One-stage microwave-assisted activated carbon preparation from Langsat peel raw material for adsorption of iron, manganese and copper from acid mining waste

Main Article Content

Lailan Ni'mah
Sri Rachmania Juliastuti
Mahfud Mahfud

Abstract

This study describes the efficacy of microwave technology for the preparation of an activated carbon from Lansium domesticum peel as an adsorbent to adsorb Fe, Cu, and Mn from acid mine waste. In contrast to the conventional pyrolytic carbonization technique, the described method demonstrated several unparalleled advantages, including superior energy efficiency and remarkably rapid processing. The reported microwave irradiation method was able readily to achieve a morphology and extensive surface area similar to that of a sample produced using the traditional pyrolytic carbonization method for 2 hours, and this was accomplished in just 10 minutes.  The activated carbon obtained was characterized using SEM-EDX, BET-BJH, and proximate test and applied to adsorb metal ions from acid mine waste to evaluate the isothermal adsorption model. The best power for activated carbon production was 400 watts for 10 minutes, which met the requirements of ASTM D 4607 for determining the iodine value of activated carbon. Optimal mass for adsorbing Fe, Cu, and Mn from acid mine waste was 4 grams with the removal percentages of 94.08%, 83.69%, and 90.67%, respectively. BET surface area was 1367.0385 m2/g  along with a BJH cumulative volume and an average pore diameter of 1.112 cm3/g and 2.25 nm, respectively. This suggests that it possesses mesoporous characteristics and adheres to the Langmuir model during the adsorption process, signifying monolayer adsorption. Meanwhile, kinetics followed the pseudo-second-order rate equation.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ni’mah, L., Juliastuti, S. R., & Mahfud, M. (2023). One-stage microwave-assisted activated carbon preparation from Langsat peel raw material for adsorption of iron, manganese and copper from acid mining waste. Communications in Science and Technology, 8(2), 143-153. https://doi.org/10.21924/cst.8.2.2023.1299
Section
Articles

References

1. E. W. M. Verheij, Plant resource of South-East Asia: edible fruits and nuts, No.2, Edible Fruits and Nuts. Prosea Foundation, Bogor, Indonesia, 1992.
2. O. A. Saputra, Kurnia, S. Pujiasih, V.N. Rizki, B. Nurhayati, E. Pramono, and C. Purnawan, Silylated-montmorillonite as co-adsorbent of chitosan composites for methylene blue dye removal in aqueous solution, Commun. Sci. Technol. 5 (2020) 45–52.
3. A. A. Ojo, I. Osasona, A.O. Olawole, and J. A. Johnson, Acid And Bio-Activation Of Carbon Prepared From Corncob For Adsorption Of Cd(II) From Aqueous Solution, Rasayan J. Chem. 15 (2022), 889–893.
4. G. Sharma, S. Sharma, A. Kumar, C. W. Lai, M. Naushad, Shehnaz, J. Iqbal, and F. J. Stadler, Activated Carbon as Superadsorbent and Sustainable Material for Diverse Applications, Adsorpt. Sci. Technol. 20 (2022) 1-21.
5. M. Rahmayanti, A. Yahdiyani, and I. Q. Afifah, Eco-friendly synthesis of magnetite based on tea dregs (Fe3O4-TD) for methylene blue adsorbent from simulation waste, Commun. Sci. Technol. 7 (2022) 119–126.
6. A. Demba N’diaye, M. Sid’Ahmed Kankou, B. Hammouti, A. B. D. Nandiyanto, and D. F. Al Husaeni, A review of biomaterial as an adsorbent: From the bibliometric literature review, the definition of dyes and adsorbent, the adsorption phenomena and isotherm models, factors affecting the adsorption process, to the use of typha species waste as a low-cost, Commun. Sci. Technol. 7 (2022) 140–153.
7. E. M. Mistar, T. Alfatah, and M. D. Supardan, Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation, J. Mater. Res. Technol. 9 (2020) 6278–6286.
8. I. Syauqiah, D. Nurandini, N. S. Prihatini, and J. Jamiyaturrasidah, Kinetic Studies Of Cu Adsorption From Sasirangan Liquid Waste Using Rice Husk Activated Carbon, Konversi, 10 (2021) 115–119.
