Cigarette filter butts-derived activated carbon with free binder electrode design for solid-state supercapacitor application From hazardous waste to solid-state supercapacitor

Main Article Content

Yanuar Hamzah
Erman Taer
Apriwandi Apriwandi
Faridah Lisa Supian
Niloofar Mozaffari
Nastaran Mozaffari


The aim of this research is to formulate activated carbon monolith from hazardous waste of cigarette filter butts (CFB) for electrode material monolith design in solid-state supercapacitor application. Potassium hydroxide (KOH) was selected for activation. The ratio of CFB to KOH varied in terms of weight between 1:2 and 1:4, thereby obtaining activated cigarette filter carbon (ACFC). The carbon that has been obtained is designed to be solidly in the form of an additive-free monolith. Monolith-activated carbon is physically characterized to examine thermal decomposition profiles (pre-carbonized), structure, composition, morphology, surface area adsorption, and electrochemical measurements. The optimum precursor was marked with high wettability with self-O-doped of carbon content of 94.56%. Activated carbon electrodes prepared from ACFCs showed an optimum specific capacitance of ~87.17 F g-1, which is a more ecologically responsible method of producing supercapacitors.


Download data is not yet available.

Article Details

How to Cite
Hamzah, Y., Taer, E., Apriwandi, A., Supian, F. L., Mozaffari, N., & Mozaffari, N. (2023). Cigarette filter butts-derived activated carbon with free binder electrode design for solid-state supercapacitor application: From hazardous waste to solid-state supercapacitor. Communications in Science and Technology, 8(2), 134-142.


S. Rawat, R.K. Mishra, T. Bhaskar, Biomass derived functional carbon materials for supercapacitor applications, Chemosphere. 286 (2022) 131961.
2. R.T. Ayinla, J.O. Dennis, H.M. Zaid, Y.K. Sanusi, F. Usman, L.L. Adebayo, A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage, J. Clean. Prod. 229 (2019) 1427–1442.
3. X. Li, J. Zhang, B. Liu, Z. Su, A critical review on the application and recent developments of post-modified biochar in supercapacitors, J. Clean. Prod. 310 (2021) 127428..
4. J. Puls, S.A. Wilson, D. Hölter, Degradation of Cellulose Acetate-Based Materials: A Review, J. Polym. Environ. 19 (2011) 152–165.
5. C. Yan, S. Jia, J. Wei, J. Guan, Z. Shao, Efficient dual conductive network based on layered double hydroxide nanospheres and nanosheets anchored in N-carbon nanofibers for asymmetric supercapacitors, J. Alloys Compd. 930 (2023) 167332.
6. S. Gupta, S.C. Howard, S.P. Hunger, F.G. Antillon, M.L. Metzger, T. Israels, M. Harif, C. Rodriguez-Galindo, Treating Childhood Cancer in Low- and Middle-Income Countries, Dis. Control Priorities, Third Ed. (Volume 3) Cancer. (2015) 121–146.
7. Y. Liu, R. Qu, X. Li, Y. Wei, L. Feng, Discarded cigarette butts regenerated hydrophobic-oleophilic materials for both immiscible and emulsified oil/water separation through a wettability reversal strategy, Appl. Surf. Sci. 532 (2020) 147350.
8. J. Zhang, H. Xu, J. Guo, T. Chen, H. Liu, Superhydrophobic polypyrrole-coated cigarette filters for effective oil/water separation, Appl. Sci. 10 (2020).
9. R. Li, X. Tian, M. Wei, A. Dong, X. Pan, Y. He, X. Song, H. Li, Flexible pressure sensor based on cigarette filter and highly conductive MXene sheets, Compos. Commun. 27 (2021) 100889.
10. M.T. Rahman, A. Mohajerani, F. Giustozzi, Possible recycling of cigarette butts as fiber modifier in bitumen for asphalt concrete, Materials (Basel). 13 (2020) 1–20.
