Evaluation of viability and survival of free and maltodextrin microencapsulated Bifidobacterium animalis subsp. animalis through spray-drying process

Main Article Content

Eduardo Javid Corpas-Iguarán
Jessica Triviño-Valencia
Omar Tapasco-Alzate
Yeison Alberto Garcés-Gómez

Abstract

Bifidobacterium animalis subsp. animalis is a microorganism integrated into the human intestinal microbiota and performs a probiotic function through mechanisms that promote the absorption of nutrients, the modulation of the immune system, and the production of lactic acid, among other aspects. Microencapsulation using maltodextrin promotes the protection of microorganisms against physical and chemical factors, improving viability over time. Bifidobacterium animalis subsp. animalis was microencapsulated through spray-drying using maltodextrin. Survival under pH conditions, bile salts, and temperature were evaluated as well as its viability during storage conditions. The viability of the encapsulated agent stored at 25 °C remained high and constant during the first three weeks. The results for free and microencapsulated thermal tolerance showed an important difference among survival percentages of each tested temperature, and microencapsulation showed a protective effect against temperatures like or lower than 55 °C. Regarding pH 2.5 exposure for 3h, there is a survival of 5.38% for free microorganisms in contrast to 11.87% for encapsulated, whereas in a pH 3.5 for 3h, the encapsulated agent showed a survival of 23%. The results obtained from encapsulated cells stressed with a 1g/L concentration of bile salts showed a survival of 19%, while free cells presented a total loss of viability when subjected for 3h at the same concentration. Microencapsulated Bifidobacterium animalis subsp. animalis demonstrated potential for its use incorporated into foods, but it is necessary to improve viability conditions during storage and survival under gastric stress conditions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Corpas-Iguarán, E. J., Triviño-Valencia, J., Tapasco-Alzate, O., & Garcés-Gómez, Y. A. (2023). Evaluation of viability and survival of free and maltodextrin microencapsulated Bifidobacterium animalis subsp. animalis through spray-drying process. Communications in Science and Technology, 8(2), 190-197. https://doi.org/10.21924/cst.8.2.2023.1239
Section
Articles