9. A. S. K. Harivram, I. Syauqiah, M. Elma, E. L. A. Rampun, D. A. C. Putri, and N. G. Safitri, Iron Adsorption In Peat Water By Sago Waste Activated Carbon, Konversi, 11 (2022), 64–68.
10. Y. Gomez-Rueda, B. Verougstraete, C. Ranga, E. Perez-Botella, F. Reniers, and J. F. M. Denayer, Rapid temperature swing adsorption using microwave regeneration for carbon capture, Chem. Eng. J., 446 (2022) 1-13.
11. E. Kocbek, H. A. Garcia, C. M. Hooijmans, I. Mijatovi?, B. Lah, and D. Brdjanovic, Microwave treatment of municipal sewage sludge: Evaluation of the drying performance and energy demand of a pilot-scale microwave drying system, Sci. Total Environ. 742 (2020) 1-13.
12. Y. Mao, J. Robinson, and E. Binner, Understanding heat and mass transfer processes during microwave-assisted and conventional solvent extraction, Chem. Eng. Sci. 233 (2021) 1-13.
13. W. Tayier, S. Janasekaran, and V. C. Tai, Microwave hybrid heating (MHH) of Ni-based alloy powder on Ni and steel-based metals –A review on fundamentals and parameters, Int. J. Light. Mater. Manuf. 5 (2022), 58–73.
14. P. Mukwevho, and M. N. Emmambux, Effect of infrared and microwave treatments alone and in combination on the functional properties of resulting flours from bambara groundnut seeds, LWT. 153 (2022) 1-10.
15. J. Tang, and F. P. Resurreccion, Electromagnetic basis of microwave heating, Dev. Packag. Prod. Use Microw. Ovens, Woodhead Publishing Ltd. 2009.
16. V. Palma, D. Barba, M. Cortese, M. Martino, S. Renda, and E. Meloni, Microwaves and heterogeneous catalysis: A review on selected catalytic processes, Catalysts, 10 (2020) 1-58 .
17. L. Kistriyani, Z. Salimin, and A. Chafidz, Utilization of extracellular polymeric substances (EPS) immobilized in epoxy polymer as double ion exchanger biosorbent for removal of chromium from aqueous solution, Commun. Sci. Technol., 5 (2020), 40–44.
18. S. Cheng, S. Zhang, L. Zhang, H. Xia, J. Peng, and S. Wang, Microwave-Assisted Preparation of Activated Carbon from Eupatorium Adenophorum: Effects of Preparation Parameters, High Temp. Mater. Process. 36 (2017) 805–814.
19. S. Zhang, S. Liu, D. Yu, C. Wang, and Q. Li, Preparation and characterization of activated carbon for separation of CO2, Zhongguo Kuangye Daxue Xuebao/Journal China Univ. Min. Technol. 43 (2014), 910–914.
20. A. Nur Hidayah, M. A. Umi Fazara, Z. Nor Fauziah, and M. K. Aroua, Preparation and characterization of activated carbon from the sea mango (Cerbera Odollam) with impregnation in phosphoric acid (H3PO4), Asean J. Chem. Eng. 15 (2015) 22–30.
21. G. Enaime, K. Ennaciri, A. Ounas, A. Baçaoui, M. Seffen, T. Selmi, and A. Yaacoubi, Preparation and characterization of activated carbons from olive wastes by physical and chemical activation: Application to Indigo carmine adsorption, J. Mater. Environ. Sci. 8 (2017) 4125–4137.
22. M. Zi?zio, B. Charmas, K. Jedynak, M. Hawryluk, and K. Kucio, Preparation and characterization of activated carbons obtained from the waste materials impregnated with phosphoric acid(V), Appl. Nanosci. 10 (2020) 4703–4716.
23. H. Fa?tynowicz, J. Kaczmarczyk, and M. Ku?azy?ski, Preparation and characterization of activated carbons from biomass material - Giant knotweed (Reynoutria sachalinensis), Open Chem., 13 (2015) 1150–1156.
24. O.A., Ekpete, and JNR, Horsfall., Preparation and Characterization of Activated Carbon Derived From Fluted Pumpkin Stem Waste ( Telfairia Occidentalis Hook . F ), Res. J. Chem. Sci. 1 (2011) 10-17.
