Palm oil mill effluent (POME) precipitation using ammonium-intercalated clay coagulant

Main Article Content

Satria Jaya Priatna
Yusuf Mathiinul Hakim
Muhammad Afif Alfarizi
Siti Sailah
Risfidian Mohadi

Abstract

Clay intercalation has been completed to improve coagulation ability using ammonium ions intercalant via multi-step intercalation. The intercalated clay was confirmed by Scanning Electron Microscope-Energy Dispersive Spectroscopy analysis of expanded lamellar and reduction impurities. Fourier Transform Infra-Red analysis confirmed the sharp and strong peak adsorption at 1448 cm-1 as ammonium (NH4+) bending
vibration, and X-Ray Diffraction analysis confirmed the peak shifting to smaller 2? at 10.08° as increasing basal spacing because of ammonium ion intercalated. The Palm Oil Mill Effluent (POME) coagulation was carried out using contact time and coagulant dose variations to determine the optimum conditions, reaching 45 minutes of coagulation and 0.4 g coagulant was used. Furthermore, the turbidity, free fatty acid, and total suspended solids were measured to reach the reduction values of 93%, 49.7%, and 73.7%, respectively. The reusable study of ammoniumintercalated clay confirmed the stability of the three cycles of coagulation used.

Downloads

Download data is not yet available.

Article Details

How to Cite
Priatna, S. J., Hakim, Y. M., Alfarizi, M. A., Sailah, S., & Mohadi, R. (2023). Palm oil mill effluent (POME) precipitation using ammonium-intercalated clay coagulant. Communications in Science and Technology, 8(1), 10-15. https://doi.org/10.21924/cst.8.1.2023.1034
Section
Articles

References

E. Hambali and M. Rivai, The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030, IOP Conf Ser Earth Env. Sci., 65 (2017) 012050.

Statista Research Department, Palm oil industry in Indonesia- statistics & facts, Statista, (2023). https://www.statista.com/topics/5921/palm-oil-industry-in-indonesia/#topicOverview (accessed in Jan. 17, 2023).

C. Phalakornkule, J. Mangmeemak, K. Intrachod, and B. Nuntakumjorn, Pretreatment of palm oil mill effluent by electrocoagulation and coagulation, ScienceAsia, 36 (2010) 142.

Z. Othman, S. Bhatia, and A. Latif Ahmad, Influence Of The Settleability Parameters For Palm Oil Mill Effluent (Pome) Pretreatment By Using Moringa Oleifera Seeds As An Environmental Friendly Coagulant., Inter. Conf. on Env. 2008 (ICENV 2008), (2014).

A. Mohammad, K. Ahmad, R. Rajak, and S. M. Mobin, Remediation of Water Contaminants, in Handbook of Ecomaterials, Cham: Springer Int. Pub., (2019) 373–391.

D. R. Wicakso, A. Mirwan, E. Agustin, N. F. Nopembriani, I. Firdaus, and M. Fadillah, Potential of silica from water treatment sludge modified with chitosan for Pb(II) and color adsorption in sasirangan waste solution, Commun. Sci. Technol., 7 (2022) 188–193.

D. Borah, H. Nath, and H. Saikia, Modification of bentonite clay & its applications: a review, Reiews. in Inorg. Chem., 42 (2022) 265–282.

M. Ahari, H. Ddahim, and R. Ramadane, Performance of bentonite clay as a coagulation aid on water quality, Desalination Water Treat., 143 (2019) 229–234.

S. J. Priatna, Y. M. Hakim, S. Wibyan, S. Sailah, and R. Mohadi, Interlayer Modification of West Java Natural Bentonite as Hazardous Dye Rhodamine B Adsorption, Sci. and Tech. Ind., 8 (2023) 160–169.

R. Mohadi, Y. M. Hakim, R. D. Astuti, I. Royani, and M. Mardiyanto, Pillarization of Sumatera Bentonite by Sodium-assisted As Effective Adsorbent of Anionic Surfactants Sodium Lauryl Sulphate (SLS) Waste, Bull. of Chem. Reaction Engineering & Catalysis, 18 (2023) 48–58.

