Techno-economic analysis of the process for obtaining Bioethanol from rice husks and whey

Main Article Content

María Fernanda Laborde
Veronica Elisabeth Capdevila
José María Ponce-Ortega
María Cristina Gely
Ana María Pagano

Abstract

This work proposes a novel integrated process for second-generation bioethanol production with an approach simulated in Aspen HYSYS®. Rice husk and dairy whey were used to revalorize for this bioprocess. The energy recovery of the bioprocess was optimized using the Pinch method; savings of 45.45% and 100% were obtained for heating and cooling utilities, respectively, concerning the process without a heat exchange network (HEN). It was possible to compare the costs of mutually exclusive alternatives between the process alternatives with and
without HEN. The capital investment with HEN was similar to the process without HEN. Instead, savings by 77.8% of utility costs per year was found in the process with HEN. A differential cash flow for ten years was generated, and a positive differential net present value (NPV) was determined. Therefore, HEN is an economically convenient and environmentally friendly option since energy consumption reduction can
minimize environmental damage.

Downloads

Download data is not yet available.

Article Details

How to Cite
Laborde, M. F., Capdevila, V. E., Ponce-Ortega, J. M., Gely, M. C., & Pagano, A. M. (2022). Techno-economic analysis of the process for obtaining Bioethanol from rice husks and whey. Communications in Science and Technology, 7(2), 154-159. https://doi.org/10.21924/cst.7.2.2022.951
Section
Articles