25. D. O. Kra, N. B. Allou, P. Atheba, P. Drogui, and A. Trokourey, Preparation and Characterization of Activated Carbon Based on Wood, J. Encapsulation Adsorpt. Sci. 9 (2019), 63–82.
26. K. V. Kumar, S. Gadipelli, B. Wood, K. A. Ramisetty, A. A. Stewart, C. A. Howard, D. J. L. Brett, and F. Rodriguez-Reinoso, Characterization of the adsorption site energies and heterogeneous surfaces of porous materials, J. Mater. Chem. 7 (2019) 10104–10137.
27. R. Chen, L. Li, Z. Liu, M. Lu, C. Wang, H. Li, W. Ma, and S. Wang, Preparation and characterization of activated carbons from tobacco stem by chemical activation, J. Air Waste Manag. Assoc. 67 (2017) 713–724.
28. A. H. Abdullah, A. Kassim, Z. Zainal, M. Z. Hussien, and F. A. Dzulkefly Kuang, Preparation and Characterization of Activated Carbon from Gelam Wood Bark (Melaleuca cajuputi), Malaysian J. Anal. Sci. 7 (2001) 65–68.
29. D. Das, D. P. Samal, and BC. Meikap, Preparation of Activated Carbon from Green Coconut Shell and its Characterization, J. Chem. Eng. Process Technol., 6 (2015) 1-7.
30. J. Yuan, Z. Ding, Y. Bi, J. Li, S. Wen, and S. Bai, Resource Utilization of Acid Mine Drainage (AMD): A Review, Water (Switzerland), 14 (2022) 1–15.
31. R. Mohadi, N. R. Palapa, T. Taher, P. M. S. B. N. Siregar, Normah, N. Juleanti, A. Wijaya, and A. Lesbani, Removal of Cr(VI) from aqueous solution by biochar derived from rice husk, Commun. Sci. Technol., 6 (2021) 11–17.
32. N. S. Prihatini, B. J. Priatmadi, A. Masrevaniah, and S. Soemarno, Performance of The Horizontal Subsurface-Flow Constructed Wetland with Different Operational Procedures, Int. J. Adv. Eng. Technol., 7 (2015) 1620–1629.
33. Z. Hu, X. Ma, and C. Chen, A study on experimental characteristic of microwave-assisted pyrolysis of microalgae, Bioresour. Technol. 107 (2012) 487–493.
34. A. B. D. Nandiyanto, G. C. S. Girsang, R. Maryanti, R. Ragadhita, S. Anggraeni, F. M. Fauzi, P. Sakinah, A. P. Astuti, D. Usdiyana, M. Fiandini, M. W. Dewi, and A. S. M. Al-Obaidi, Isotherm adsorption characteristics of carbon microparticles prepared from pineapple peel waste, Commun. Sci. Technol. 5 (2020) 31–39.
35. W. S. Chen, Y. C. Chen, and C. H. Lee, Modified Activated Carbon for Copper Ion Removal from Aqueous Solution, Processes, 10 (2022) 1-16.
36. N. Ayawei, A. N. Ebelegi, and D. Wankasi, Modelling and Interpretation of Adsorption Isotherms, J. Chem. 136 (2017) 1-11.
37. S. Kumar, Carbon based nanomaterial for removal of heavy metals from wastewater: a review, Int. J. Environ. Anal. Chem., 103 (2021) 1–18.
38. C. Bommier, R. Xu, W. Wang, X. Wang, D. Wen, J. Lu, and X. Ji, Self-activation of cellulose: A new preparation methodology for activated carbon electrodes in electrochemical capacitors, Nano Energy. 13 (2015) 709–717.
39. S. Maulina, G. Handika, Irvan, and A. H. Iswanto, Quality comparison of activated carbon produced from oil palm fronds by chemical activation using sodium carbonate versus sodium chloride, J. Korean Wood Sci. Technol. 48 (2020) 503–512.
40. S. Basu, G. Ghosh, and S. Saha, Adsorption characteristics of phosphoric acid induced activation of bio-carbon: Equilibrium, kinetics, thermodynamics and batch adsorber design, Process Saf. Environ. Prot. 117 (2018) 125–142.
