin
Ari Surya Abdi

Abstract

This study investigated the effect of Ground Control Point (GCP) distribution on the accuracy of UAV-based slope mapping and stability analysis. Three GCP configurations—top-only, vertical, and diagonal—were tested. Accuracy was evaluated using UAV photogrammetry and compared to GPS geodetic data. The vertical GCP setup produced the highest accuracy, reducing total RMSE by 89.6% (from 52.93 mm to 5.50 mm). The diagonal configuration, while being slightly less accurate (61.26 mm RMSE), improved spatial coverage. Slope stability analysis using the finite element method (FEM) confirmed the reliability of the vertical setup for slope assessment. These results demonstrated that optimizing GCP layout could significantly improve model precision while reducing fieldwork. This work contributes to efficient and accurate slope monitoring with fewer GCPs, making it suitable for large-scale geotechnical applications. Future research will focus on applying these configurations to vegetated and more complex terrains and integrating automation for broader and scalable implementation.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ridha, M. H., Arifin, Y. F., & Abdi, A. S. (2025). Optimizing ground control points for UAV photogrammetry: a case study in slope stability mapping. Communications in Science and Technology, 10(1), 170-178. https://doi.org/10.21924/cst.10.1.2025.1627
Section
Articles

References

1. E. Cledat, L. V. Jospin, D.A. Cucci and J. Skaloud, Mapping quality prediction for RTK/PPK-equipped micro-drones operating in complex natural environment, ISPRS J. Photogramm. Remote Sens. 167 (2020) 24–38.
2. D. Atunggal, B. Ma’ruf, T. Aris Sunantyo and C.A. Rokhmana, Evaluation on the performance of single and dual frequency low cost GPS module observation using geodetic antenna, Commun. Sci. Technol. 3 (2018) 9–14.
3. F. Nex, C. Armenakis, M. Cramer, D.A. Cucci, M. Gerke, E. Honkavaara et al., UAV in the advent of the twenties: Where we stand and what is next, ISPRS J. Photogramm. Remote Sens. 184 (2022) 215–242.
4. L. Yang, L.; Wang, An optimization-based selection approach of landing sites for swarm unmanned aerial vehicles in unknown environments, Expert Syst. Appl. 204 (2022) 117582.
5. S. Wang, W. Zhang, X. Zhao, Q. Sun and W. Dong, Automatic identification and interpretation of discontinuities of rock slope from a 3D point cloud based on UAV nap-of-the-object photogrammetry, Int. J. Rock Mech. Min. Sci. 178 (2024) 105774.
6. F. Nobahar, M.; Salunke, R.; Alzeghoul, O. E.; Khan, M. S.; Amini, Mapping of Slope Failures on Highway Embankments Using Electrical Resistivity Imaging (ERI), Unmanned Aerial Vehicle (UAV), and Finite Element Method (FEM) Numerical Modeling for Forensic Analysis, Transp. Geotech. 40 (2023) 100949.
7. K. Tempa, K. Peljor, S. Wangdi, R. Ghalley, K. Jamtsho, S. Ghalley et al., UAV technique to localize landslide susceptibility and mitigation proposal: A case of Rinchending Goenpa landslide in Bhutan, Nat. Hazards Res. 1 (2021) 171–186.
8. F. Agüera-Vega, F. Carvajal-Ramírez and P. Martínez-Carricondo, Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle, Meas. J. Int. Meas. Confed. 98 (2017) 221–227.
9. P. Martínez-Carricondo, F. Agüera-Vega, F. Carvajal-Ramírez, F.J. Mesas-Carrascosa, A. García-Ferrer and F.J. Pérez-Porras, Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points, Int. J. Appl. Earth Obs. Geoinf. 72 (2018) 1–10.
