Effect of microwave and ultrasonic irradiation on the enzymatic hydrolysis of water hyacinth biomass in the presence of surfactants

Main Article Content

Nur Rokhati
Aji Prasetyaningrum
Widyah Anggraini
Akbar Nugroho
Nasyriyatul Hana Novita
Pertiwi Andarani
Teguh Riyanto


This paper presents the effect of microwave and ultrasound irradiation on the enzymatic hydrolysis of water hyacinth biomass in the presence of surfactants. Prior to hydrolyzing, the water hyacinth was treated utilizing alkali with and without microwave assistance.  It was revealed that the microwave improved the removal of lignin and hemicellulose. The treated water hyacinth biomass was also characterized using Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), and Fourier-Transform Infrared (FT-IR) Spectroscopy. The effect of surfactant and the assistance of microwave and ultrasound were comprehensively studied. Some parameters varied, including stirring speed, surfactant type, concentration, and reaction time. The results indicated that microwave and ultrasound could enhance the reaction rate. Tween 80 here could improve conventional, microwave-assisted, and ultrasound-assisted hydrolysis of water hyacinth biomass. It was found that the ultrasound-assisted hydrolysis was better than that of others. The results of this research can be used as the groundwork for further developing the lignocellulosic biomass hydrolysis process, especially in an advanced enzymatic hydrolysis process.


Download data is not yet available.

Article Details

How to Cite
Rokhati, N., Ratnawati, Prasetyaningrum, A., Anggraini, W., Nugroho, A., Novita, N. H., Andarani, P., & Riyanto, T. (2023). Effect of microwave and ultrasonic irradiation on the enzymatic hydrolysis of water hyacinth biomass in the presence of surfactants. Communications in Science and Technology, 8(1), 57-65. https://doi.org/10.21924/cst.8.1.2023.1143


M.F. Laborde, V. E. Capdevila, J.M. Ponce-Ortega, M.C. Gely, A.M. Pagano, Techno-economic analysis of the process for obtaining Bioethanol from rice husks and whey, Commun. Sci. Technol. 7 (2022) 154–159.

X. Yu, X. Bao, C. Zhou, L. Zhang, A.E.-G.A. Yagoub, H. Yang, H. Ma, Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose, Ultrason. Sonochem. 41 (2018) 410–418.

H. Lou, M. Zeng, Q. Hu, C. Cai, X. Lin, X. Qiu, D. Yang, Y. Pang, Non-ionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface, Bioresour. Technol. 249 (2018) 1–8.

L. Mezule, B. Strazdina, B. Dalecka, E. Skripsts, T. Juhna, Natural Grasslands as Lignocellulosic Biofuel Resources: Factors Affecting Fermentable Sugar Production, Energies. 14 (2021) 1312.

U.S. Aswathy, R.K. Sukumaran, G.L. Devi, K.P. Rajasree, R.R. Singhania, A. Pandey, Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy, Bioresour. Technol. 101 (2010) 925–930.

W.-J. Liu, H.-Q. Yu, Thermochemical Conversion of Lignocellulosic Biomass into Mass-Producible Fuels: Emerging Technology Progress and Environmental Sustainability Evaluation, ACS Environ. Au. 2 (2022) 98–114.

D.M. Alonso, J.Q. Bond, J.A. Dumesic, Catalytic conversion of biomass to biofuels, Green Chem. 12 (2010) 1493.

S.G. Wi, E.J. Cho, D.-S. Lee, S.J. Lee, Y.J. Lee, H.-J. Bae, Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials, Biotechnol. Biofuels. 8 (2015) 228.

A.A. Peterson, F. Vogel, R.P. Lachance, M. Fröling, M.J. Antal, Jr., J.W. Tester, Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies, Energy Environ. Sci. 1 (2008) 32.

G. Gong, D. Liu, Y. Huang, Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw, Biosyst. Eng. 107 (2010) 67–73.

N. Mosier, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour. Technol. 96 (2005) 673–686.

Y. Zhou, H. Chen, F. Qi, X. Zhao, D. Liu, Non-ionic surfactants do not consistently improve the enzymatic hydrolysis of pure cellulose, Bioresour. Technol. 182 (2015) 136–143.

H. Zhang, G. Ye, Y. Wei, X. Li, A. Zhang, J. Xie, Enhanced enzymatic hydrolysis of sugarcane bagasse with ferric chloride pretreatment and surfactant, Bioresour. Technol. 229 (2017) 96–103.

