Study of green and sustainable heterogeneous catalyst produced from Javanese Moringa oleifera leaf ash for the transesterification of Calophyllum inophyllum seed oil
Main Article Content
Abstract
The transesterification of Calophyllum inophyllum seed oil into biodiesel using Javanese Moringa oleifera leaf ash catalyst with various reaction conditions has been completed. MA-500 (Moringa ash at 500°C for 3 h) and MA-900 (Moringa ash at 900°C for 3 h) catalysts were obtained by grinding Javanese old Moringa oleifera leaf (MP) and then calcined for 3 h at 500 and 900°C. The crude Calophyllum inophyllum seed oil was degummed (OD) prior to continue the esterification process (ODE). The MA-500 and MA-900 catalysts were tested for their activity and selectivity through the ODE transesterification with various catalyst weights (3, 6, and 9% (w/w)), reaction temperature (55, 60, and 65°C), oil: methanol mole ratio (1:3, 1:6, and 1:9), and reaction time (60, 90, 120, and 150 minutes). The results showed that the MA-500 and MA-900 catalysts contained 18.17% and 52.91% Ca respectively. The esterification reaction could reduce FFA levels to 89.82%, from 19.46% to 1.98%. ODE transesterification with MA-900 catalyst optimum reaction conditions with a catalyst weight of 3%, reaction temperature of 60°C, oil: methanol mole ratio of 1:9, and reaction time of 120 min, 76.17% FAME yield was observed. The MA-900 catalyst has the potential to be an effective green catalyst.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. M. Athar, S. Imdad, S. Zaidi, M. Yusuf, H. Kamyab, J. J. Klemes and S. Chelliapan, Biodiesel Production by Single-Step Acid-Catalysed Transesterification of Jatropha Oil under Microwave Heating with Modelling and Optimisation using Response Surface Methodology, Fuel. 322 (2022) 124205.
3. M. S. Ibrahim, W. Trisunaryanti and T. Triyono, Nickel Supported Parangtritis Beach Sand (PP) Catalyst for Hydrocracking of Palm and Malapari Oil into Biofuel, BCREC. 17 (2022) 638-649.
4. D. M. Marinkovic, M. V. Stankovic, A. V. Velickovic, J. M. Avramovic, M. R. Miladinovic, O. O. Stamenkovic et al, Calcium Oxide as a Promising Heterogeneous Catalyst for Biodiesel Production: Current State and Perspectives, Renew. Sustain. Energy Rev. 56 (2016) 1387-1408.
5. A. B. Fadhil, E. T. B. Al-tikrity and A. M. Khalaf, Transesterification of Non-Edible Oils over Potassium Acetate Impregnated CaO Solid Base Catalyst, Fuel. 234 (2018) 81-93.
6. W. Trisunaryanti, S. Larasati, S. Bahri, Y. L. Ni’mah, L. Efiyanti, K. Amri et al, Performance Comparison of Ni-Fe Loaded on NH2-Functionalized Mesoporous Silica and Beach Sand in the Hydro Treatment of Waste Palm Cooking Oil, J. Environ. Chem. Eng. 8 (2020) 104477.
7. J. M. Dias, M. C. M. Alvim-Ferraz and M. F. Almeida, Comparison of the Performance of Different Homogeneous Alkali Catalysts during Transesterification of Waste and Virgin Oils and Evaluation of Biodiesel Quality, Fuel. 87 (2008) 3572-3578.
8. A. Patel, V. Brahmkhatri and N. Singh, Biodiesel Production by Esterification of Free Fatty Acid Over Sulfated Zirconia, Renew. Energy. 51 (2013) 227–233.
9. L. Pratama, Y. Yoeswono, T. Triyono and I. Tahir, Effect of Temperature and Speed of Stirrer to Biodiesel Conversion from Coconut Oil with the use of Palm Empty Fruit Bunches as a Heterogeneous Catalyst, Indonesia. J. Chem. 9 (2010) 54-61.
10. W. N. M. W. Ghazali, R. Mamat, H. H. Masjuki and G. Najafi., Effects of Biodiesel from Different Feedstock on Engine Performance and Emissions: A review, Renew. Sustain. Energy Rev. 51 (2015) 582-602.
11. G. Anastopoulos, Y. Zannikou, S. Stournas and S. Kalligeros, Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters, Energies. 2 (2009) 362-376.