11. R. Bandi, N.P. Devulapalli, R. Dadigala, B.R. Gangapuram, V. Guttena, Facile Conversion of Toxic Cigarette Butts to N,S-Codoped Carbon Dots and Their Application in Fluorescent Film, Security Ink, Bioimaging, Sensing and Logic Gate Operation, ACS Omega. 3 (2018) 13454–13466.
12. G. Shah, U. Bhatt, V. Soni, A comprehensive review on triple R eco-management strategies to reduce, reuse and recycle of hazardous cigarette butts, Heliyon. 9 (2023) e16642.
13. M.B. d’Heni Teixeira, M.A.B. Duarte, L. Raposo Garcez, J. Camargo Rubim, T. Hofmann Gatti, P.A.Z. Suarez, Process development for cigarette butts recycling into cellulose pulp, Waste Manag. 60 (2017) 140–150.
14. A. Sabzali, M. Nikaeen, B. Bina, Application of cigarette filter rods as biofilm carrier in an integrated fixed-film activated sludge reactor, Water Sci. Technol. 67 (2013) 1793–1801.
15. Y. Yue, Y. Liu, W. Zhang, J. Guo, Y. Gong, Y. Yu, Amidoxime functionalized low-cost cellulose-based adsorbent derived from waste cigarette filters for efficient heavy metal removal, J. Environ. Chem. Eng. 10 (2022). .
16. T. Wang, F. Yin, Y. Fang, C. Sun, Waste Cigarette Butts-Derived Nitrogen-Doped Carbon Fibers Loaded with Ru Nanoparticles as an Efficient Cathode Catalyst for Lithium-Oxygen Batteries, ACS Sustain. Chem. Eng. 11 (2023) 9163–9171.
17. C. Yu, H. Hou, X. Liu, L. Han, Y. Yao, Z. Dai, D. Li, The recovery of the waste cigarette butts for N-doped carbon anode in lithium ion battery, Front. Mater. 5 (2018) 1–9.
18. Y.F. Wu, Y.C. Hsiao, Y.J. Ou, S. Kubendhiran, C.Y. Huang, S. Yougbaré, L.Y. Lin, Synthesis of cigarette filter-derived activated carbon using various activating agents for flexible capacitive supercapacitors, J. Energy Storage. 54 (2022).
19. R. Bi, S.K. Pang, K.C. Yung, L.K. Yin, Comprehensive study of used cigarette filters-derived porous activated carbon for Supercapacitors: From biomass waste to sustainable energy source, J. Electroanal. Chem. 925 (2022).
20. A.M. Abioye, F.N. Ani, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review, Renew. Sustain. Energy Rev. 52 (2015) 1282–1293..
21. Q. Xiong, Q. Bai, C. Li, H. Lei, C. Liu, Y. Shen, H. Uyama, Cost-effective, highly selective and environmentally friendly superhydrophobic absorbent from cigarette filters for oil spillage clean up, Polym. 10 (2018) 1101.
22. A.R. Selvaraj, A. Muthusamy, In-ho-Cho, H.J. Kim, K. Senthil, K. Prabakar, Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheet electrodes for high energy density supercapacitors, Carbon N. Y. 174 (2021) 463–474.
23. B. Shaku, T.P. Mofokeng, N.J. Coville, K.I. Ozoemena, Biomass valorisation of marula nutshell waste into nitrogen-doped activated carbon for use in high performance supercapacitors, Electrochim. Acta. 442 (2023) 141828.
24. E. Taer, F. Febriyanti, W.S. Mustika, R. Taslim, A. Agustino, A. Apriwandi, Enhancing the performance of supercapacitor electrode from chemical activation of carbon nanofibers derived Areca catechu husk via one-stage integrated pyrolysis, Carbon Lett. (2020).
