Low-energy extraction of lignocellulose nanofibers from fresh Musa basjoo pseudo-stem

Main Article Content

Erna Mayasari
Satoru Fukugaichi
Erni Johan
Naoto Matsue


This study presents a novel approach for the extraction of cellulose nanofibers (CNF) and lignocellulose nanofibers (LCNF) from Musa basjoo pseudo-stems, a relative of bananas, without the need for extensive drying. Instead, wet pseudo-stems were compressed and treated with NaOH solutions at varying temperatures and durations. The extracted material exhibited the characteristic peaks of cellulose I in X-ray diffraction (XRD) patterns, similar to those obtained from dried pseudo-stems. Fourier-transform infrared (FT-IR) spectroscopy confirmed the presence of cellulose I in the treated material and lignocellulose nanofiber clearly shown at 1600-1500, 1421, 1365, and 1161 cm-1. Composition analysis by Van Soest fiber analysis revealed a higher cellulose content in the treated material of wet pseudo-stems compared to that obtained from dried pseudo-stems, indicating the effectiveness of this low-energy extraction method. Meanwhile, field-emission scanning electron microscopy (FE-SEM) images demonstrated clear LCNF in the nanometer scale fibers after NaOH treatment. Overall, this study successfully demonstrated the extraction of LCNF from wet pseudo-stems of Musa basjoo with NaOH treatment at 70°C for 3 hours with 80% extraction result, providing a more efficient and low-energy approach for utilizing waste from Musa basjoo and bananas.


Download data is not yet available.

Article Details

How to Cite
Mayasari, E., Fukugaichi, S., Johan, E., & Matsue, N. (2023). Low-energy extraction of lignocellulose nanofibers from fresh Musa basjoo pseudo-stem. Communications in Science and Technology, 8(2), 108-112. https://doi.org/10.21924/cst.8.2.2023.1211


