Optimization of ultrasound assisted extraction of sappan (Caesalpinia sappan L) wood for preparation of high quality extract
Main Article Content
Abstract
This study optimized the Ultrasound-Assisted Extraction (UAE) of sappan wood (Caesalpinia sappan L.) using Central Composite Design-Response Surface Methodology (CCD-RSM) and investigated its kinetics. Temperature, solvent-to-solid ratio, and extraction time were selected as independent variables with extract yield as the response. Analysis of Variance (ANOVA) showed that the solvent-to-solid ratio significantly affected yield. Optimal extraction conditions were 69.9°C, 29.9 mL/g, and 20.2 min, producing approximately yield of 0,293 mg GAE/g sample. High Performance Liquid Chromatography (HPLC) confirmed the presence of brazilin, while Fourier Transform InfraRed (FTIR) analysis indicated the retention of functional groups. UAE was shown to enhance extraction efficiency and preserve phenolic compounds. Additionally, the extraction process was modeled, resulting in a validated effective diffusivity (De) of 1.8 × 10?? cm²/s, The kinetic study was useful in industrial application especially to determine appropriate extraction time.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[2] A. V. González de Peredo et al., “Alternative Ultrasound-Assisted Method for the Extraction of the Bioactive Compounds Present in Myrtle (Myrtus communis L.),” Molecules, vol. 24, no. 5, 2019, doi: 10.3390/molecules24050882.
[3] L. Ngamwonglumlert, S. Devahastin, N. Chiewchan, and G. S. V. Raghavan, “Color and molecular structure alterations of brazilein extracted from Caesalpinia sappan L. under different pH and heating conditions,” Sci. Rep., vol. 10, no. 1, pp. 1–10, 2020, doi: 10.1038/s41598-020-69189-3.
[4] N. P. Nirmal, M. S. Rajput, R. G. S. V. Prasad, and M. Ahmad, “Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review,” Asian Pac. J. Trop. Med., vol. 8, no. 6, pp. 421–430, 2015, doi: 10.1016/j.apjtm.2015.05.014.
[5] R. Srinivasan et al., “In vitro antimicrobial activity of Caesalpinia sappan L.,” Asian Pac. J. Trop. Biomed., vol. 2, no. 1 SUPPL., pp. 136–139, 2012, doi: 10.1016/S2221-1691(12)60144-0.
[6] B. Y. Wong, C. P. Tan, and C. W. Ho, “Effect of solid-to-solvent ratio on phenolic content and antioxidant capacities of ‘Dukung Anak’ (Phyllanthus niruri),” Int. Food Res. J., vol. 20, no. 1, pp. 325–330, 2013.
[7] I. M. Yusoff, Z. Mat Taher, Z. Rahmat, and L. S. Chua, “A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins,” Food Res. Int., vol. 157, no. February, p. 111268, 2022, doi: 10.1016/j.foodres.2022.111268.
[8] J. Liao, Z. Guo, and G. Yu, “Process intensification and kinetic studies of ultrasound-assisted extraction of flavonoids from peanut shells,” Ultrason. Sonochem., vol. 76, p. 105661, 2021, doi: 10.1016/j.ultsonch.2021.105661.
[9] T. Ahmed, M. R. Rana, M. R. Maisha, A. S. M. Sayem, M. Rahman, and R. Ara, “Optimization of ultrasound-assisted extraction of phenolic content & antioxidant activity of hog plum (Spondias pinnata L. f. kurz) pulp by response surface methodology,” Heliyon, vol. 8, no. 10, p. e11109, 2022, doi: 10.1016/j.heliyon.2022.e11109.
[10] S. Insang, I. Kijpatanasilp, S. Jafari, and K. Assatarakul, “Ultrasound-assisted extraction of functional compound from mulberry (Morus alba L.) leaf using response surface methodology and effect of microencapsulation by spray drying on quality of optimized extract,” Ultrason. Sonochem., vol. 82, p. 105806, 2022, doi: 10.1016/j.ultsonch.2021.105806.
[11] M. Sharma and K. K. Dash, “Microwave and ultrasound assisted extraction of phytocompounds from black jamun pulp: Kinetic and thermodynamics characteristics,” Innov. Food Sci. Emerg. Technol., vol. 75, no. May 2021, p. 102913, 2022, doi: 10.1016/j.ifset.2021.102913.
