Light absorption enhancement in organic solar cell using non-concentric Ag:SiO2 core-shell nanoparticles

Main Article Content

Mulda Muldarisnur
F. Fahendri
Ilham Perdana
Zulfi Abdullah
Meqorry Yusfi

Abstract

Low solar energy conversion efficiency prevents the widespread of organic solar cells; hence, metal nanoparticles have been used to overcome this problem without increasing cell thickness. We investigated light absorption enhancement in view of the embedment of Ag:SiO2 core-shell nanoparticles of different shell thicknesses, core offsets, offset orientation angles, and vertical mismatches between neighboring particles. The simulations were carried out using the finite element method. This is the first investigation in the use of asymmetric nanoparticles. At optimized conditions, absorption enhancement up to 345% compared to the one without the nanoparticles could be achieved. The enhancement was found much higher than that of the published values. The enhancement results were mainly from the increase of near-field localization and scattering in the active layer of solar cells due to the excitation of Fano resonances. The resonance occurred due to the non-symmetric nature of the core-shell nanoparticles.

Downloads

Download data is not yet available.

Article Details

How to Cite
Muldarisnur, M., Fahendri, F., Perdana, I., Abdullah, Z., & Yusfi, M. (2023). Light absorption enhancement in organic solar cell using non-concentric Ag:SiO2 core-shell nanoparticles. Communications in Science and Technology, 8(1), 50-56. https://doi.org/10.21924/cst.8.1.2023.1076
Section
Articles

References

M. B. Askari, Introduction to Organic Solar Cells, Sustainable Energy 2(3) (2014) 85-90.

L. X. Chen, Organic Solar Cells: Recent Progress and Challenges, ACS Energy Lett. 4 (2019) 2537?2539.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, et al., Coherent ultrafast charge transfer in an organic photovoltaic blend, Science 344(6187) (2014) 1001-1005.

C. E. Small, S.-W. Tsang, S. Chen, S. Baek, C. M. Amb, J. Subbiah, et al., Loss Mechanisms in Thick-Film Low-Bandgap Polymer Solar Cells, Adv. Energy Mater. 3(7) (2013) 909-916.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, Polymer–Fullerene Bulk-Heterojunction Solar Cells, Adv. Mater. 22(34) (2010) 3839-3856.

H. Hoppe and N. S. Sariciftci, Organic solar cells: An overview, J. Mater. Res. 19 (2004) 1924–1945.

T. Upreti, Y. Wang, H. Zhang, D. Scheunemann, F. Gao, and M. Kemerink, Experimentally Validated Hopping-Transport Model for Energetically Disordered Organic Semiconductors, Phys. Rev. Appl. 12 (2019) 064039.

S. Ahn, D. Rourke, and W. Park, Plasmonic nanostructures for organic photovoltaic devices, J. Opt. 18 (2016) 033001.

Z. Tang, W. Tress, and O. Inganäs, Light trapping in thin film organic solar cells, Mater. Today 17 (2014) 8.

C. Cho, H. Kim, S. Jeong, Se-WoongBaek, J.-W. Seo, D. Han, et al., Random and V-groove texturing for efficient light trapping in organic photovoltaic cells, Sol. Energy Mater. Sol. Cells 115 (2013) 36-41.

D. H. Wang, D.-G. Choi, K.-J. Lee, J.-H. Jeong, S. H. Jeon, O. O. Park, et al., Effect of the ordered 2D-dot nano-patterned anode for polymer solar cells, Org. Electron. 11(2) (2010) 285-290.

Y. Park, J. Berger, Z. Tang, L. Müller-Meskamp, A. F. Lasagni, K. Vandewal, et al., Flexible, light trapping substrates for organic photovoltaics, Appl. Phys. Lett. 109 (2016) 093301.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, et al., Photonic Crystal Geometry for Organic Solar Cells, Nano Lett. 9(7) (2009) 2742–2746.

D. Duché, C. Masclaux, J. L. Rouzo, and C. Gourgon, Photonic crystals for improving light absorption in organic solar cells, J. Appl. Physics 117 (2015) 053108.

Z. Hu, J. Zhang, and Y. Zhao, Effect of textured electrodes with light-trapping on performance of polymer solar cells, J. Appl. Physics 111 (2012) 104516.

K. Tvingstedt, S. D. Zilio, O. Inganäs, and M. Tormen, Trapping light with micro lenses in thin film organic photovoltaic cells, Opt. Express 16(26) (2008) 21608-21615.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, et al., A universal optical approach to enhancing efficiency of organic-based photovoltaic devices, Energy Environ. Sci. 5 (2012) 6900-6904.

H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9 (2010) 205–213.

K. A. Catchpole and A. Polman, Plasmonic solar cells, Opt. Express 16(26) (2008) 21793–21800.

A. Phengdaam, S. Nootchanat, R. Ishikawa, C. Lertvachirapaiboon, K. Shinbo, K. Kato, et al., Improvement of organic solar cell performance by multiple plasmonic excitations using mixed-silver nanoprisms, J. Sci.: Adv. Mater. Devices 6(2) (2021) 264-270.