X. Xiao, J. Bian, M.-F. Li, H. Xu, B. Xiao, R.-C. Sun, Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment, Bioresour. Technol. 159 (2014) 41–47.

L.J. Ríos-González, M.A. Medina-Morales, J.A. Rodríguez-De la Garza, A. Romero-Galarza, D.D. Medina, T.K. Morales-Martínez, Comparison of dilute acid pretreatment of agave assisted by microwave versus ultrasound to enhance enzymatic hydrolysis, Bioresour. Technol. 319 (2021) 124099.

S. Zhu, Y. Wu, Z. Yu, Q. Chen, G. Wu, F. Yu, C. Wang, S. Jin, Microwave-assisted Alkali Pretreatment of Wheat Straw and its Enzymatic Hydrolysis, Biosyst. Eng. 94 (2006) 437–442.

M. Karimi, B. Jenkins, P. Stroeve, Ultrasound irradiation in the production of ethanol from biomass, Renew. Sustain. Energy Rev. 40 (2014) 400–421.

P.A. Mello, J.S. Barin, R.A. Guarnieri, Microwave Heating, in: É.M. de M. Flore (Ed.), Microwave-Assisted Sample Prep. Trace Elem. Anal., Elsevier, 2014: pp. 59–75.

O. Merino-Pérez, R. Martínez-Palou, J. Labidi, R. Luque, Microwave-Assisted Pretreatment of Lignocellulosic Biomass to Produce Biofuels and Value-Added Products, in: Z. Fang, R. Smith Jr., X. Qi (Eds.), Prod. Biofuels Chem. with Microwave. Biofuels Biorefineries, Springer, Dordrecht, 2015: pp. 197–224.

A.R. Mankar, A. Pandey, A. Modak, K.K. Pant, Pretreatment of lignocellulosic biomass: A review on recent advances, Bioresour. Technol. 334 (2021) 125235.

M. Ashokkumar, The characterization of acoustic cavitation bubbles – An overview, Ultrason. Sonochem. 18 (2011) 864–872.

D. Wang, L. Yan, X. Ma, W. Wang, M. Zou, J. Zhong, T. Ding, X. Ye, D. Liu, Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems, Int. J. Biol. Macromol. 119 (2018) 453–461.

S. Cao, G.M. Aita, Enzymatic hydrolysis and ethanol yields of combined surfactant and dilute ammonia treated sugarcane bagasse, Bioresour. Technol. 131 (2013) 357–364.

W. Jin, L. Chen, M. Hu, D. Sun, A. Li, Y. Li, Z. Hu, S. Zhou, Y. Tu, T. Xia, Y. Wang, G. Xie, Y. Li, B. Bai, L. Peng, Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed, Appl. Energy. 175 (2016) 82–90.

W.-H. Chen, S.-C. Ye, H.-K. Sheen, Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment, Appl. Energy. 93 (2012) 237–244.

A. Jongmeesuk, V. Sanguanchaipaiwong, D. Ochaikul, Pretreatment and Enzymatic Hydrolysis from Water Hyacinth (Eichhornia crassipes), Curr. Appl. Sci. Technol. 14 (2018) 79–86.

H. Li, Y. Qu, Y. Yang, S. Chang, J. Xu, Microwave irradiation – A green and efficient way to pretreat biomass, Bioresour. Technol. 199 (2016) 34–41.

D. Menegol, A.L. Scholl, R.C. Fontana, A.J.P. Dillon, M. Camassola, Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants, Energy Convers. Manag. 88 (2014) 1252–1256.

N. Rokhati, B. Pramudono, T. Istirokhatun, H. Susanto, Microwave Irradiation-Assisted Chitosan Hydrolysis Using Cellulase Enzyme, Bull. Chem. React. Eng. Catal. 13 (2018) 466.

R. Datta, Acidogenic fermentation of lignocellulose-acid yield and conversion of components, Biotechnol. Bioeng. 23 (1981) 2167–2170.

G.L. Miller, Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Anal. Chem. 31 (1959) 426–428.

F.H. Isikgor, C.R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers, Polym. Chem. 6 (2015) 4497–4559.

M.M. de S. Moretti, D.A. Bocchini-Martins, C. da C.C. Nunes, M.A. Villena, O.M. Perrone, R. da Silva, M. Boscolo, E. Gomes, Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis, Appl. Energy. 122 (2014) 189–195.