References

1. M. D. Cortés-Sánchez, E. M. Gata-Montero, A. Pipió-Ternero, Á. R. Rivas and J. M. Sánchez-Santos, Biocombustibles: tipos y estrategias de producción, MoleQla: Rev. Cienc. Univ. Pablo Olavide 35 (2019) 20–25.
2. A. P. Velasco Cristancho, Una revisión general de los procesos para la producción de bioetanol de segunda generación a partir de biomasa lignocelulosa, Thesis, Univ. Santo Tomás, Colombia, 2020.
3. P. Mardina, H. Wijayanti, A. Tuhuloula, E. Hijriyati and S. Sarifah, Corncob residue as heterogeneous acid catalyst for green synthesis of biodiesel: a short review, Commun. Sci. Technol. 6 (2021) 60–68.
4. R. Abascal Fernández, Estudio de la obtención de bioetanol a partir de diferentes tipos de biomasa lignocelulósica. matriz de reacciones y optimización, Thesis, Univ. Cantab., Spain, 2017.
5. F. Tello Saavedra, D. Ortíz Pacaya and R. Serván Herrera, Estudio de pre-factibilidad para la instalación de una planta para obtener bioetanol a partir de residuos lignocelulósicos-cáscaras de arroz (Oriza sativa) en la Región Loreto, Thesis, Universidad Nacional de la Amazonía Peruana, Perú, 2014.
6. B. Sharma, C. Larroche and C.G. Dussap, Comprehensive assessment of 2G bioethanol production, Bioresource Tech. 313 (2020) 123630.
7. A. Arora, P. Nandal, J. Singh and M. L. Verma, Nanobiotechnological advancements in lignocellulosic biomass pretreatment, Mater. Sci. Energy Technol. 3 (2020) 308–318.
8. D. Kumari and R. Singh, Pretreatment of lignocellulosic wastes for biofuel production: a critical review, Renewable and Sustainable Energy Reviews 90 (2018) 877–891.
9. A. M. Arismendy, M. J. Sequeira, F. E. Felissia, M. C. Area and E. R. Chamorro, Evaluación de cepas fermentativas en la hidrólisis y fermentación simultáneas (ssf) de cascarilla de arroz para la producción de bioetanol, Tecnol. y Cienc. 30 (2017) 357–363.
10. A. Larios-Saldaña, J. Porcayo-Calderón and H. M. Poggi-Varaldo, Obtención de una harina de pulido de arroz desengrasado con bajo contenido de fibra neutro detergente, Interciencia 30 (2005) 29–32.
11. E. P. Dagnino, E. R. Chamorro, S. D. Romano, F. E. Felissia and M. C. Area, Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production, Ind. Crops Prod. 42 (2013) 363–368.
12. M. E. Vales, V. E. Capdevila, C. Iraporda, I. Rubel, M. C. Gely and A. M. Pagano, Revalorización del lactosuero: estudio de la hidrólisis para obtención de biocombustible, La Aliment. Latinoam. 347 (2020) 44–48.
13. MAGyP, Ministerio de Agricultura, Ganadería y Pesca. https://www.magyp.gob.ar/sitio/areas/observatorio_bioeconomia/indicadores/07/index.php#:~:text=Actualmente%2C%20la%20producci%C3%B3n%20de%20bioetanol,con%20posterioridad%20a%20la%20ca%C3%B1a December 2022.
14. M. F. Laborde, L. I. Orifici, A. M. Manzur, A. M. Pagano and M. C. Gely, Heat exchanger networks applied to the esterification of used vegetable oils, Av. en Ciencias e Ing. 5 (2014) 31–44.
15. B. Linnhoff and J. R. Flower, User guide on process integration for the efficient use of energy. Warwickshire, UK: Inst. Chem. Eng. Rugby, 1982.
16. B. Linnhoff and E. Hindmarsh, The pinch design method for heat exchanger networks, Chem. Eng. Sci. 38 (1983) 745–763.
17. M. Gonzalez-Contreras, A. Sánchez and T. Lopez-Arenas, Integración de calor para el proceso de producción de bioetanol 2G a partir de paja de trigo, Ingeniería Química Asistida por Computador 40 (2017) 2917–2922.
18. E. Thielmann, R. M. Cavalcante and A. F. Young, Simulation and economic evaluation of different process alternatives for the fermentation and distillation steps of ethanol production, Energy Convers. Manag. 265 (2022) 115792.
19. P. E. DeGarmo, W. G. Sullivan, J. A. Bonfadelli and E. M. Wicks, Ingeniería económica. México D.F., México: Prentice Hall, 1998.
20. E. C. Carlson, Don´t gamble with physical properties for simulations, Chem. Eng. Prog. 92 (1996) 35–46.
21. A. M. Ruhul, H. Saquib and M. Sarker, Simulation of ethanol production by fermentation of molasses, J. Eng. 1 (2013) 69–73.
22. H. Hart, L. E. Craine, D. J. Hart and C. M. Hadad, Química orgánica. Madrid, Spain: McGraw-Hil Interamericana, 2007.
23. W. Z. Rivera, Selección de una especie de levadura para la producción de proteína unicelular utilizando como sustrato el suero residual del proceso de elaboración de queso blanco tipo Turrialba, Ph.D. Universidad de Costa Rica, Costa Rica, 2005.
24. Jurado, E., Camacho, F., Luzón, G., & Vicaria, J. M. A new kinetic model proposed for enzymatic hydrolysis of lactose by a b-galactosidase from Kluyveromyces fragilis. Enzyme Microb. Technol. 31 (2002) 300–309.
25. E. P. Dagnino, R. E. Chamorro, S. D. Romano, F. Felissia and M. C. Area, Optimización de pretratamiento ácido de biomasa lignocelulósica para la obtención de bioetanol, Proceeding VI Congreso Nacional y III Congreso Iberoamericano HYFUSEN, 2011, p.p. 12–050.
26. W. B. S. Megawati, S. Hary and H. Muslikhin, Pseudo-homogeneous kinetic of dilute-acid hydrolysis of rice husk for ethanol production: Effect of sugar degradation, Int. Sch. Sci. Res. Innov. 8 (2010) 1282–1287.
27. K. A. Ojeda, Aplicación de análisis energético para la evaluación de procesos de producción de bioetanol de segunda generación, Ph.D. Thesis, Universidad Industrial de Santander, Colombia, 2011.
28. A. M. Peres and E. S. Macedo, Prediction of thermodynamic properties using a modified UNIFAC model: application to sugar industrial systems, Fluid Phase Equilibria 158 (1999) 391–399.
29. C. Conde-Mejía, A. Jiménez-Gutiérrez and M. M. El-Halwagi, Assessment of combinations between pretreatment and conversion configurations for bioethanol production, ACS Sustain. Chem. Eng. 1 (2013) 956–965.
30. P. K. Le, T. D. Le, Q. D. Nguyen, V. T. Tran and P. T., Process simulation of the pilot scale bioethanol production from rice straw by Aspen HYSYS, IOP Conference Series: Materials Sc. and Engng. 778 (2020) 012095.
31. M. R. Perez Molleda, Diseño de un proceso para la obtención de etanol a partir de la cáscara de arroz, Ph.D. Thesis, Univ. Nac. Trujillo, Perú, 2013.
32. J. Zheng, A. Negi, C. Khomlaem and B. S. Kim, Comparison of bioethanol production by candida molischiana and Saccharomyces cerevisiae from glucose, cellobiose, and cellulose, J. Microbiol. Biotechnol. 6 (2019) 905–912. 33. A. Jiménez-Gutiérrez, Simulación de procesos en ingeniería química. Madrid, Spain: Editorial Reverté S. A., 2003.
34. I. C. Kemp, Pinch Analysis and process integration. A user guide on process integration for the efficient use of energy, New York, USA: ABET, 1998.
35. M. F. Laborde, M. S. González, J. M. Ponce, A. M. Pagano and M. C. Gely, Proceso de obtención de biodiésel a partir de AVUS: análisis diferencial de costos de opciones óptimas de integración energética, Av. en Ciencias e Ing. 11 (2020) 19–33.
36. L. T. Blank, A.J. Tarquin and C.F. Mendoza, Ingeniería Económica. México D.C., México: McGraw-Hill / Interamericana Editores de México, 1992.
37. R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz and D. Bhattacharyya, Analysis, synthesis and design of chemical processes. New Jersey, USA: Pearson Education, Inc., 2012.
38. D. Gao et al., Seasonal-regulatable energy systems design and optimization for solar energy year-round utilization, Appl. Energy 322 (2022), 119500.
39. B. Ruhani et al., Comprehensive techno-economic analysis of a multi-feedstock biorefinery plant in oil-rich country: a case study of Iran, Sustainability 14 (2022) 1017.
40. Z. Tian, Z. Qi, W. Gan, M. Tian and W. Gao, A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: energy, exergy, economic, environmental (4E) evaluations, Energy 257 (2022) 124528.
41. G. D. Ulrich and P. T. Vasudevan, How to estimate utility costs, Chem. Eng. 113 (2006) 66–69.
42. D. Q. Kern, Procesos de transferencia de calor. México, D.C., México: Compañía Editorial Continental,1965.
43. W. D. Seider, J. D. Seader and D. R. Lewin. Product and Process Design Principles: Synthesis, Analysis and Evaluation, (With CD): Wiley. com., 2004.