Aerosol optical depth (AOD) retrieval for atmospheric correction in Landsat-8 imagery using second simulation of a satellite signal in the solar spectrum-vector (6SV)

Main Article Content

Abdul Basith
Muhammad Ulin Nuha
Ratna Prastyani
Gathot Winarso


Atmospheric correction has been challenging task in digital image processing. It requires several atmospheric parameters in order to obtain accurate surface reflectance of objects within the image scene. One of the most crucial parameters required for accurate atmospheric correction is aerosol optical depth (AOD). AOD can be obtained by in-situ measurement or estimated from remote sensing observation. In this experiment, atmospheric correction was performed using second simulation of a satellite signal in the solar spectrum-vector (6SV) algorithm on Landsat-8 imagery in which AOD parameter was retrieved from surface reflectance inversion involving daily-global surface reflectance product of moderate resolution imaging spectroradiometer (MODIS). Furthermore, AOD retrieved from surface reflectance inversion was also validated using ground-based sun photometer observation data from aerosol robotic network (AERONET) station in Bandung, Indonesia. Our experiment shows the consistency between AOD from surface reflectance inversion and AOD from ground-based observation. Finally, 6SV was performed on Landsat-8 imagery to obtain the surface reflectance. We further compared surface reflectance of 6SV atmospheric correction and surface reflectance of Landsat-8 Level 2 product. The atmospherically corrected image also shared agreeable result with Landsat 8 Level-2 product.


Download data is not yet available.

Article Details

How to Cite
Basith, A., Nuha, M. U., Prastyani, R., & Winarso, G. (2019). Aerosol optical depth (AOD) retrieval for atmospheric correction in Landsat-8 imagery using second simulation of a satellite signal in the solar spectrum-vector (6SV). Communications in Science and Technology, 4(2), 68-73.


1. E. Vermote, C. Justice, M. Claverie, and B. Franch, Preliminary analysis of the performance of the landsat 8/OLI land surface reflectance product, Remote Sens. Environ. 185 (2016) 46–56.
2. Y. J. Kaufman, et al., Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, J. Geophys. Res. Atmos. 102 (1997) 16815–16830.
3. M. Bilal, J. E. Nichol, M. P. Bleiweiss, and D. Dubois, A simplified high resolution MODIS aerosol retrieval algorithm (SARA) for use over mixed surfaces, Remote Sens. Environ. 136 (2013) 135–145.
4. A. D. A. Hansen, H. Rosen, and T. Novakov., The aethalometer — an instrument for the real-time measurement of optical absorption by aerosol particles, Sci. Total Environ. 36 (1984) 191–196.
5. A. Ansmann, M. Riebesell, and C. Weitkamp., Measurement of atmospheric aerosol extinction profiles with a raman lidar, Opt. Lett.. 15 (1990) 746–748.
6. R. A. Kahn, et al., Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident aerosol robotic network (AERONET) observations, J. Geophys. Res. D Atmos. 110 (2005) 1–16.
7. B. N. Holben et al., An emerging ground- based aerosol climatology: aerosol optical depth from AERONET, J. Geophys. Res. 106 (2001) 12067–12097.
8. K. Jia, X. Wei, X. Gu, Y. Yao, X. Xie, and B. Li, Land cover classification using landsat 8 operational land imager data in Beijing, China, Geocarto Int. 29 (2014) 941–951.
9. P. Jagalingam, B. J. Akshaya, and A. V. Hegde, Bathymetry mapping using landsat 8 satellite imagery, Procedia Eng. 116 (2015) 560–566.
10. P. Li, L. Jiang, and Z. Feng, Cross-comparison of vegetation indices derived from landsat-7 enhanced thematic mapper plus (ETM+) and landsat-8 operational land imager (OLI) sensors, Remote Sens. 6 (2013) 310–329.
11. K. T. Setiawan, Y. Marini, J. Manalu, and S. Budhiman, The effect of different atmospheric corrections on bathymetry extraction using landsat 8 satellite imagery, Int. J. Remote Sens. Earth Sci. 12 (2015) 13–20.
12. E. F. Vermote, N. Z. El Saleous, and C. O. Justice, Atmospheric correction of MODIS data in the visible to middle infrared: first results, Remote Sens. Environ. 83 (2002) 97–111.
13. R. Wolfe, J. Masek, N. Saleous, and F. Hall, LEDAPS: mapping north american disturbance from the landsat record, IGARSS 2004. 2004 IEEE Int. Geosci. Remote Sens. Symp, 2004, pp. 4–7.
14. D. P. Roy, et al., Landsat-8: Science and product vision for terrestrial global change research, Remote Sens. Environ. 145 (2014) 154–172.
15. J. Ju, D. P. Roy, E. Vermote, J. Masek, and V. Kovalskyy, Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods, Remote Sens. Environ. 122 (2012) 175–184.
16. F. M. Bréon and E. Vermote., Correction of MODIS surface reflectance time series for BRDF effects, Remote Sens. Environ. 125 (2012) 1–9.
17. Y. Wang, L. Liu, Y. Hu, D. Li, and Z. Li, Development and validation of the Landsat-8 surface reflectance products using a MODIS-based per-pixel atmospheric correction method, Int. J. Remote Sens. 37 (2016) 1291–1314.
18. M. Bilal and J. E. Nichol., Evaluation of MODIS aerosol retrieval algorithms over the Beijing-Tianjin-Hebei region during low to very high pollution events, J. Geophys. Res. Atmos. Res. 120 (2015) 7941–7957.
19. R. C. Levy et al, Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys. 10 (2010) 10399–10420.
20. L. M. Jaelani, F. Setiawan, and B. Matsushita., Uji akurasi produk reflektan-permukaan landsat menggunakan data in situ di danau kasumigaura, Jepang, Pertem. Ilm. Tah. Masy. Penginderaan Jauh Indonesia, 2015, pp. 9–16.
21. Z. Wenhui, et al., The distribution of aerosol optical depth retrieved by TM imagery over Beijing urban area, China, in International Geoscience and Remote Sensing Symposium, 2011, pp. 2185–2188.
22. Z. P. Dong, X. Yu, X. M. Li, and J. Dai, Analysis of variation trends and causes of aerosol optical depth in shaanxi province using MODIS data, Chinese Sci. Bull. 58 (2013) 4486–4496.