25. E. Taer, L. Pratiwi, Apriwandi, W.S. Mustika, R. Taslim, Agustino, Three-dimensional pore structure of activated carbon monolithic derived from hierarchically bamboo stem for supercapacitor application, Commun. Sci. Technol. 5 (2020) 22–30.
26. S. Saini, P. Chand, A. Joshi, Biomass derived carbon for supercapacitor applications: Review, J. Energy Storage. 39 (2021) 102646.
27. S. Majid, A.S.G. Ali, W.Q. Cao, R. Reza, Q. Ge, Biomass-derived porous carbons as supercapacitor electrodes-A review, New Carbon Mater. 36 (2021) 546–572.
28. E. Taer, Apriwandi, Windasari, R. Taslim, M. Deraman, Novel laurel aromatic evergreen biomass derived hierarchical porous carbon nanosheet as sustainable electrode for high performance symmetric supercapacitor, J. Energy Storage. 67 (2023) 107567.
29. X. Xu, L. Yang, K. Zhuo, Z. Zhang, Q. Du, C. Wang, Y. Chen, Y. Zhao, Honeysuckle flowers-derived hierarchical porous carbon matching with ionic liquid electrolyte for high-energy supercapacitors, J. Energy Storage. 41 (2021) 102988.
30. J. Serafin, M. Baca, M. Biegun, E. Mijowska, R.J. Kale?czuk, J. Sre?scek-Nazzal, B. Michalkiewicz, Direct conversion of biomass to nanoporous activated biocarbons for high CO2 adsorption and supercapacitor applications, Appl. Surf. Sci. 497 (2019) 143722.
31. S. Huo, M. Liu, L. Wu, M. Liu, M. Xu, W. Ni, Y.M. Yan, Synthesis of ultrathin and hierarchically porous carbon nanosheets based on interlayer-confined inorganic/organic coordination for high performance supercapacitors, J. Power Sources. 414 (2019) 383–392.
32. S. Liu, A. Li, Q. Han, C. Yang, H. Li, H. Xia, F. Ouyang, J. Zhou, X. Liu, Oxygen-directed porous activation of carbon nanospheres for enhanced capacitive energy storage, J. Power Sources. 483 (2021) 229223.
33. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 54 (1982) 2201–2218.
34. F. Rouquerol, J. Ruoquerol, K. Sing, Adsorption by powders and porous solids: principles, methodology and applications, in: Adsorpt. by Powders Porous Solids, 1999: pp. 1–26.
35. R. Bardestani, G.S. Patience, S. Kaliaguine, Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT, Can. J. Chem. Eng. 97 (2019) 2781–2791.
36. E. Taer, M. Deraman, R. Taslim, Iwantono, Preparation of binderless activated carbon monolith from pre-carbonization rubber wood sawdust by controlling of carbonization and activation condition, AIP Conf. Proc. 1554 (2013) 33–37.
37. E. Taer, Iwantono, S.T. Manik, R. Taslim, D. Dahlan, M. Deraman, Preparation of activated carbon monolith electrodes from sugarcane bagasse by physical and physical-chemical activation process for supercapacitor application, Adv. Mater. Res. 896 (2014) 179–182.
38. E. Taer, N. Yanti, W.S. Mustika, A. Apriwandi, R. Taslim, A. Agustino, Porous activated carbon monolith with nanosheet/nanofiber structure derived from the green stem of cassava for supercapacitor application, Int. J. Energy Res. 44 (2020) 1–14.
39. E. Taer, A. Afrianda, R. Taslim, Krisman, Minarni, A. Agustino, A. Apriwandi, U. Malik, The physical and electrochemical properties of activated carbon electrode made from Terminalia Catappa leaf (TCL) for supercapacitor cell application, J. Phys. Conf. Ser. 1120 (2018) 012007.
40. R. Farma, M. Deraman, R. Omar, Awitdrus, M.M. Ishak, E. Taer, I.A. Talib, Binderless composite electrode monolith from carbon nanotube and biomass carbon activated by KOH and CO2 gas for supercapacitor, AIP Conf. Proc. 1415 (2011) 180–184.