A. Kamalini, S. Muthusamy, R. Ramapriya, B. Muthusamy, A. Pugazhendhi, Optimization of sugar recovery efficiency using microwave assisted alkaline pretreatment of cassava stem using response surface methodology and its structural characterization, J. Mol. Liq. 254 (2018) 55–63.

S.S. Mohtar, T.N.Z. Tengku Malim Busu, A.M. Md Noor, N. Shaari, H. Mat, An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch, Carbohydr. Polym. 166 (2017) 291–299.

S. Ethaib, R. Omar, M.K.S. Mazlina, A.B.D. Radiah, S. Syafiie, Microwave-assisted dilute acid pretreatment and enzymatic hydrolysis of sago palm bark, BioResources. 11 (2016) 5687–5702.

N. Rokhati, T.D. Kusworo, A. Prasetyaningrum, N.' Aini Hamada, D.P. Utomo, T. Riyanto, Effect of Surfactant HLB Value on Enzymatic Hydrolysis of Chitosan, ChemEngineering. 6 (2022) 17.

Y. Chen, X. Zhang, S. Zhang, W. Qin, C. Guo, X. Guo, D. Xiao, Enhanced enzymatic xylose/cellulose fractionation from alkaline liquor-pretreated corn cob by surfactant addition and separate fermentation to bioethanol, Turkish J. Biol. 38 (2014) 478–484.

M. Yang, A. Zhang, B. Liu, W. Li, J. Xing, Improvement of cellulose conversion caused by the protection of Tween-80 on the adsorbed cellulase, Biochem. Eng. J. 56 (2011) 125–129.

S. Okino, M. Ikeo, Y. Ueno, D. Taneda, Effects of Tween 80 on cellulase stability under agitated conditions, Bioresour. Technol. 142 (2013) 535–539.

R. Agrawal, A. Satlewal, M. Kapoor, S. Mondal, B. Basu, Investigating the enzyme-lignin binding with surfactants for improved saccharification of pilot scale pretreated wheat straw, Bioresour. Technol. 224 (2017) 411–418.

R. Caenn, H.C.H. Darley, G.R. Gray, The Surface Chemistry of Drilling Fluids, in: Compos. Prop. Drill. Complet. Fluids, Elsevier, 2011: pp. 307–329.

R. Miller, Emulsifiers: Types and Uses, in: B. Caballero, P.M. Finglas, F. Toldrá (Eds.), Encycl. Food Heal., Elsevier, 2016: pp. 498–502.

A. Speranza, M.G. Corradini, T.G. Hartman, D. Ribnicky, A. Oren, M.A. Rogers, Influence of Emulsifier Structure on Lipid Bioaccessibility in Oil–Water Nanoemulsions, J. Agric. Food Chem. 61 (2013) 6505–6515.

H.S. Kusuma, P.D. Amelia, C. Admiralia, M. Mahfud, Kinetics study of oil extraction from Citrus auranticum L. by solvent-free microwave extraction, Commun. Sci. Technol. 1 (2016) 15–18.

J. Shao, Y. Yang, Q. Zhong, Studies on preparation of oligoglucosamine by oxidative degradation under microwave irradiation, Polym. Degrad. Stab. 82 (2003) 395–398.

P. Su, S. Wang, Y. Shi, Y. Yang, Application of cellulase-polyamidoamine dendrimer-modified silica for microwave-assisted chitosan enzymolysis, Process Biochem. 48 (2013) 614–619.

R. Ratnawati, N. Indriyani, Kinetics and Thermodynamics Study of Ultrasound-Assisted Depolymerization of k-Carrageenan in Acidic Solution, Bull. Chem. React. Eng. Catal. 15 (2020) 280–289.

J.H. Bang, K.S. Suslick, Applications of Ultrasound to the Synthesis of Nanostructured Materials, Adv. Mater. 22 (2010) 1039–1059.

T.F. Tadros, Applied Surfactants: Principles and Applications, John Wiley & Sons, 2006.

M. Zeng, H. Gao, Y. Wu, L. Fan, T. Zheng, D. Zhou, Effects of Ultra-sonification Assisting Polyethylene Glycol Pretreatment on the Crystallinity and Accessibility of Cellulose Fiber, J. Macromol. Sci. Part A. 47 (2010) 1042–1049.