12. M. R. Avhad and J.M. Marchetti, A Review on Recent Advancement in Catalytic Materials for Biodiesel Production, Renew Sustain Energy Rev. 50 (2015) 696-718.
13. N. S.M. Alias, H. Veny, F. Hamzah and N. Aziz, Effect of Free Fatty Acid Pretreatment to Yield, Composition and Activation Energy in Chemical Synthesis of Fatty Acid Methyl Ester, Indonesia. J. Chem. 19 (2019) 592-598.
14. E. P. Sari, K. Wijaya, W. Trisunaryanti, A. Syoufian, Hasanudin and W.D. Saputri, The Effective Combination of Zirconia Superacid and Zirconia-Impregnated CaO in Biodiesel Manufacturing: Utilization of used Coconut Cooking Oil (UCCO), Int. J. Energy Environ. Eng. 13 (2022) 967-978.
15. J. M. Marchetti, V. U. Miguel and A. F. Errazu, Techno-Economic Study of Different Alternatives for Biodiesel Production, Fuel Process. Technol. 89 (2008) 740-748.
16. R. A. Pratika, K. Wijaya and W. Trisunaryanti, Hydrothermal Treatment of SO4/TiO2 and TiO2/CaO as Heterogeneous Catalysts for the Conversion of Jastropha Oil into Biodiesel, J. Environ. Chem. Eng. 9 (2021) 106547.
17. B. Leksono, R. L. Hendrati, E. Windyarini and T. Hasnah, Variation in Biofuel Potential of Twelve Calophyllum inophyllum Populations in Indonesia, Indonesia. J. For. Res. 1 (2014) 127-138.
18. P. Mardina, H. Wijayanti, A. Tuhuloula, E. Hijriyati and S. Sarifah, Corncob Residue as Heterogeneous Acid Catalyst for Green Synthesis of Biodiesel: A Short Review, Commun. Sci. Technol. 6 (2021) 60-68.
19. A. S. Yusuff, K. S. Thompson-Yusuff and A. I. Igbafe, Synthesis of Biodiesel via Methanolysis of Waste Frying Oil by Biowaste-Derived Catalyst: Process Optimization and Biodiesel Blends Characterization, Biomass Convers. Biorefin. (2022) 1-12.
20. B. Basumatary, S. Basumatary, B. Das, B. Nath and P. Kalita, Waste Musa paradisiaca Plant: An Efficient Heterogeneous Base Catalyst for Fast Production of Biodiesel, J. Cleaner Prod. 305 (2021) 127089.
21. N. Nakatani, H. Takamori, K. Takeda and H. Sakugawa, Transesterification of Soybean Oil using Combusted Oyster Shell Waste as a Catalyst, Bioresour. Technol. 100 (2009) 510-513.
22. A. Bancessi, Q. Bancessi, A. Blade and L. Catarino, Present and Potential uses of Moringa oleifera as a Multipurpose Plant in Guinea-Bissau, S. Afr. J. Bot. 129 (2020) 206-208.
23. A. T. Oyeyinka and S. A. Oyeyinka, Moringa oleifera as a Food Fortificant: Recent Trends and Prospects, J. Saudi Soc. Agric. Sci. 17 (2018) 127-136.
24. Department of Health, Nutrient Analysis of Fruit and Vegetables: Summary Report, 2013, England.
25. V. Kalaiselvi, R. Mathammal, S. Vijayakumar and B. Vaseeharan, Microwave Assisted Green Synthesis of Hydroxyapatite Nanorods using Moringa oleifera Flower Extract and Its Antimicrobial Applications, Int J Vet Sci Med. 6 (2018) 286-295.
26. W. Roschat, T. Siritanon, B. Yoosuk and V. Promarak, Biodiesel Production from Palm Oil using Hydrated Lime-Derived CaO as a Low-Cost Basic Heterogeneous Catalyst, Energy Convers. Manage. 108 (2016) 459-467.
27. R. Rasyid, A. Prihartantyo, M. Mahfud and A. Roesyadi, Hydrocracking of Calophyllum inophyllum Oil with Non-Sulfide CoMo Catalysts, BCREC. 10 (2015) 61–69.
28. N. Shibasaki-Kitakawa, H. Honda, H. Kuribayashi, T. Toda, T. Fukumura and T. Yonemoto, Biodiesel Production using Anionic Ion-Exchange Resin as Heterogeneous Catalyst, Bioresource. Technol. 98 (2007) 416-421.