[12] I. Lavilla and C. Bendicho, Fundamentals of Ultrasound-Assisted Extraction. Elsevier Inc., 2017. doi: 10.1016/B978-0-12-809380-1.00011-5.
[13] G. S. N. Fernando, K. Wood, E. H. Papaioannou, L. J. Marshall, N. N. Sergeeva, and C. Boesch, “Application of an Ultrasound-Assisted Extraction Method to Recover Betalains and Polyphenols from Red Beetroot Waste,” ACS Sustain. Chem. Eng., vol. 9, no. 26, pp. 8736–8747, 2021, doi: 10.1021/acssuschemeng.1c01203.
[14] Y. Gao et al., “Optimized ultrasound-assisted extraction of total polyphenols from Empetrum nigrum and its bioactivities,” J. Chromatogr. B, vol. 1173, no. January, p. 122699, 2021, doi: 10.1016/j.jchromb.2021.122699.
[15] F. Chemat, N. Rombaut, A. G. Sicaire, A. Meullemiestre, A. S. Fabiano-Tixier, and M. Abert-Vian, “Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review,” Ultrason. Sonochem., vol. 34, pp. 540–560, 2017, doi: 10.1016/j.ultsonch.2016.06.035.
[16] M. J. A. González, C. Carrera, G. F. Barbero, and M. Palma, “A comparison study between ultrasound–assisted and enzyme–assisted extraction of anthocyanins from blackcurrant (Ribes nigrum L.),” Food Chem. X, vol. 13, 2022, doi: 10.1016/j.fochx.2021.100192.
[17] K. V. Mahindrakar and V. K. Rathod, “Ultrasound-assisted intensified aqueous extraction of phenolics from waste Syzygium cumini leaves: Kinetic studies and evaluation of antioxidant, antidiabetic and anticancer potential,” Food Biosci., vol. 46, no. December 2021, p. 101547, 2022, doi: 10.1016/j.fbio.2022.101547.
[18] N. Mili?evi? et al., “Kinetic modelling of ultrasound-assisted extraction of phenolics from cereal brans,” Ultrason. Sonochem., vol. 79, 2021, doi: 10.1016/j.ultsonch.2021.105761.
[19] F. Berkani, M. L. Serralheiro, F. Dahmoune, A. Ressaissi, N. Kadri, and H. Remini, “Ultrasound assisted extraction of phenolic compounds from a jujube by-product with valuable bioactivities,” Processes, vol. 8, no. 11, pp. 1–17, 2020, doi: 10.3390/pr8111441.
[20] X. Zhang et al., “Recovering high value-added anthocyanins from blueberry pomace with ultrasound-assisted extraction,” Food Chem. X, vol. 16, no. October, p. 100476, 2022, doi: 10.1016/j.fochx.2022.100476.
[21] A. Weremfo, F. Adulley, K. Dabie, S. Abassah-Oppong, and E. Peprah-Yamoah, “Optimization of ultrasound-assisted extraction of phenolic antioxidants from turkey berry (Solanum torvum Sw) fruits using response surface methodology,” J. Appl. Res. Med. Aromat. Plants, vol. 30, no. December 2021, p. 100387, 2022, doi: 10.1016/j.jarmap.2022.100387.
[22] F. Brahmi et al., “Optimization of the conditions for ultrasound-assisted extraction of phenolic compounds from Opuntia ficus-indica [L.] Mill. flowers and comparison with conventional procedures,” Ind. Crops Prod., vol. 184, no. February, p. 114977, 2022, doi: 10.1016/j.indcrop.2022.114977.
[23] K. Philippi, N. Tsamandouras, S. Grigorakis, and D. P. Makris, “Ultrasound-Assisted Green Extraction of Eggplant Peel (Solanum melongena) Polyphenols Using Aqueous Mixtures of Glycerol and Ethanol: Optimisation and Kinetics,” Environ. Process., vol. 3, no. 2, pp. 369–386, 2016, doi: 10.1007/s40710-016-0140-8.