41. A. Sarwar, M. Ali, A.H. Khoja, A. Nawar, A. Waqas, R. Liaquat, S.R. Naqvi, M. Asjid, Synthesis and characterization of biomass-derived surface-modified activated carbon for enhanced CO2 adsorption, J. CO2 Util. 46 (2021) 101476.
42. E. Taer, A. Apriwandi, A. Agutino, R. Taslim, W.S. Mustika, Exa Fadli, Surface modification: unique ellipsoidal/strobili-fiber structure of porous carbon monolith for electrode supercapacitor, Nanosci. Technol. An Int. J. 12 (2021) 45–63.
43. E. Taer, F. Hasanah, R. Taslim, Nanofiber-enrich activated carbon coin derived from tofu dregs as electrode materials for supercapacitor, Commun. Sci. Technol. 6 (2021) 41–48.
44. N.A.M. Barakat, Y.T. Sayed, O.M. Irfan, M.M. Abdelaty, Synthesis of TiO2-incorporated activated carbon as an effective Ion electrosorption material, PLoS One. 18 (2023) 1–11.
45. E. Taer, N. Yanti, R. Taslim, A. Apriwandi, Interconnected micro-mesoporous carbon nanofiber derived from lemongrass for high symmetric supercapacitor performance, J. Mater. Res. Technol. 19 (2022) 4721–4732.
46. F. Scarpelli, T.F. Mastropietro, T. Poerio, N. Godbert, Mesoporous TiO2 Thin Films: State of the Art, in: Titan. Dioxide - Mater. a Sustain. Environ., 2018: pp. 57–80.
47. S.A. Hamdan, I.M. Ibrahim, I.M. Ali, Comparison of anatase and rutile TiO2 nanostructure for gas sensing application, Dig. J. Nanomater. Biostructures. 15 (2020) 1001–1008.
48. J. Zhang, M. Vasei, Y. Sang, H. Liu, J.P. Claverie, TiO2@Carbon Photocatalysts: The Effect of Carbon Thickness on Catalysis, ACS Appl. Mater. Interfaces. 8 (2016) 1903–1912.
49. C. Lim, H.R. An, H. Lee, R. Lee, Y. Choi, J.I. Park, J. Yoon, H.U. Lee, Y.S. Lee, Carbon-titanium dioxide heterogeneous (photo)catalysts (C–TiO2) for highly efficient visible light photocatalytic application, Compos. Part B Eng. 241 (2022) 109997.
50. F.X. Joly, M. Coulis, Comparison of cellulose vs. plastic cigarette filter decomposition under distinct disposal environments, Waste Manag. 72 (2018) 349–353.
51. N.H. Mohd, H. Kargazadeh, M. Miyamoto, S. Uemiya, N. Sharer, A. Baharum, T. Lee Peng, I. Ahmad, M.A. Yarmo, R. Othaman, Aminosilanes grafted nanocrystalline cellulose from oil palm empty fruit bunch aerogel for carbon dioxide capture, J. Mater. Res. Technol. 13 (2021) 2287–2296.
52. E. Taer, A. Apriwandi, S. Chow, R. Taslim, Integrated pyrolysis approach of self-O-doped hierarchical porous carbon from yellow mangosteen fruit for excellent solid-state supercapacitor volumetric performance, Diam. Relat. Mater. 135 (2023) 109866.
53. S. Saha, D. Potphode, C.S. Sharma, Borassus flabellifer Fruit Flesh Derived Hierarchical Porous Partly Graphitic Carbon as a Sustainable Electrode for Supercapacitors, Energy and Fuels. 36 (2022) 638–654.
54. A. Jain, M. Ghosh, M. Krajewski, S. Kurungot, M. Michalska, Biomass-derived activated carbon material from native European deciduous trees as an inexpensive and sustainable energy material for supercapacitor application, J. Energy Storage. 34 (2021) 102178.