1. P. N. Seo, S. Y. Han, C. W. Park, S. Y. Lee, N. H. Kim, and S. H. Lee, Effect of Alkaline Peroxide Treatment on the Chemical Compositions and Characteristics of Lignocellulosic Nanofibrils, BioResources., 14 (1) (2019) 193–206.
2. Y. Zhang, C. Zhang, and Y. Wang, Recent progress in cellulose-based electrospun nanofibers as multifunctional materials, Nanoscale Adv. 3 (2021) 6040–6047.
3. S. R. D. Petroudy, B. Chabot, E. Loranger, M. Naebe, J. Shojaeiarani, S. Gharehkhani, B. Ahvazi, J. Hu, and S. Thomas, Recent Advances in Cellulose Nanofibers Preparation through Energy-Efficient Approaches, Energies. 14 (2021) 6792.
4. S. J. Shi, T. Wang, J. Q. Lang, N. Zhou, and M. G. Ma, Multifunctional Cellulose and Cellulose-Based (Nano) Composite Adsorbents, Front. Bioeng. Biotechnol. 10 (2022) 891034.
5. I. W. Risdianto, A. Ahmad, and R. A. Ermawar, Synthesis of cellulose acetate (CA) from algae Gracilaria sp. composited with nickel oxide (NiO) as a supercapacitor base material, Commun. Sci. Technol. 8(1) (2023) 87–92.
6. K. Ahmad, Z. Din, H. Ullah, Q. Ouyang, S. Rani, I. Jan, M. Alam, Z. Rahman, T. Kamal, S. Ali, S. A. Khan, D. Shahwar, F. Gul, M. Ibrahim, and T. Nawaz, Preparation and characterization of biobased nanocomposites packaging films reinforced with cellulose nanofibers from unripe banana peels. Starch. 74 (2020) 2100283.
7. V. Pakharenko, J. Sameni, S. Konar, M. Pervaiz, W. Yang, J. Tjong, K. Oksman, and M. Sain, Cellulose nanofiber thin-films as transparent and durable flexible substrates for electronic devices, Maters. Des. 197 (2021) 109274.
8. K. Zheng, X. Fan, Y. Mao, J. Lin, W. Dai, J. Zhang, and J. Cheng, The well-designed hierarchical structure of Musa basjoo for supercapacitors. Sci. Rep. 6 (2016) 20306 1–9.
9. A. Isogai, Cellulose nanofiber: Recent Progress and Future Prospect, Feature review, J. Fiber Sci. Technol. 76 (10) (2020) 310–326.
10. M. Fukuhara, T. Yokotsuka, T. Hashida, T. Miwa, N. Fujima, M. Morita, T. Nakatani, and F. Nonomura, Amorphous cellulose nanofiber supercapacitors with voltage charging performance, Sci. Rep. 12 (2022) 5619.
11. W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang, T. Xu, X. Zang, C. Si, and K. Zhang, Cellulose nano paper: fabrication, functionalization, and applications, NanoMicro.Lett.14 (2022) 104.
12. J. Moohan, S. A. Stewart, S. Espinosa, A. Rosal, A. Rodríguez, E. Larrañeta, R. F. Donnelly, and J. Domínguez-Robles, Cellulose Nanofibers and Other Biopolymers for Biomedical Applications: A Review, Appl. Sci. 10 (2020) 65.
13. H. S. Teixeira, M. B. Fogaça, F. Furtado, F., M. R. Leal, A. Caldonazo, T. S. Franco, T. H. S. Flores-Sahagun, A. S. O. Andrade, M. VazquezLepe, and G. B. I. Muniz, Characterization of some Brazilian Lignocellulosic Materials for Nanocellulose Production, Biointerface Res.Appl.Chem. 13 (5) (2020) 1–11.
14. F. Gapsari, T. M. Putri, W. Rukmana, H. Juliano, A. M. Sulaiman, F. G. U. Dewi, Zuliantoni, S. M. Rangappa, and S. Siengchin, Isolation and Characterization of Muntingia Calabura Cellulose Nanofibers. J. Nat. Fibers. 20 (5) (2023) 1–10.
15. P. Kumari, G. Pathak, R. Gupta, D. Sharma, and A. Meena, Cellulose nanofibers from lignocellulosic biomass of lemongrass using enzymatic hydrolysis: characterization and cytotoxicity assessment, DARU J. Pharm. Sci. 27 (2019) 683–693.
16. G. Zhang, F. Wu, T. Ma, B. Zhang, A. Manyande, and H. Du, Preparation and Characterization of Cellulose Nanofibers Isolated from Lettuce Peel, Cellul. Chem. Technol. 53 (2018) 677–684.
17. I. B. W. Gunam, Y. Setiyo, N. S. Antara, I. M. M. Wijaya, I. W. Arnata, and I. W. W. P. Putra, Enhanced Delignification of Corn Straw with Alkaline Pre-treatment at Mild Temperature, Rayasan J. Chem. 13 (2) (2020) 1022–1029.
18. H. Xu, J. L. Sanchez Salvador, A. Balea, A. Blanco, and C. Negro, Optimization of reagent consumption in TEMPO mediated oxidation of Eucalyptus cellulose to obtain cellulose nanofibers, Cellul. 29 (2020) 6611–6627.
19. L. U. S. Faria, B. J. S. Pacheo, G. C. Oliveira, and J. L. Silva, Production of cellulose nanocrystals from pineapple crown fibers through alkaline pretreatment and acid hydrolysis under different conditions, J.Mater.Res.Technol. 9 (6) (2020)12346–12353.
20. S. Mishra, B. Prabhakar, P. S. Kharhar, and A. M. Pethe, Banana Peel Waste: An Emerging Cellulosic Material to Extract Nanocrystalline Cellulose, ACS Omega. 8 (2020) 1140–1145.
21. E. Taer, Apriwandi, F. Hasanah, and R. Taslim, Nanofiber-enrich activated carbon coin derived from tofu dregs as electrode materials for supercapacitor, Commun. Sci. Technol. 6 (1) (2021) 41-48.
22. H. Tibolla, F. M. Pellissari, J. T. Martins, A. A. Vicente, and F. C. Menegalli, Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocoll. 75 (2018) 192–201.
23. N. A. M. Jamil, S. S. Jaffar, S. Saallah, M. Misson, S. Siddiquee, J. Roslan, and W. Lenggoro, Isolation of Cellulose Nanocrystals from Banana Peel Using One-Pot Microwave and Mild Oxidative Hydrolysis System. Nanomater. 12 (2022) 3537.
24. M. S. Merais, N. Khairuddin, M. H. Salehuddin, M. B. M. Siddique, P. Lepun, and W. S. Chuong, Preparation and Characterization of Cellulose Nanofibers from Banana Pseudostem by Acid Hydrolysis: Physico-chemical and Thermal Properties, Membranes. 12 (2022)1–13.
25. International Labour Organization. Wages and working conditions in the banana sector: the case of Costa Rica, Ethiopia, India, Indonesia, and Viet Nam. ISBN 978-92-2-033987-9 (web PDF), 2020.
26. J. Gong, J. Li, J. Xu, Z. Xiang, and L. Mo, Research on cellulose nanocrystals produced from cellulose sources with various polymorphs, RSC Adv. 7 (2017) 33486-33493.
27. J. Jang, N. Hayashi, S. Han, C. Park, F. Febrianto, S. Lee, and N. Kim, Changes in the Dimensions of Lignocellulose Nanofibrils with Different Lignin Contents by Enzymatic Hydrolysis. Polym. 12 (2020) 2201.
28. A. Isogai, Development of completely dispersed cellulose nanofiber: Review, Proc. Jpn. Acad. 94 (4) (2018) 161-179.
29. N. T. T., Van, P. Gaspillo, H. G. T., Thanh, N. H. T., Nhi, H. N., Long, N. Tri, N. T. T., Van, T. Nguyen, and H. K. P., Ha, Cellulose from the banana stem: optimization of extraction by response surface methodology (RSM) and characterization, Heliyon. 8 (2020) e11845 1-10.
30. S. Fukugaichi, E. Mayasari, E. Johan, and N. Matsue, One step preparation of lignocellulose nanofibers from Musa basjoo pseudo stem, Chem.pap. 77 (7) (2023) 3619–3627.
31. Q. Liu, Y. Lu, M. Aguedo, N. Jacquet, C. Ouyang, and W. He, Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and micro fluidization, ACS Sustain. Chem. Eng. 5 (2017) 6183–6191.
32. Z. Borcsok, and Z. Pasztory, The role of lignin in woodworking processes using elevated temperatures: an abbreviated literature survey, Eur. J. Wood. Wood. Prod. 79 (2020) 511–526.
33. S. Cichosz, and A. Masek, IR Study on Cellulose with the Varied Moisture Contents: Insight into the Supramolecular Structure, Materials. 13 (2020) 4573.
34. A. L. S. Pereira, D. M. do Nascimento, M. S. M. Souza, A. R. Cassales, J. P. S. Morais, R. C. M. de Paula, M. de F. Rosa, and J. P. A, Feitosa. Banana (Musa sp. cv. Pacovan) Pseudostem Fibers are Composed of Varying Lignocellulosic Composition throughout the Diameter, Bioresources 9 (4) (2014) 7749-7763.
35. P. Patil, P. Wadekar, M. Patil, and A. Lali, Separation of Lignocellulosic Biomass Components by Alkali Pretreatment, Acta. Sci.Microbiol. 3 (4) (2020) 123-128.