41. D. Duan, Y. Zhang, Y. Wang, H. Lei, Q. Wang, and R. Ruan, Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons, Energy, 209 (2020) 1-12.
42. S. M. Yakout, and G. Sharaf El-Deen, Characterization of activated carbon prepared by phosphoric acid activation of olive stones, Arab. J. Chem. 9 (2016) S1155–S1162.
43. P. M. Álvarez, F. J. Beltrán, V. Gómez-Serrano, J. Jaramillo, and E. M. Rodríguez, Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol, Water Res. 38 (2004) 2155–2165.
44. E. F. Jaguaribe, L. L. Medeiros, M. C. S. Barreto, and L. P. Araujo, The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine, Brazilian J. Chem. Eng. 22 (2005) 41–47.
45. M. Sudibandriyo, and F. A. Putri, The Effect of Various Zeolites as an Adsorbent for Bioethanol Purification using a Fixed Bed Adsorption Column, Int. J. Technol. 11 (2020) 1300–1308.
46. L. Ni’Mah, M. F. Setiawan, and S. P. Prabowo, Utilization of Waste Palm Kernel Shells and Empty Palm Oil Bunches as Raw Material Production of Liquid Smoke, IOP Conf. Ser. Earth Environ. Sci. 366 (2019) 1-9.
47. D. Bergna, T. Varila, H. Romar, and U. Lassi, Activated carbon from hydrolysis lignin: Effect of activation method on carbon properties, Biomass and Bioenergy. 159 (2022) 1-8.
48. K. Y. Foo, Effect of microwave regeneration on the textural network, surface chemistry and adsorptive property of the agricultural waste based activated carbons, Process Saf. Environ. Prot., 116 (2018) 461–467.
49. X. Liu, C. Sun, H. Liu, W. H. Tan, W. Wang, and C. Snape, C., Developing hierarchically ultra-micro/mesoporous biocarbons for highly selective carbon dioxide adsorption, Chem. Eng. J., 361 (2019) 199–208.
50. S. Cheng, L. Zhang, H. Xia, J. Peng, S. Zhang, and S. Wang, Preparation of high specific surface area activated carbon from walnut shells by microwave-induced KOH activation, J. Porous Mater. 22 (2015) 1527–1537.
51. R. Hoseinzadeh Hesas, W. M. A. Wan Daud, J. N. Sahu, and A. Arami-Niya, The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review, J. Anal. Appl. Pyrolysis. 100 (2013) 1–11.
52. C. Cheng, H. Liu, P. Dai, X. Shen, J. Zhang, T. Zhao, and Z. Zhu, Microwave-assisted preparation and characterization of mesoporous activated carbon from mushroom roots by phytic acid (C6H18O24P6) activation, J. Taiwan Inst. Chem. Eng. 67 (2016) 532–537.
53. F. Mbarki, T. Selmi, A. Kesraoui, M. Seffen, P. Gadonneix, A. Celzard, and V. Fierro, Hydrothermal pre-treatment, an efficient tool to improve activated carbon performances, Ind. Crops Prod. 140 (2019) 1-40.
54. A. M. Abioye, and F. N. Ani, The Characteristics of Oil Palm Shell Biochar and Activated Carbon Produced via Microwave Heating, Appl. Mech. Mater. 695 (2014) 12–15.
55. A. Kundu, Advancement of Adsorption Process on Activated Carbon Using Mocrowave and High Gravimetric Technologies, Ph.D. Thesis, University of Malaya, Malaysia, 2016.
56. C. Liu, W. Chen, S. Hong, M. Pan, M. Jiang, Q. Wu, and C. Mei, Fast microwave synthesis of hierarchical porous carbons from waste palm boosted by activated carbons for supercapacitors, Nanomaterials, 9 (2019) 1-13.
57. M. Danish, J. Birnbach, M. N. Mohamad Ibrahim, R. Hashim, S. Majeed, G. S. Tay, and N. Sapawe, Optimization study of caffeine adsorption onto large surface area wood activated carbon through central composite design approach, Environ. Nanotechnology, Monit. Manag. 16 (2021) 1-10.
58. A. Kumar, C. Patra, S. Kumar, and S. Narayanasamy, Effect of magnetization on the adsorptive removal of an emerging contaminant ciprofloxacin by magnetic acid activated carbon, Environ. Res., 206 (2022) 1-11.