References

1. A. Samona, R.K. Robinson, Effect of yogurt cultures on the survival of bifidobacteria in fermented milks, Int J Dairy Technol. 47 (1994) 58–60.
2. M.M.E. Sánchez Maria Teresa, Ruiz María Adolfina, Microorganismos probióticos y salud., Ars Pharmaceutica. 54 (2013) 29–38.
3. L. Favarin, R. Laureano-Melo, R.H. Luchese, Survival of free and microencapsulated Bifidobacterium: Effect of honey addition, J Microencapsul. 32 (2015) 329–335.
4. A.C. Amakiri, M.S. Thantsha, Survival of Bifidobacterium longum LMG 13197 microencapsulated in Vegetal or Vegetal-inulin matrix in simulated gastrointestinal fluids and yoghurt, Springerplus. 5 (2016).
5. D. Campaniello, B. Speranza, L. Petruzzi, A. Bevilacqua, M.R. Corbo, How to routinely assess transition, adhesion and survival of probiotics into the gut: a case study on propionibacteria, Int J Food Sci Technol. 53 (2018) 484–490.
6. T. Mattila-Sandholm, P. Myllärinen, R. Crittenden, G. Mogensen, R. Fondén, M. Saarela, Technological challenges for future Probiotic foods, Int Dairy J. 12 (2002) 173–182.
7. R. Li, Y. Zhang, D.B. Polk, P.M. Tomasula, F. Yan, L.S. Liu, Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system, JCR. 230 (2016) 79–87.
8. S. Moumita, K. Goderska, E.M. Johnson, B. Das, D. Indira, R. Yadav, S. Kumari, R. Jayabalan, Evaluation of the viability of free and encapsulated lactic acid bacteria using in-vitro gastro intestinal model and survivability studies of synbiotic microcapsules in dry food matrix during storage, LWT - Food Science and Technology. 77 (2017) 460–467.
9. N.P. Shah, Probiotic Bacteria: Selective Enumeration and Survival in Dairy Foods, J Dairy Sci. 83 (2000) 894–907.
10. M. Fredua-Agyeman, S. Gaisford, Comparative survival of commercial probiotic formulations: Tests in biorelevant gastric fluids and real-time measurements using microcalorimetry, Benef Microbes. 6 (2015) 141–151.
11. R. Li, Y. Zhang, D.B. Polk, P.M. Tomasula, F. Yan, L.S. Liu, Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system, JCR. 230 (2016) 79–87.
12. V. Chandramouli, K. Kailasapathy, P. Peiris, M. Jones, An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions, J Microbiol Methods. 56 (2004) 27–35.
13. A. Picot, C. Lacroix, Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt, Int Dairy J. 14 (2004) 505–515.
14. A.K. Anal, H. Singh, Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery, Trends Food Sci Technol. 18 (2007) 240–251.
15. T. Heidebach, P. Först, U. Kulozik, Microencapsulation of Probiotic Cells for Food Applications, Crit. Rev. Food Sci Nutr. 52 (2012) 291–311.
16. H.Y. Chen, X.Y. Li, B.J. Liu, X.H. Meng, Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions, J. Funct. Foods. 29 (2017) 248–255.
17. K. Kailasapathy, Microencapsulation of Probiotic Bacteria 39 Microencapsulation of Probiotic Bacteria: Technology and Potential Applications, Curr. Issues Intest. Microbiol. 3 (2002) 39–48.
18. J. Burgain, C. Gaiani, M. Linder, J. Scher, Encapsulation of probiotic living cells: From laboratory scale to industrial applications, J Food Eng. 104 (2011) 467–483.
19. D. Dianawati, V. Mishra, N.P. Shah, Viability, Acid and Bile Tolerance of Spray Dried Probiotic Bacteria and Some Commercial Probiotic Supplement Products Kept at Room Temperature, J. Food Sci. 81 (2016) M1472–M1479.
20. C.R.L. Francisco, S.A. Heleno, I.P.M. Fernandes, J.C.M. Barreira, R.C. Calhelha, L. Barros, O.H. Gonçalves, I.C.F.R. Ferreira, M.F. Barreiro, Functionalization of yogurts with Agaricus bisporus extracts encapsulated in spray-dried maltodextrin crosslinked with citric acid, Food Chem. 245 (2018) 845–853.
21. G. Avellone, A. Salvo, R. Costa, E. Saija, D. Bongiorno, V. Di Stefano, G. Calabrese, G. Dugo, Investigation on the influence of spray-drying technology on the quality of Sicilian Nero d’Avola wines, Food Chem. 240 (2018) 222–230.
22. Y.A. Rodríguez-Restrepo, G.I. Giraldo, S. Rodríguez-Barona, Solubility as a fundamental variable in the characterization of wall material by spray drying of food components: Application to microencapsulation of Bifidobacterium animalis subsp. lactis, J. Food Process. Eng. 40 (2017) 1–8.
