Evaluating hydrogen production from glucose using graphite felt beads as a solid matrix in immobilized mixed cell reactor at thermophilic fermentation

Main Article Content

Ibdal Ssatar
Mohd Nur Ikhmal Salehmin
Mimi Hani Abu Bakar
Wan Ramli Wan Daud
Ika Dyah Kumalasari
Muhammad Aziz
Mahendara Rao Somalu
Byung Hong Kim


This study has successfully evaluated graphite felt (GF) beads as a solid matrix to immobilize or trap the mixed cultures in an immobilized mixed-cell reactor (IMcR). The anaerobic sludge of palm oil mill effluent was used as an inoculum source in the IMcR with mixed culture. Here, glucose, sucrose, and starch were used as the model substrates to evaluate the performance of IMcR with GF beads for producing bio-hydrogen (BioH2). BioH2, effluent, and surface morphology of GF beads were analyzed by using gas chromatography equipped with a thermal conductivity detector, high-performance liquid chromatography, and scanning electron microscopy, respectively. The highest H2 yield (YH2) and production rates were obtained at 304.0 ± 13.2 mL g?1COD (corresponding to 2.26 mol mol?1glucose) and 1403 ± 61 mL L?1 day?1, respectively. IMcR with GF beads is a new approach for generating high YH2, which can be used for more than two months in an experimental run.


Download data is not yet available.

Article Details

How to Cite
Ssatar, I., Salehmin, M. N. I., Abu Bakar, M. H., Wan Daud, W. R., Kumalasari, I. D., Aziz, M., Somalu, M. R., & Kim, B. H. (2023). Evaluating hydrogen production from glucose using graphite felt beads as a solid matrix in immobilized mixed cell reactor at thermophilic fermentation. Communications in Science and Technology, 8(2), 180-189. https://doi.org/10.21924/cst.8.2.2023.1238