[24] J. Yang, N. Li, C. Wang, T. Chang, and H. Jiang, “Ultrasound-homogenization-assisted extraction of polyphenols from coconut mesocarp: Optimization study,” Ultrason. Sonochem., vol. 78, p. 105739, 2021, doi: 10.1016/j.ultsonch.2021.105739.
[25] N. A. A. Raisha, L. C. , Abdullah, and B. L. Chua, “Ultrasonic-Assisted Extraction (UAE) Process on Thymol Concentration from Plectranthus Amboinicus Leaves: Kinetic Modeling and Optimization,” Processes, vol. 8, no. 322, 2020.
[26] D. Septiani, H. Suryadi, and A. Mun’im, “Improving Enzyme-Assisted Extraction of Brazilin from Sappanwood (Caesalpinia Sappan L.) Extract by Fungal Cellulase,” Pharmacogn. J., vol. 14, no. 1, pp. 21–28, 2022, doi: 10.5530/pj.2022.14.4.
[27] L. Kurniasari, M. Djaeni, and A. C. Kumoro, “Ultrasound-Assisted Extraction (UAE) of sappan wood (Caesalpinia sappan L.): Effect of solvent concentration and kinetic studies,” Brazilian J. Food Technol., vol. 26, pp. 1–11, 2023, doi: 10.1590/1981-6723.14022.
[28] L. Kurniasari, A. C. Kumoro, and M. Djaeni, “Ultrasound-Assisted Extraction of Sappan Wood-Kinetic Modeling,” AIP Conf. Proc., vol. 3250, no. 1, 2025, doi: 10.1063/5.0240625.
[29] M. Djaeni, A. C. Kumoro, F. D. Utari, and I. E. Septiani, “Enhancement of The Sappanwood Extract Yield by Aqueous Ultrasound-Assisted Extraction Using Water Solvent,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 4, pp. 1514–1520, 2021, doi: 10.18517/ijaseit.11.4.12596.
[30] I. S. Arsiningtyas, “Antioxidant Profile of Heartwood and Sapwood of Caesalpinia sappan L. Tree’s Part Grown in Imogiri Nature Preserve, Yogyakarta,” IOP Conf. Ser. Earth Environ. Sci., vol. 810, no. 1, 2021, doi: 10.1088/1755-1315/810/1/012040.
[31] A. S. Sakti, F. C. Saputri, and A. Mun’im, “Optimization of choline chloride-glycerol based natural deep eutectic solvent for extraction bioactive substances from Cinnamomum burmannii barks and Caesalpinia sappan heartwoods,” Heliyon, vol. 5, no. 12, p. e02915, 2019, doi: 10.1016/j.heliyon.2019.e02915.
[32] W. B. Sediawan, I. Hartati, H. Sulistyo, M. M. Azis, and U. Al Rahma, “Microwave Assisted Hydrotropic Distillation of Myrcene-Rich Essential Oil of Cymbopogon Citratus,” Int. J. Technol., vol. 14, no. 2, pp. 310–319, 2023, doi: 10.14716/ijtech.v14i2.5381.
[33] B. Dulo et al., “Kinetic modeling of phenolic compounds extraction from nutshells: influence of particle size, temperature and solvent ratio,” Biomass Convers. Biorefinery, pp. 23565–23579, 2023, doi: 10.1007/s13399-023-04993-1.
[34] S. Warinhomhaun, B. Sritularak, and D. Charnvanich, “A simple high-performance liquid chromatographic method for quantitative analysis of brazilin in caesalpinia sappan L. extracts,” Thai J. Pharm. Sci., vol. 42, no. 4, pp. 208–213, 2018, doi: 10.56808/3027-7922.2369.
[35] A. Hasrudin, Z. Abidin, N. Hiedayati, and V. Prajaputra, “Hydrothermal Synthesis of Multi-Color Fluorescent Carbon Dots from Sappan Wood ( Caesalpinia sappan ) as an Acid-Base Indicator,” Rev. Chim., vol. 71, no. 8, pp. 106–112, 2020.
[36] R. Arisandi, S. Nugroho Marsoem, G. Lukmandaru, T. Ashitani, and K. Takahashi, “The contents of phenolics and cell wall component of eucalyptus pellita f. muell stemwood and bark,” Wood Res., vol. 64, no. 3, pp. 411–422, 2019.