55. R. Taslim, A. Apriwandi, E. Taer, Novel Moringa oleifera Leaves 3D Porous Carbon-Based Electrode Material as a High-Performance EDLC Supercapacitor, ACS Omega. 7 (2022) 36489–36502.
56. J. Wang, Y. Xu, M. Yan, B. Ren, X. Dong, J. Miao, L. Zhang, X. Zhao, Z. Liu, Preparation and application of biomass-based porous carbon with S, N, Zn, and Fe heteroatoms loading for use in supercapacitors, Biomass and Bioenergy. 156 (2022) 106301.
57. E. Taer, A. Apriwandi, N. Nursyafni, R. Taslim, Averrhoa bilimbi leaves-derived oxygen doped 3D-linked hierarchical porous carbon as high-quality electrode material for symmetric supercapacitor, J. Energy Storage. 52 (2022) 104911.
58. S.X. Liang, F.F. Duan, Q.F. Lü, H. Yang, Hierarchical Biocarbons with Controlled Micropores and Mesopores Derived from Kapok Fruit Peels for High-Performance Supercapacitor Electrodes, ACS Omega. 4 (2019) 5991–5999.
59. Y. Fu, N. Zhang, Y. Shen, X. Ge, M. Chen, Micro-mesoporous carbons from original and pelletized rice husk via one- step catalytic pyrolysis, Bioresour. Technol. 269 (2018) 67–73.
60. C. Ding, T. Liu, X. Yan, L. Huang, S. Ryu, J. Lan, Y. Yu, W.H. Zhong, X. Yang, AN Ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors, Nano-Micro Lett. 12 (2020) 63.
61. V.S. Bhat, P. Kanagavalli, G. Sriram, R.P. B, N.S. John, M. Veerapandian, M. Kurkuri, G. Hegde, Low cost, catalyst free, high performance supercapacitors based on porous nano carbon derived from agriculture waste, J. Energy Storage. 32 (2020) 101829.
62. Y. Wang, M. Qiao, X. Mamat, Nitrogen-doped macro-meso-micro hierarchical ordered porous carbon derived from ZIF-8 for boosting supercapacitor performance, Appl. Surf. Sci. 540 (2021) 148352.
63. C. Ma, L. Wu, M. Dirican, H. Cheng, J. Li, Y. Song, J. Shi, X. Zhang, ZnO-assisted synthesis of lignin-based ultra-fine microporous carbon nanofibers for supercapacitors, J. Colloid Interface Sci. 586 (2021) 412–422.
64. E. Taer, N. Nursyafni, A. Apriwandi, R. Taslim, Novel Solanum torvum Fruit Biomass-Derived Hierarchical Porous Carbon Nanosphere as Excellent Electrode Material for Enhanced Symmetric Supercapacitor Performance, JOM. (2023).
65. Q. Li, Y. Jiang, Z. Jiang, J. Zhu, X. Gan, F. Qin, T. Tang, W. Luo, N. Guo, Z. Liu, L. Wang, S. Zhang, D. Jia, Z. Fan, Ultrafast pore-tailoring of dense microporous carbon for high volumetric performance supercapacitors in organic electrolyte, Carbon N. Y. 191 (2022) 19–27.
66. X. Wu, Y. Wang, R. Zhong, B. Li, Nitrogen and sulfur dual-doped hierarchical porous carbon derived from bacterial cellulose for high performance supercapacitor, Diam. Relat. Mater. 116 (2021) 108447.
67. V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B. Wei, Supercapacitors from activated carbon derived from banana fibers, J. Phys. Chem. C. 111 (2007) 7527–7531.
68. K. Xu, S. Li, J. Yang, J. Hu, Hierarchical hollow MnO2 nanofibers with enhanced supercapacitor performance, J. Colloid Interface Sci. 513 (2018) 448–454.