1. W. Li, C. Cheng, G. Cao, and N. Ren, Enhanced biohydrogen production from sugarcane molasses by adding Ginkgo biloba leaves, Bioresour. Technol. 298 (2020) 122523.
2. T. Emanuele, M. Raul, V. Wouter, W. Thomas, L. Jean-Christophe, and B. Frederic, Hydrogen from Renewable Power: Technology Outlook for the Energy Transition. IRENA. (2018) 1–52.
3. D. D. T. Ferraren-De Cagalitan and M. L. S. Abundo, A review of biohydrogen production technology for application towards hydrogen fuel cells, Renew. Sust. Ener. Rev. 151 (2021) 111413.
4. B. P. Raj, C. S. Meena, N. Agarwal, L. Saini, S. H. Khahro, U. Subramaniam et al, A review on numerical approach to achieve building energy efficiency for energy, economy and environment (3E) benefit, Energies. 14(15) (2021) 1–26.
5. A. Pareek, R. Dom, J. Gupta, J. Chandran, V. Adepu, and P. H. Borse, Insights into renewable hydrogen energy: Recent advances and prospects, Mater. Sci. Energy Technol. 3 (2020) 319–327.
6. T. Chookaew, S. O-Thong, and P. Prasertsan, Biohydrogen production from crude glycerol by immobilized Klebsiella sp. TR17 in a UASB reactor and bacterial quantification under non-sterile conditions, Int. J. Hydrog. Energy. 39(18) (2014) 9580–9587.
7. P. Sivagurunathan, G. Kumar, and C. Y. Lin, Hydrogen and ethanol fermentation of various carbon sources by immobilized Escherichia coli (XL1-Blue), Int. J. Hydrog. Energy. 39(13) (2014) 6881–6888.
8. P. Khongkliang, A. Jehlee, P. Kongjan, A. Reungsang, and S. O-Thong, High efficient biohydrogen production from palm oil mill effluent by two-stage dark fermentation and microbial electrolysis under thermophilic condition, Int. J. Hydrog. Energy. 44(60) (2019) 31841–31852.
9. N. Akhlaghi and G. Najafpour-Darzi, A comprehensive review on biological hydrogen production, Int. J. Hydrog. Energy. 45(43) (2020) 22492–22512.
10. M. Samer, Biological and Chemical Wastewater Treatment Processes, in Wastewater Treatment Engineering, Intechopen. (2015) 1–50.
11. I. Satar, M. Ghasemi, S. A. Aljlil, W. N. R. W. Isahak, A. M. Abdalla, J. Alam et al., Production of hydrogen by Enterobacter aerogenes in an immobilized cell reactor, Int. J. Hydrog. Energy. 42(14) (2017) 9024–9030.
12. I. Satar, W. R. W. Daud, B. H. Kim, M. R. Somalu, and M. Ghasemi, Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose, Energy. 139 (2017) 1188–1196.
13. Y. K. Oh, S. H. Kim, M. S. Kim, and S. Park, Thermophilic biohydrogen production from glucose with trickling biofilter, Biotechnol. Bioeng. 88(6) (2004) 690–698.
14. D. M. Fontes Lima, W. K. Moreira, and M. Zaiat, Comparison of the use of sucrose and glucose as a substrate for hydrogen production in an upflow anaerobic fixed-bed reactor, Int. J. Hydrog. Energy. 38(35) (2013) 15074–15083.
15. 15. S. K. Bhatia, S. S. Jagtap, A. A. Bedekar, R. K. Bhatia, K. Rajendran, A. Pugazhendhi et al., Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies, Sci. Total Environ. 765 (2021) 144429.
16. J. Thipraksa, P. Michu, A. Kongthong, and P. Chaijak, Exploring the impact of co-fermentation Saccharomyces cerevisiae and Lactobacillus sp. on stingless bee-honey cider fermentation, Commun. Sci. Technol. 8(1) (2023) 93–99.
17. R. Moreno, A. Escapa, J. Cara, B. Carracedo, and X. Gómez, A two-stage process for hydrogen production from cheese whey: Integration of dark fermentation and biocatalyzed electrolysis, Int. J. Hydrog. Energy. 40(1) (2015) 168–175.
18. F. Vendruscolo, Starch: A potential substrate for biohydrogen production, Int. J. Energy Res. 39(3) (2015) 293–302.
19. T. C. Chaves, G. N. S. B. Gois, F. S. Peiter, D. V. Vich, and E. L. C. de Amorim, Biohydrogen production in an AFBR using sugarcane molasses, Bioprocess Biosyst. Eng. 44 (2021) 307–316.
20. M. Quéméneur, J. Hamelin, A. Barakat, J. P. Steyer, H. Carrre, and E. Trably, Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures, Int. J. Hydrog. Energy. 37(4) (2012) 3150–3159.
21. A. K. M. K. Islam, P. S. M. Dunlop, N. J. Hewitt, R. Lenihan, and C. Brandoni, Bio-Hydrogen Production from Wastewater: A Comparative Study of Low Energy Intensive Production Processes, Clean Technol. 3(1) (2021) 156–182.
22. Preethi, T. M. M. Usman, J. Rajesh Banu, M. Gunasekaran, and G. Kumar, Biohydrogen production from industrial wastewater: An overview, Bioresour, Technol, Rep. 7 (2019) 100287.
23. 23. P. Dessì, E. Porca, N. R. Waters, A. M. Lakaniemi, G. Collins, and P. N. L. Lens, Thermophilic versus mesophilic dark fermentation in xylose-fed fluidised bed reactors: Biohydrogen production and active microbial community, Int. J. Hydrog. Energy. 43(11) (2018) 5473–5485.
24. K. Ainiyah, F. Andriyani, S. Soemargono, and N. K. Erliyanti, Isolation of clove essential oil by fermentation process, Konversi. 10(1) (2021) 58-64.
25. M. Youssef, E. H. El-Shatoury, S. S. Ali, and G. E. El-Taweel, Enhancement of phenol degradation by free and immobilized mixed culture of Providencia stuartii PL4 and Pseudomonas aeruginosa PDM isolated from activated sludge, Bioremediat. J. 23(2) (2019) 53–71.