59. M. F. Zulkornain, A. H. Shamsuddin, S. Normanbhay, J. Md Saad, Y. S. Zhang, S. Samsuri, and W. A. Wan Ab Karim Ghani, Microwave-assisted Hydrothermal Carbonization for Solid Biofuel Application: A Brief Review, Carbon Capture Sci. Technol., 1 (2021) 1-14.
60. N. K. Soliman, and A. F. Moustafa, Industrial solid waste for heavy metals adsorption features and challenges; a review, J. Mater. Res. Technol. 9 (2020) 10235–10253.
61. P. Thirupathi, and B. R. Venkatraman, Corrosion Kinetic And Adsorption Thermodynamic Activity Of Enicostemma Littorale (Indian Whitehead) For Carbon Steel In Well Water, Rasayan J. Chem. 15 (2022) 1757–1771.
62. N. Minh Dat, L. Minh Huong, N. Tien Dat, D. Ba Thinh, D. Ngoc Trinh, N. Thi Huong Giang, M. Thanh Phong, and N. Huu Hieu, Synthesis of hygroscopic sodium alginate-modified graphene oxide: Kinetic, isotherm, and thermodynamic study, Eur. Polym. J. 174 (2022) 1-11.
63. A. A. Ahmad, M. A. Ahmad, N. K. E. M. Yahaya, and J. Karim, Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root, Arab. J. Chem. 14 (2021) 1-13.
64. An, Byungryul, Cu(II) and As(V) adsorption kinetic characteristic of the multifunctional amino groups in chitosan, Processes. 8 (2020) 1-15.
65. E. El Qada, Kinetic Behavior of the Adsorption of Malachite Green Using Jordanian Diatomite as Adsorbent, Jordanian J. Eng. Chem. Ind. 3 (2020) 1–10.
66. S. H. Yuh, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics. 59 (2004) 171–177.
67. Y. S. Ho, Adsorption Of Heavy Metals From Waste Streams By Peat, Ph.D Thesis, The University of Birmingham, 1995.
68 F. Mbarki, T. Selmi, A. Kesraoui, and M. Seffen, Low-cost activated carbon preparation from Corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: Study of methylene blue adsorption, stochastic isotherm and fractal kinetic, Ind. Crops Prod. 178 (2022) 1-16.
69. M. Belhachemi, and F. Addoun, Comparative adsorption isotherms and modeling of methylene blue onto activated carbons, Appl. Water Sci. 1 (2011) 111–117.
70. K. Banerjee, A Novel Agricultural Waste Adsorbent, Watermelon Shell for the Removal of Copper from Aqueous Solutions, Iran. J. Energy Environ. 3 (2012) 143–156.
71. A. Witek-Krowiak, and D. Harikishore Kumar Reddy, Removal of microelemental Cr(III) and Cu(II) by using soybean meal waste – Unusual isotherms and insights of binding mechanism, Bioresour. Technol. 127 (2013) 350–357.
72. N. R. Palapa, A. F. Badri, Mardiyanto, R. Mohadi, T. Taher, and A. Lesbani, Mg/Cr-(COO)22- layered double hydroxide for malachite green removal, Commun. Sci. Technol. 7 (2022) 91–97.
73. P. M. S. B. N. Siregar, Normah, N. Juleanti, A. Wijaya, N. R. Palapa, R. Mohadi, and A. Lesbani, Mg/Al-CH, Ni/Al-CH, and Zn/Al-CH as adsorbents for Congo Red removal in aqueous solution, Commun. Sci. Technol. 6 (2021) 74–79.
74. D. I. Lestari, A. T. Yuliansyah, and A. Budiman, Adsorption studies of KOH-modified hydrochar derived from sugarcane bagasse for dye removal: Kinetic, isotherm, and thermodynamic study, Commun. Sci. Technol. 7 (2022) 15–22.
75. D. R. Wicakso, A. Mirwan, E. Agustin, N. F. Nopembriani, I. Firdaus, and M. Fadillah, Potential of silica from water treatment sludge modified with chitosan for Pb(II) and color adsorption in sasirangan waste solution, Commun. Sci. Technol. 7 (2022) 188–193.