29. Hartati, W. Trisunaryanti, R. R. Mukti, I. A. Kartika, P. B. D. Firda, S. D. Sumbogo SD et al, Highly Selective Hierarchical ZSM-5 from Kaolin for Catalytic Cracking of Calophyllum inophyllum Oil to Biofuel, J. Energy Inst. 93 (2020). 2238-2246.
30. A. Demirbas, A. Bafail and M. Sheikh, Biodiesel Production from Non-Edible Plant Oils. Energy Explor, Exploit. 34 (2016) 290-218.
31. W. Trisunaryanti, K. Wijaya, T. Triyono, A. R. Adriani and S. Larasati, Green Synthesis of Hierarchical Porous Carbon Prepared from Coconut Lumber Sawdust as Ni-based Catalyst Support for Hydrotreating Calophyllum inophyllum Oil, Results Eng. 11 (2021) 100258.
32. Y. Luo, Z. Mei, N. Liu, H. Wang, C. Han and S. He, Synthesis of Mesoporous Sulfated Zirconia Nanoparticles with High Surface Area and Their Applies for Biodiesel Production as Effective Catalysts, Catal. Today. 298 (2017) 99-108.
33. N. K. Erliyanti, A. K. Sari, A. Chumaidi, R. R. Yogaswara and E. A. Saputro, Transesterificatiom of Biodiesel from Kapok Seed Oil (Ceiba pentandra), Konversi. 10 (2021) 102-108.
34. M. Farooq, A. Ramli and D. Subbarao, Biodiesel Production from Waste Cooking Oil using Bifunctional Heterogeneous Solid Catalysts, J. Clean. Prod. 59 (2013) 131-140.
35. Taslim, O. Bani, Iriany, S. Lestari and L. Ginting, Biodiesel Production using Heterogeneous Catalyst Based on Volcanic Ash of Mount Sinabung, AIP Conf. Proc. 1 (2019). 1-7.
36. A. E. Atabani, A. S. Silitonga, T. M. I. Mahlia, H. H. Masjuki and I. A. Badrudin, Calophyllum inophyllum L. as a Potential Feedstock for Biodiesel Production. Thesis, University of Malaya, Kuala Lumpur, 2019.
37. M. Galvan-Ruiz, J. Hernandez, L. Banos, J. Noriega-Montes and M. E. Rodriguez-Gracia, Characterization of Calcium Carbonate, Calcium Oxide, and Calcium Hydroxide as Starting Point to the Improvement of Lime for Their use in Construction, J. of Mat. In Civil Eng. 21 (2009) 694-98.
38. Ojumu, Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A case of Synthesis Modeling and Optimization Studies, Catal Lett. 149 (2019) 1772-687.
39. A. B. D. Nandiyanto, R. Oktiani and R. Rgadhita, How to Read and Interpret FTIR Spectroscope of Organic Material, Indonesian Journal of Science & Technology. 4 (2019) 97-118.
40. N. Chanthon, N. Munbupphachart, K. Ngaosuwan, W. Kiatkittipong, D. Wongsawaeng, W. Mens et al, Metal Loading on CaO/ Al2O3 Pellet Catalyst as A Booster for Transesterification in Biodiesel Production, Renew. Sustain. Energy Rev. 218 (2023) 1-12.
41. J. Boro, A. J. Thakur and D. Deka, Solid Oxide Derived from Waste Shells of Turbonilla striatula as a Renewable Catalyst for Biodiesel Production, Fuel Process. Technol. 10 (2011) 2061-2067.
42. M. J. Borah, A. Das, V. Das, N. Bhuyan and D. Deka, Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst, Fuel. 242 (2019) 345–354.
43. F. Cheng and X. Li, Preparation and Application of Biochar-Based Catalysts for Biofuel Production, Catalysts. 8 (2018) 346.
44. I. Said, S. Nuryanti S, T. R. Tiaradewi and P. Ningsih, The Effect of Durian Skin Ash Concentration in Methanolysis Reaction of Palm Oil on Fatty Acid Methyl Esters Concentration, J. Phys. Conf. Ser. 1434 (2020) 1-5.
45. A. Anantapinitwatna, K. Ngaosuwan, W. Kiatkittipong, D. Wongsawaeng and S. Assabumrungrat, Effect of Water Content in Waste Cooking Oil on Biodiesel Production via Ester-Transesterification in a Single Reactive Distillation, IOP Conf. Ser. Mater. Sci. Eng. 559 (2019) 1-10.