F. Liu, W. Xie, Q. Xu, Y. Liu, K. Cui, X. Feng, et al., Plasmonic Enhanced Optical Absorption in Organic Solar Cells With Metallic Nanoparticles, IEEE Photonics J. 5(4) (2013) 8400509.

D. Qu, F. Liu, Y. Huang, W. Xie, and Q. Xu, Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles, Opt. Express 19(24) (2011) 24795-24803.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, et al., Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells, J. Mater. Chem. 22 (2012) 1206-1211.

S. Manzhos, G. Giorgi, J. Lüder, and M. Ihara, Modeling of plasmonic properties of nanostructures for next generation solar cells and beyond, Adv. in Phys.: X 6(1) (2021) 1908848.

D. Kozanoglu, D. H. Apaydin, A. Cirpan, and E. N. Esenturk, Power conversion efficiency enhancement of organic solar cells by addition of gold nanostars, nanorods, and nanospheres, Org. Electron. 14(7) (2013) 1720-1727.

A. Rana, N. Gupta, A. Lochan, G. D. Sharma, S. Chand, M. Kumar, et al., Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell, J. Appl. Phys. 120 (2016) 063102.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells, Sci. Rep. 7 (2017) 7696.

J. You, K. Leonard, Y. Takahashi, H. Yonemura, and S. Yamada, Effects of silver nanoparticles with different sizes on photochemical responses of polythiophene–fullerene thin films, Phys. Chem. Chem. Phys. 16 (2014) 1166-1173.

K. N’Konou, L. Peres, and P. Torchio, Optical Absorption Modeling of Plasmonic Organic Solar Cells Embedding Silica-Coated Silver Nanospheres, Plasmonics 13 (2018) 297–303.

I. Perdana and M. Muldarisnur, Optimization of Ag-SiO2 core-shell nanoparticles arrangement for light absorption enhancement in organic solar cells, the National Seminar of Physics (SNF), Jakarta, Indonesia, 2020, 030008.

H. Shen, P. Bienstman, and B. Maes, Plasmonic absorption enhancement in organic solar cells with thin active layers, J. Appl. Phys. 106 (2009) 073109.

A. Chafidz, A. R. Afandi, B. M. Rosa, J. Suhartono, P. Hidayat, and H. Junaedi, Production of silver nanoparticles via green method using banana raja peel extract as a reducing agent, Commun. Sci. Technol. 5(2) (2020) 112–118.

L. M. Quynh, H. V. Huy, N. D. Thien, L. T. C. Van, and L. V. Dung, Synthesis of Si/SiO2 core/shell fluorescent submicron-spheres for monitoring the accumulation of colloidal silica during the growth of diatom Chaetoceros sp., Commun. Sci. Technol. 7(1) (2022) 1–7.

F. Fahendri, I. Perdana, Z. Abdullah, and M. Muldarisnur, Enhancement of Light Absorption in the Active Layer of Organic Solar Cells using Ag:SiO2 Core-Shell Nanoparticles JPPIPA 8(6) (2022)

S. Humphries, Finite-element methods for electromagnetics. Albuquerque, New Mexico: CRC Press, 2010.

J.-M. Jin, The Finite Element Method in Electromagnetics 3 ed. New York: Wiley-IEEE Press, 2014.

G. Chidichimo and L. Filippelli, Organic Solar Cells: Problems and Perspectives, Int. J.Photoenergy 2010 (2010) 123534.

American Society for Testing and Materials, Standard tables for terrestrial solar spectral irradiance at air mass 1.5 for a 37° tilted surface. Philadelphia, PA: American Society for Testing and Materials, 1987.

D. H. Wang, D. Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, et al., Enhancement of Donor–Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles, Angew. Chemie Int. Ed. 50(24) (2011) 5519-5523.

D. H. Wang, J. K. Kim, G.-H. Lim, K. H. Park, O. O. Park, B. Lim, et al., Enhanced light harvesting in bulk heterojunction photovoltaic devices with shape-controlled Ag nanomaterials: Ag nanoparticles versus Ag nanoplates, RSC Adv. 2 (2012) 7268-7272.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J.-J. Simon, F. Flory, et al., Improving light absorption in organic solar cells by plasmonic contribution, Sol. Energy Mater. Sol. Cells 93(8) (2009) 1377-1382.

L. Feng, M. Niu, Z. Wen, and X. Hao, Recent Advances of Plasmonic Organic Solar Cells: Photophysical Investigations, Polymers 10(123) (2018) 1-33.

G. D. Spyropoulos, M. M. Stylianakis, E. Stratakis, and E. Kymakis, Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer, Appl. Phys. Lett. 100 (2012) 213904.

A. P. Amalathas and M. M. Alkaisi, Nanostructures for Light Trapping in Thin Film Solar Cells, Micromachines 10(619) (2019) 1-18.

M. Piralaee, Z. Ebrahimpour, and A. Asgari, The improved performance of BHJ organic solar cells by random dispersed metal nanoparticles through the active layer, Curr. Appl. Phys. 20 (2020) 531-537.