10. I. Elkhrachy, Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry, Alexandria Eng. J. 60 (2021) 5579–5590.
11. P. Olaszek, I. Wycza?ek, D. Sala, M. Kokot and A. ?wiercz, Monitoring of the static and dynamic displacements of railway bridges with the use of inertial sensors, Sensors (Switzerland) 20 (2020) .
12. B. Kova?i?, L. MurÅ¡ec, S. Toplak and S. Lubej, Non-contact monitoring for assessing potential bridge damages, E3S Web Conf. 164 (2020) 1–16.
13. A.F. Silva, J.M.G. Sotomayor and V.F.N. Torres, Correlations of geotechnical monitoring data in open pit slope back-analysis - A mine case study, J. South. African Inst. Min. Metall. 121 (2021) 557–564.
14. L.E. Acosta, M.C. de Lacy, M.I. Ramos, J.P. Cano, A.M. Herrera, M. Avilés et al., Displacements study of an earth fill dam based on high precision geodetic monitoring and numerical modeling, Sensors (Switzerland) 18 (2018) .
15. Y. Dwikarsa and A. Basith, Benthic habitats classification using multi scale parameters of GEOBIA on orthophoto images of Karimunjawa waters, Commun. Sci. Technol. 6 (2021) 55–59.
16. X. Ren, M. Sun, C. Jiang, L. Liu and W. Huang, An augmented reality geo-registration method for ground target localization from a low-cost UAV platform, Sensors (Switzerland) 18 (2018) .
17. Y. Erzin and N. Ecemis, The use of neural networks for the prediction of cone penetration resistance of silty sands, Neural Comput. Appl. 28 (2017) 727–736.
18. A. McCallum, A brief introduction to cone penetration testing (CPT) in frozen geomaterials, Ann. Glaciol. 55 (2014) .
19. Q. Sun, Y. Hou, X. Zhang and R. Peng, Study on the Correlation between Cone Resistance and Soil Density Using Centrifuge Robot CPT, Adv. Mater. Res. 831 (2013) 336–340.
20. O. de Freitas Neto, O. Santos, F. Franca and R. Severo, Influence of Compaction Energy and Bentonite Clay Content in the Soil Hydraulic Conductivity, Appl. Mech. Mater. 851 (2016) 858–863.
21. Y. Shin and D. Kim, Assessment of undrained shear strength based on Cone Penetration Test (CPT) for clayey soils, KSCE J. Civ. Eng. 15 (2011) 1161–1166.
22. R. Boulanger and I. Idriss, CPT-Based Liquefaction Triggering Procedure, J. Geotech. Geoenvironmental Eng. 142 (2015) 4015065.
23. D.M. Seo, H.J. Woo, W.H. Hong, H. Seo and W.J. Na, Optimization of Number of GCPs and Placement Strategy for UAV-Based Orthophoto Production, Appl. Sci. 14 (2024) .
24. S. Gindraux, R. Boesch and D. Farinotti, Accuracy assessment of digital surface models from Unmanned Aerial Vehicles’ imagery on glaciers, Remote Sens. 9 (2017) 1–15.
25. F. Carvajal-Ramírez, F. Agüera-Vega and P.J. Martínez-Carricondo, Effects of image orientation and ground control points distribution on unmanned aerial vehicle photogrammetry projects on a road cut slope, J. Appl. Remote Sens. 10 (2016) 034004.
26. P.K. Robertson, R.G. Campanella, D. Gillespie and J. Greig, Use of Piezometer Cone Data., (1986) 1263–1280.
27. F. Niazi, CPT-Based Geotechnical Design Manual, Volume 1: CPT Interpretation—Estimation of Soil Properties. (Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2021/22), I (2021) .
28. H. Zhou, Assessment of empirical soil property correlations for New Zealand soils, (2023) .
29. T. Tamoši?nas, G. Žaržojus and Š. Skuodis, Indirect Determination of Soil Young’S Modulus in Lithuania Using Cone Penetration Test Data, Balt. J. Road Bridg. Eng. 17 (2022) 1–24.