46. F. Ma and M. A. Hanna, Biodiesel Production: a Review. Bioresources, Technol. 70 (1999) 1-15.
47. T. Maneerung, S. Kawi, Y. Dai and C. H. Wang CH, Sustainable Biodiesel Production via Transesterification of Waste Cooking Oil by using CaO Catalysts Prepared from Chicken Manure, Energy Convers. Manag. 123 (2016) 487-497.
48. Z. Helwani, N. Aziz, M. Z. A. Bakar, H. Mukhtar, J. Kim and M. R. Othman, Conversion of Jatropha Curcas Oil into Biodiesel using Re-Crystallized Hydrotalcite. Energy, Convers. Manag. 128 (2013) 128-134.
49. J. Gardy, M. Rehan, A. Hassanpour , X. Lai and A. S. Nizami, Advances in Nano-Catalysts based Biodiesel Production from Non-Food Feedstocks, J. Environ. Manage. 249 (2019) 109316.
50. V. M. Melo, G.F. Ferreira, L. V. Fregolente, Sustainable Catalysts for Biodiesel Production: The Potential of CaO Supported on Sugarcane Bagasse Biochar, Renew. Sustain. Energy Rev. 189 (2023) 1-12.
51. B. Oladipo, T. V. Ojumu and E. Betiku, Potential of Pawpaw Peels as a Base Heterogeneous Catalyst for Biodiesel Production: Modeling and Optimization Studies, Nigerian Society of Chemical Engineers 48th Annual Conference. (2018) 1-11.
52. M. F. R. Nizah, Y. H. Taufiq-Yap, U. Rashid, S. H. Teo, Z. S. A. Nur and A. Islam, Production of Biodiesel from Non-Edible Jatropha curcas Oil via Transesterification using Bi2O3-La2O3 Catalyst, Energy. Convers. Manag. 88 (2014) 1257–1262.
53. T. A. Degfie, T. T. Mamo and Y. S. Mekonnen, Optimized Biodiesel Production from Waste Cooking Oil (WCO) using Calcium Oxide (CaO) Nano-Catalyst, Nature Scientific Reports. 1 (2019) 1-8.
54. A. Obadiah, G. A. Swaroopa, S. V. Kumar, K. R. Jeganathan and A. Ramasubbu, Biodiesel Production from Palm Oil using Calcined Waste Animal Bone as Catalyst, Bioresour. Technol. 116 (2012) 512-516.
55. X. Yu, Z. Wen, H. Li, S. T. Tu and J. Yan, Transesterification of Pistacia Chinensis Oil for Biodiesel Catalyzed by CaO-CeO2 Mixed Oxides, Fuel. 90 (2011) 1868-1874.
56. M. Farooq, A. Ramli, A. Naeem, T. Mahmood, S. Ahmad, M. Humayun et al, Biodiesel Production from Date Seed Oil (Phoenix dactylifera L.) via Egg Shell Derived Heterogeneous Catalyst, Chem. Eng. Res. Des. 132 (2018) 644–651.
57. D. Y. C. Leung and Y. Guo, Transesterification of Neat and Used Frying Oil: Optimization for Biodiesel Production, J. Fuel Process TechnoL. 87 (2006) 883-890.
58. A. Gashaw, T. Getachew and A. Teshita, A Review on Biodiesel Production as Alternative Fuel, For. Prod. J. 2 (2015) 480-485.
59. K.L. Theam, A. Islam, Y. M. Choo and Y. H. Taufiq-Yap, Biodiesel from Low-Cost Palm Stearin using Metal Doped Methoxide Solid Catalyst, Ind Crops Prod. 76 (2015) 281-289.
60. A. Bilgin, M. Gülüm, I. Koyuncuoglu, E. Nac and A. Cakmak, Determination of Transesterification Reaction Parameters Giving the Lowest Viscosity Waste Cooking Oil Biodiesel, Procedia - Social and Behavioral Sciences. 195 (2015) 2492–2500.
61. M. Balajii and S. Niju , A Novel Biobased Heterogeneous Catalyst Derived from Musa acuminata Peduncle for Biodiesel Production – Process Optimization using Central Composite Design, Energy. Convers. Manag. 189 (2019) 118–131.
62. P. Mardina, H. Wijayanti, A. Tuhuloula, E. Hijriyati and S. Sarifah, Corncob Residue as Heterogeneous Acid Catalyst for Green Synthesis of Biodiesel: A Short Review, Commun. Sci. Technol. 6 (2021) 60-68.