G. Veréb, V. Gayýr, E. Santos, Fazekas, S. Kertész, C. Hodúr et al., Purification of real car wash wastewater with complex coagulation/flocculation methods using polyaluminum chloride, polyelectrolyte, clay mineral and cationic surfactant, Water Sci. and Tech., 80 (2020) 1902–1909.

T. P. A. Shabeer, A. Saha, V. T. Gajbhiye, S. Gupta, K. M. Manjaiah, and E. Varghese, Simultaneous removal of multiple pesticides from water: Effect of organically modified clays as coagulant aid and adsorbent in coagulation–flocculation process, Environ. Tech., 35 (2014) 2619–2627.

M. J. Wilson, The origin and formation of clay minerals in soils: past, present and future perspectives, Clay Miner., (1999).

N. K. Foley, Environmental Characteristics of Clays and Clay Mineral Deposits, USGS, https://pubs.usgs.gov/info/clays/ (accessed Nov. 17, 2022) (2009).

Y. Wan, D. Guo, X. Hui, L. Liu, and Y. Yao, Studies on Hydration Swelling and Bound Water Type of Sodium- and Polymer-Modified Calcium Bentonite, Adv. in Polymer Tech., 2020 (2020) 1–11.

S. Farrokhpay, B. Ndlovu, and D. Bradshaw, Behaviour of swelling clays versus non-swelling clays in flotation, Miner. Eng., 96–97 (2016) 59–66.

Y. F. Arifin, M. Arsyad, J. Monica, and S. S. Agus, Volume change in compacted claystone-bentonite mixtures as affected by the swamp acidic water, Commun. Sci. Technol., 6 (2021) 80–90.

C. Gallo, P. Rizzo, and G. Guerra, Intercalation compounds of a smectite clay with an ammonium salt biocide and their possible use for conservation of cultural heritage, Heliyon, 5 (2019).

L. Xu, Y. Zhang, J. Zheng, H. Jiang, T. Hu, and C. Meng, Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries, Mater. Today Energy, 18 (2020).

M. Laipan, L. Xiang, J. Yu, B.R. Martin, R. Zhu, J. Zhu et al., Layered intercalation compounds: Mechanisms, new methodologies, and advanced applications, Prog. Mater. Sci., 109 (2020) 1–97.

S. Lubis, Preparasi Bentonit Terpilar Alumina dari Bentonit Alam dan Pemanfaatannya sebagai Katalis pada Reaksi Dehidrasi Etanol, 1-Propanol serta 2-Propanol, J. Rek. Kim. dan Ling., 6 (2007) 77–81.

R. Luthfian Ramadhan Silalahi, D. Puspita Sari, and I. Atsari Dewi, Testing of Free Fatty Acid (FFA) and Colour for Controlling the Quality of Cooking Oil Produced by PT. XYZ, Industria: J. Tek. dan Man. Agro., 6 (2017) 41–50.

M. Sirait, N. Bukit, and N. Siregar, Preparation and characterization of natural bentonite in to nanoparticles by co-precipitation method, (2017) 020006.

J. Y. de Morais Pinos, L. B. de Melo, S. D. de Souza, L. Marçal, and E. H. de Faria, Bentonite functionalized with amine groups by the sol-gel route as efficient adsorbent of rhodamine-B and nickel (II), Appl. Clay Sci., 223 (2022) 106494.

J. Pironon, M. Pelletier, P. de Donato, and R. Mosser-Ruck, Characterization of smectite and illite by FTIR spectroscopy of interlayer NH 4 + cations, Clay Miner., 38 (2003) 201–211.

Ali. E. I. Elkhalifah, S. Maitra, M. A. Bustam, and T. Murugesan, Effects of exchanged ammonium cations on structure characteristics and CO2 adsorption capacities of bentonite clay, Appl. Clay Sci., 83–84 (2013) 391–398.