23. C.R.L. Francisco, S.A. Heleno, I.P.M. Fernandes, J.C.M. Barreira, R.C. Calhelha, L. Barros, O.H. Gonçalves, I.C.F.R. Ferreira, M.F. Barreiro, Functionalization of yogurts with Agaricus bisporus extracts encapsulated in spray-dried maltodextrin crosslinked with citric acid, Food. Chem. 245 (2018) 845–853.
24. A.C. Lira de Medeiros, M. Thomazini, A. Urbano, R.T. Pinto Correia, C.S. Favaro-Trindade, Structural characterisation and cell viability of a spray dried probiotic yoghurt produced with goats’ milk and Bifidobacterium animalis subsp. lactis (BI-07), Int Dairy J. 39 (2014) 71–77.
25. S. Verruck, M.W. De Carvalho, G.R. De Liz, E.R. Amante, C. Rosana, W. Vieira, R. Dias, D.M. Castanho, E.S. Prudencio, Survival of Bi fi dobacterium BB-12 microencapsulated with full-fat goat ’ s milk and prebiotics when exposed to simulated gastrointestinal conditions and thermal treatments, 153 (2017) 48–56.
26. L.K. Liao, X.Y. Wei, X. Gong, J.H. Li, T. Huang, T. Xiong, Microencapsulation of Lactobacillus casei LK-1 by spray drying related to its stability and in vitro digestion, LWT, Food Sci. Technol. 82 (2017) 82–89.
27. D. Dianawati, V. Mishra, N.P. Shah, Viability, Acid and Bile Tolerance of Spray Dried Probiotic Bacteria and Some Commercial Probiotic Supplement Products Kept at Room Temperature, J. Food Sci. 81 (2016) M1472–M1479.
28. L. Yonekura, H. Sun, C. Soukoulis, I. Fisk, Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion, J. Funct. Foods. 6 (2014) 205–214.
29. A.C. Lira de Medeiros, M. Thomazini, A. Urbano, R.T. Pinto Correia, C.S. Favaro-Trindade, Structural characterisation and cell viability of a spray dried probiotic yoghurt produced with goats’ milk and Bifidobacterium animalis subsp. lactis (BI-07), Int. Dairy J. 39 (2014) 71–77.
30. A.M. Liserre, M.I. Ré, B.D.G.M. Franco, Microencapsulation of Bifidobacterium animalis subsp. lactis in modified alginate-chitosan beads and evaluation of survival in simulated gastrointestinal conditions, Food Biotechnol. 21 (2007) 1–16.
31. D. Dianawati, N.P. Shah, Survival, Acid and Bile Tolerance, and Surface Hydrophobicity of Microencapsulated B. animalis ssp. lactis Bb12 during Storage at Room Temperature, J. Food Sci. 76 (2011).
32. S. Rodríguez-Barona, L.M. Montes, D.D.J. Ramírez, Microencapsulación de probióticos mediante secado por aspersión en presencia de prebióticos, Vitae. 19 (2012) S186--S188.
33. C.I. Piñón-Balderrama, C. Leyva-Porras, Y. Terán-Figueroa, V. Espinosa-Solís, C. Álvarez-Salas, M.Z. Saavedra-Leos, Encapsulation of Active Ingredients in Food Industry by Spray-Drying and Nano Spray-Drying Technologies, Processes. 8 (2020) 889.
34. G.B. Brinques, M.A.Z. Ayub, Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt, J. Food Eng. 103 (2011) 123–128.
35. R.R. Guimarães, A.L. do Amaral Vendramini, A.C. dos Santos, S.G.F. Leite, M.A.L. Miguel, Development of probiotic beads similar to fish eggs, J. Funct. Foods. 5 (2013) 968–973.
36. Z. Shokri, M.R. Fazeli, M. Ardjmand, S.M. Mousavi, K. Gilani, Factors affecting viability of Bifidobacterium bifidum during spray drying, DARU Journal of Pharmaceutical Sciences. 23 (2015) 1–9.
37. Saikia, S., Mahnot, N.K., Mahanta, C.L., Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying., (2015).
38. A.C. Amakiri, M.S. Thantsha, Survival of Bifidobacterium longum LMG 13197 microencapsulated in Vegetal or Vegetal-inulin matrix in simulated gastrointestinal fluids and yoghurt, Springerplus. 5 (2016).
39. Y. Zhu, Z. Wang, L. Bai, J. Deng, Q. Zhou, Biomaterial-based encapsulated probiotics for biomedical applications: Current status and future perspectives, Mater. Des. 210 (2021).
40. D. Dianawati, N.P. Shah, Survival, Acid and Bile Tolerance, and Surface Hydrophobicity of Microencapsulated B. animalis ssp. lactis Bb12 during Storage at Room Temperature, J. Food Sci. 76 (2011).
41. L.K. Liao, X.Y. Wei, X. Gong, J.H. Li, T. Huang, T. Xiong, Microencapsulation of Lactobacillus casei LK-1 by spray drying related to its stability and in vitro digestion, LWT - Food Sci. Technol. 82 (2017) 82–89.
42. L. Yonekura, H. Sun, C. Soukoulis, I. Fisk, Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion, J. Funct Foods. 6 (2014) 205–214.