Heuristics Miner for E-Commerce Visitor Access Pattern Representation

Kartina Diah Kesuma Wardhani, Wawan Yunanto

Abstract


E-commerce click stream data can form a certain pattern that describe visitor behavior while surfing the e-commerce website. This pattern can be used to initiate a design to determine alternative access sequence on the website. This research use heuristic miner algorithm to determine the pattern. σ-Algorithm and Genetic Mining are methods used for pattern recognition with frequent sequence item set approach. Heuristic Miner is an evolved form of those methods. σ-Algorithm assume that an activity in a website, that has been recorded in the data log, is a complete sequence from start to finish, without any tolerance to incomplete data or data with noise. On the other hand, Genetic Mining is a method that tolerate incomplete data or data with noise, so it can generate a more detailed e-commerce visitor access pattern. In this study, the same sequence of events obtained from six-generated patterns. The resulting pattern of visitor access is that visitors are often access the home page and then the product category page or the home page and then the full text search page.

Keywords


Heuristic Miner; Visitor Behavior; Access Pattern

Full Text:

PDF

References


Lu and S. S. Gokhale, “Resource Provisioning in an E-commerce Application ∗,” 10th IEEE Conf. E-Commerce Technol. Fifth IEEE Conf. Enterp. Comput. E-Commerce E-Services, pp. 209–214, 2008.

N. H. Rawi, M. A. Bakar, R. Bahari, and A. M. Zin, “Development Environment for Layout Design of e-Commerce Applications Using Block-Based Approach,” Int. Conf. Electr. Eng. Informatics, no. July, 2011.

I. P. Tatsiopoulos, N. A. Panayiotou, and S. T. Ponis, “A modelling and evaluation methodology for E-Commerce enabled BPR,” Comput. Ind., vol. 49, pp. 107–121, 2002.

H. J. Wen and H. Chen, “E-commerce Web site design : strategies and models,” Inf. Manag. Comput. Secur., pp. 5–12, 2001.

L. K. J. Grace and D. Nagamalai, “Analysis Of Web Logs And Web User In Web Mining,” arXiv Prepr. arXiv1101.5668., vol. 3, no. 1, pp. 99–110, 2011.

S. S. Senkul, Pinar, “Improving pattern quality in web usage mining by using semantic information,” Knowl. Inf. Syst. 30.3, pp. 527–541, 2012.

Azam and N. Tabrez, “Data Mining of Web Access Logs Using Classification Techniques,” Int. J. Res. Appl. Sci. Eng. Technol. ( I J R A S E T ), vol. 2, no. Viii, pp. 1–5, 2014.

J. Vellingiri and S. C. Pandian, “A Survey on Web Usage Mining,” Glob. J. Comput. Sci. Technol., vol. 11, no. 4, 2011.

K. B. Patel, J. A. Chauhan, and J. D. Patel, “Web Mining in E-Commerce : Pattern Discovery , Issues and Applications,” Int. J. P2P Netw. Trends Technol., vol. 1, pp. 40–45, 2011.

L. Sun and X. Zhang, “Efficient Frequent Pattern Mining on Web Log Data,” Adv. Web Technol. Appl. Sixth Asia-Pacific Web Conf. APWeb 2004, no. March 2004, pp. 1–24, 2004.

D. M. Rathod, “A Review On Web Mining,” Int. J. Eng. Res. Technol., vol. Vol. 1, no. 2, April 2012, 2012.

N. Kaur, “EXPLORATION OF WEBMINER SYSTEM,” Int. J. Res. IT Manag., vol. 2, no. 2, pp. 239–248, 2012.

R. Iváncsy and I. Vajk, “Frequent Pattern Mining in Web Log Data,” Acta Polytech. Hungarica, vol. 3, no. 1, pp. 77–90, 2006.

R. Kosala, B.- Heverlee, and H. Blockeel, “Web Mining Research : A Survey,” ACM SIGKDD Explor. Newsl., vol. 2, no. 1, 2000.

Y. Wang, “Web Mining and Knowledge Discovery of Usage Patterns,” CS748T Proj. (Part I), no. Part I, pp. 1–25, 2000.

M. Gomes, “Web Structure Mining : An Introduction,” IEEE Int. Conf. Inf. Acquis., pp. 590–595, 2005.

J. Srivastava, B. Mobasher, J. Han, and N. Jain, “Web Mining : Pattern Discovery From World Wide Web Transactions,” in the 9th IEEE International Conference on Tools with AI (ICTAI,97), 1997.

R. Cooley, B. Mobasher, and J. Srivastava, “Data Preparation for Mining World Wide Web Browsing Patterns,” Knowl. Inf. Syst., vol. 1, no. 1, pp. 5–32, Jul. 2013.

M. Han, J., Kamber, Data mining: concept and techniques. Morgan Kaufmann Publisher, 2000.

W. Khalidy, A. P. Kurniati, and I. Atastina, “Implementasi Process Mining pada Prosedur Pengendalian Dokumen dengan Menggunakan Algoritma Heuristic Miner ( Studi Kasus : Institut Teknologi Telkom ) Implementation Process Mining in Document Control Procedure Using Heuristic Miner Algorithm (Case Studi)”.




DOI: http://dx.doi.org/10.21924/cst.2.1.2017.21

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Communications in Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International Licensejoomla
visitors View My Stats