26. H. Zhang, G. Chen, Q. Zhang, D. J. Lee, Z. Zhang, Y. Li et al., Photosynthetic hydrogen production by alginate immobilized bacterial consortium, Bioresour. Technol. 236 (2017) 44–48.
27. Y. A. Bustos-Terrones, E. R. Bandala, G. E. Moeller-Chávez, and V. Bustos-Terrones, Enhanced biological wastewater treatment using sodium alginate-immobilized microorganisms in a fluidized bed reactor, Water Sci. Eng. 15(2) (2022) 125–133.
28. H. Gao, E. Khera, J. K. Lee, and F. Wen, Immobilization of multi-biocatalysts in alginate beads for cofactor regeneration and improved reusability, J. Vis. Exp. 110 (2016) e53944.
29. O. García-Depraect, R. Lebrero, S. Rodriguez-Vega, R. A. Börner, T. Börner, and R. Muñoz, Production of volatile fatty acids (VFAs) from five commercial bioplastics via acidogenic fermentation, Bioresour. Technol. 360 (2022) 127655.
30. J. H. Kim, E. Jeong, and Y. S. Lee, Preparation and characterization of graphite foams, J. Ind. Eng. Chem. 32 (2015) 21–33.
31. S. Cheng and B. E. Logan, High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing, Bioresour. Technol. 102(3) (2011) 3571–3574.
32. A. W. Jeremiasse, H. V. M. Hamelers, M. Saakes, and C. J. N. Buisman, Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell, Int. J. Hydrog. Energy. 35(23) (2010) 12716–12723.
33. E. Griškonis, A. Ilginis, I. Jonuškiene, L. Raslavi?ius, R. Jonynas, and K. Kantminiene, Enhanced performance of microbial fuel cells with anodes from ethylenediamine and phenylenediamine modified graphite felt, Processes 8(8) (2020) 1–15.
34. P. Pérez-Rodríguez, V. M. Ovando-Medina, S. Y. Martínez-Amador, and J. A. Rodríguez-de la Garza, Bioanode of polyurethane/graphite/polypyrrole composite in microbial fuel cells, Biotechnol. Bioprocess Eng. 21 (2016) 305–313.
35. G. Antonopoulou, I. Ntaikou, K. Stamatelatou, and G. Lyberatos, Biological and fermentative production of hydrogen," in Handbook of Biofuels Production: Processes and Technologies. Elsevier Inc. (2011) 305–346.
36. C. Li and H. H. P. Fang, Fermentative hydrogen production from wastewater and solid wastes by mixed cultures, Crit. Rev. Environ. Sci. Technol. 37(1) (2007) 1–39.
37. P. Mishra and D. Das, Biohydrogen production from Enterobacter cloacae IIT-BT 08 using distillery effluent, Int. J. Hydrog. Energy. 39(14) (2014) 7496–7507.
38. 38. T. Jafary, W. R. W. Daud, S. A. Aljlil, A. F. Ismail, A. Al-Mamun, M. S. Baawain et al., Simultaneous organics, sulphate and salt removal in a microbial desalination cell with an insight into microbial communities, Desalination. 445 (2018) 204–212.
39. D. B. Levin, L. Pitt, and M. Love, Biohydrogen production: Prospects and limitations to practical application, Int. J. Hydrog. Energy. 29(2) (2004) 173–185.
40. H. Yokoi, R. Maki, J. Hirose, and S. Hayashi, Microbial production of hydrogen from starch-manufacturing wastes, Biomass Bioenergy. 22(5) (2002) 389–395.
41. J. Wang and W. Wan, The effect of substrate concentration on biohydrogen production by using kinetic models, Sci. China B. Chem. 51 (2008) 1110–1117.
42. Y. Goyal, M. Kumar, and K. Gayen, Metabolic engineering for enhanced hydrogen production: A review, Can. J. Microbiol. 59(2) (2013) 59–78.
43. S. K. Khanal, W. H. Chen, L. Li, and S. Sung, Biological hydrogen production: Effects of pH and intermediate products, Int. J. Hydrog. Energy. 29(11) (2004) 1123–1131.
44. J. Wang and W. Wan, Factors influencing fermentative hydrogen production: A review, Int. J. Hydrog. Energy. 34(2) (2009) 799–811.
45. L. Lu and Z. J. Ren, Microbial electrolysis cells for waste biorefinery: A state of the art review, Bioresour. Technol. 215 (2016) 254–264.
46. A. J. Lewis, S. Ren, X. Ye, P. Kim, N. Labbe, and A. P. Borole, Hydrogen production from switchgrass via an integrated pyrolysis-microbial electrolysis process, Bioresour. Technol. 195 (2015) 231–241.
47. H. H. P. Fang and H. Liu, Effect of pH on hydrogen production from glucose by a mixed culture, Bioresour. Technol. 82(1) (2002) 87–93.
48. A. Marone, O. R. Ayala-Campos, E. Trably, A. Carmona Martinez, R. Moscoviz, E. Latrille et al., Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework, Int. J. Hydrog. Energy. 42(3) (2017) 1609–1621.
49. X. H. Li, D. W. Liang, Y. X. Bai, Y. T. Fan, and H. W. Hou, Enhanced H2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement, Int. J. Hydrog. Energy. 39(17) (2014) 8977–8982.
50. T. Chookaew, P. Prasertsan, and Z. J. Ren, Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell, New Biotechnol. 31(2) (2014) 179–184.
51. S. Venkata Mohan, V. Lalit Babu, and P. N. Sarma, Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate, Bioresour. Technol. 99(1) (2008) 59–67.
52. V. Müller, Bacterial Fermentation, Encyclopedia of Life Sciences. (2002) 1–7.
53. K. Kampmann, S. Ratering, I. Kramer, M. Schmidt, W. Zerr, and S. Schnell, Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates, Appl. Environ. Microbiol. 78(7) (2012) 2106–2119.