L. Zhirong, Md. Azhar Uddin, and S. Zhanxue, FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite, Spectrochim Acta A Mol Biomol Spectrosc., 79 (2011) 1013–1016.

R. L. Frost and J. Kristof, Raman and Infra-Red Spectroscopic Studies of Kaolinite Surfaces Modified by Intercalation, (2004).

E. Ringdalen, Changes in Quartz during Heating and the Possible Effects on Si Production, JOM, 67 (2015) 484–492.

Y. Hakim, R. Mohadi, M. Mardiyanto, and I. Royani, Ammonium-Assisted Intercalation of Java Bentonite as Effective of Cationic Dye Removal, J. of Ecological Eng., 24 (2023) 184–195.

Salah, Gaber, and Kandil, The Removal of Uranium and Thorium from Their Aqueous Solutions by 8-Hydroxyquinoline Immobilized Bentonite, Minerals, 9 (2019) 626.

L. A. Pérez-Maqueda, Study of Natural and Ion Exchanged Vermiculite By Emanation Thermal Analysis, TG, DTA, and XRD, J. Therm. Anal. Calorim., 71 (2003) 715–726.

H. Lindgreen, Ammonium fixation during illite-smectite diagenesis in Upper Jurassic shale, North Sea, Clay Miner., 29 (1994) 527–537.

S. Syafalni, I. Abustan, S. N. F. Zakaria, M. H. Zawawi, and R. A. Rahim, Raw water treatment using bentonite-chitosan as a coagulant, Water Sci. Tech. Water Supply, 12 (2012) 480–488.

D. I. M. Al-Risheq, S. M. R. Shaikh, M. S. Nasser, F. Almomani, I. A. Hussein, and M. K. Hassan, Enhancing the flocculation of stable bentonite suspension using hybrid system of polyelectrolytes and NADES, Colloids Surf. A Physicochem Eng. Asp., 638 (2022) 128305.

C. Vaisali, S. Charanyaa, P. D. Belur, and I. Regupathi, Refining of edible oils: a critical appraisal of current and potential technologies, Int. J. Food Sci. Tech., 50 (2015) 13–23.

K. Essid, M. Chtourou, M. Trabelsi, and M. H. Frikha, Influence of the Neutralization Step on the Oxidative and Thermal Stability of Acid Olive Oil, J. Oleo Sci., 58 (2009) 339–346.

B. Keskinler, A. Tanrizeven, N. Dizge, and E. Pakdemirli, A Process For Removal of Free Fatty Acids From Vegetable Oils, Google Patents WO2008140432A1 (2008)

Q. Wei, F. O. Mcyotto, C. W. K. Chow, Z. Nadeem, Z. Li, and J. Liu, Eco-friendly decolorization of cationic dyes by coagulation using natural coagulant Bentonite and biodegradable flocculant Sodium Alginate, SDRP J. of Earth Sci. & Env. Stud., 5 (2020) 51–60.

M. Czemierska, A. Szczes, and A. Jarosz-Wilkolazka, Purification of wastewater by natural flocculants, BioTechnologia, 4 (2015) 272–278.

Z. Z. Abidin and M. A. Issa, Coagulation Treatment of Palm Oil Mill Effluent Using Plant-Based Tannin, Pollution Research, 37 (2018) 788–793.

S. Ismail, I. Idris, Y. T. Ng, and A. L. Ahmad, Coagulation of Palm Oil Mill Effluent (POME) at High Temperature, J. Applied Sci., 14 (2014) 1351–1354.

C. Y. Chung, A. Selvarajoo, V. Sethu, A. K. Koyande, A. Arputhan, and Z. C. Lim, Treatment of palm oil mill effluent (POME) by coagulation flocculation process using peanut–okra and wheat germ–okra, Clean Tech. Env. Policy, 20 (2018) 1951–1970.

M. JK. Bashir, J. H. Lim, S. S. Abu Amr, L. P. Wong, and Y. L. Sim, Post treatment of palm oil mill effluent using electro-coagulation-peroxidation (ECP) technique, J. Clean Prod., 208 (2019) 716–727.