Ultrafiltration membranes for dye wastewater treatment: Utilizing cellulose acetate and microcrystalline cellulose fillers from Ceiba Pentandra
Main Article Content
Abstract
Dye hurts the threat of human health problems and environmental pollution. Microcrystalline cellulose (MCC) based membrane is a good material to be used as an dye separation membrane for having the high hydrophilicity of the membrane. It has been successfully isolated from kapok (ceiba pentandra) with characteristic X-ray diffraction patterns and FTIR absorption peaks, which corresponded to the typical peaks of cellulose. The ultrafiltration membrane was made up of a cellulose acetate matrix created using the phase inversion method. Characterization results indicated that the inclusion of MCC derived from kapok led to a reduction in the contact angle from 65 to 52o, and an increase in membrane porosity from 82 to 85%. In the separation of dye, the composite membrane incorporating MCC filler demonstrated superior performance compared to the membrane lacking MCC, manifesting in an elevated water flux from 43 to 84 L/m².h and methylene blue (MB) rejection from 64 to 99%. The use of MCC as a filler in cellulose acetate membranes can enhance the characteristics and performance of the membrane in MB separation.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
R. Purnawati et al., Physical and chemical properties of kapok (Ceiba pentandra) and balsa (ochroma pyramidale) fibers, J. Korean Wood Sci. Technol. 46 (2018) 393–401.
A. JM, The Exploration of Alpha Cellulose in Kapok Fruit as Raw Material for Rocket Propellant Production, Agric. Res. Technol. Open Access J. 12 (2017) 82–89.
D. Sartika, K. Syamsu, E. Warsiki, and F. Fahma, Isolation of microfiber cellulose from kapok fiber (Ceiba pentandra) by using chemical-hydrothermal treatment, Ecol. Environ. Conserv. 26 (2020) 654–662.
D. Sartika, K. Syamsu, E. Warsiki, F. Fahma, and I. W. Arnata, Nanocrystalline Cellulose from Kapok Fiber (Ceiba pentandra) and its Reinforcement Effect on Alginate Hydrogel Bead, Starch/Staerke 73 (2021) 9-10.
A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, and S. Goswami, Commercial application of cellulose nano-composites–A review, Biotechnol. Reports 21 (2019) e00316.
A. M. Mansora, J. S. Lima, F. N. Anib, H. Hashima, and W. S. Hoa, Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass, Chem. Eng, 72 (2019) 79–84.
W. Fatriasari, N. Masruchin, and E. Hermiati, Selulosa: Karakteristik dan Pemanfaatannya. LIPI Press, (2019).
P. González-García, Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications, Renew. Sustain. Energy Rev. 82 (2018) 1393–1414.
D. Klemm, B. Heublein, H. Fink, and A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew. chemie Int. Ed. 44 (2005) 3358–3393.
X. Fan, Z. Liu, Z. Liu, and J. Lu, Cellulose acetate membrane synthesis from biomass of ramie, J. Appl. Polym. Sci. 117 (2010) 588–595.
Y. Jiao, C. Wan, W. Bao, H. Gao, D. Liang, and J. Li, Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B, Carbohydr. Polym. 189 (2018) 371–378.
Z. Alizadeh, Z. A. Jonoush, and A. Rezaee, Three-dimensional electro-Fenton system supplied with a nanocomposite of microbial cellulose/Fe3O4 for effective degradation of tetracycline, Chemosphere 317 (2023) 137890.
A. I. Nazri, A. L. Ahmad, and M. H. Hussin, Microcrystalline cellulose-blended polyethersulfone membranes for enhanced water permeability and humic acid removal, Membranes 11 (2021) 660.
V. Vatanpour, M. Agtas, A. M. Abdelrahman, M. E. Ersahin, H. Ozgun, and I. Koyuncu, Nanomaterials in membrane bioreactors: Recent progresses, challenges, and potentials, Chemosphere 302 (2022) 134930.
M. Li, T. Wei, C. Qian, and Z. Liang, Preparation of microcrystalline cellulose from Rabdosia rubescens residue and study on its membrane properties, Sci. Rep. 11 (2021) 1–9.
I. H. Alsohaimi, A. N. Alrashidi, H. M. A. Hassan, and Q. Chen, Highly efficient ultrafiltration membrane performance of PES@microcrystalline cellulose extracted from waste fruits for the removal of BrO3? from drinking water samples, Colloids Interface Sci. Commun. 54 (2023) 100718.
S. Thiangtham, J. Runt, N. Saito, and H. Manuspiya, Fabrication of biocomposite membrane with microcrystalline cellulose (MCC) extracted from sugarcane bagasse by phase inversion method, Cellulose 27 (2020) 1367–1384.
E. Pramono et al., Cellulose derived from oil palm empty fruit bunches as filler on polyvinylidene fluoride based membrane for water containing humic acid treatment, Groundw. Sustain. Dev. 17 (2022) 100744.
H. Holilah et al., Hydrothermal assisted isolation of microcrystalline cellulose from pepper (Piper nigrum L.) processing waste for making sustainable bio-composite, J. Clean. Prod. 305 (2021) 127229.
A. M. Asiri et al., Synthesis and Characterization of Blended Cellulose Acetate Membranes, Polymers 14 (2021) 4.
A. F. Owolabi, M. K. M. Haafiz, M. S. Hossain, M. H. Hussin, and M. R. N. Fazita, Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds, Int. J. Biol. Macromol. 95 (2017) 1228–1234.
P. N. Trisant, I. Gunardi, and Sumarno, The Influence of Hydrolysis Time in Hydrothermal Process of Cellulose from Sengon Wood Sawdust, Macromol. Symp. 391 (2020) 1–5.
D. Sartika, K. Syamsu, E. Warsiki, and F. Fahma, Optimization of Sulfuric Acid Concentration and Hydrolysis Time on Crystallinity of Nanocrystalline Cellulose?: A Response Surface Methodology Study, IOP Conf. Ser. Earth Environ. Sci. 355 (2019) 012109.
P. Chaudhary, K. M. Rao, S. M. Choi, S. Zo, M. Suneetha, and S. S. Han, Tannic Acid-chitosan Strengthened Cellulose Filter Paper for Water Disinfection via Formation of Silver Nanoparticles, Fibers Polym. 22 (2021) 2979–2985.
W. R. Kunusa, R. Abdullah, K. Bilondatu, and W. Z. Tulie, Analysis of Cellulose Isolated from Sugar Bagasse: Optimization and Treatment Process Scheme, Journal of Physics: Conference Series (2020) 012040.
D. K. Jindal and S. K. Singh, Synthesis, ftir and 1 h-nmr characterization of chitin acetate/succinate mixed esters, Pharmanest 7 (2016) 3134–3139.
E. Mayasari, S. Fukugaichi, E. Johan, and N. Matsue, Low-energy extraction of lignocellulose nanofibers from fresh Musa basjoo pseudo-stem, Commun. Sci. Technol. 8 (2023) 108–112.
M. Carrier et al., Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass, Biomass and Bioenergy 35 (2011) 298–307.
T. Zhao, Z. Chen, X. Lin, Z. Ren, B. Li, and Y. Zhang, Preparation and characterization of microcrystalline cellulose (MCC) from tea waste, Carbohydr. Polym. 184 (2018) 164–170.
Yusnimar, Evelyn, A. Aman, Chairul, S. Rahmadahana, and A. Amri, Manufacturing of high brightness dissolving pulp from sansevieria-trifasciata fiber by effective sequences processes, Commun. Sci. Technol. 7 (2022) 45–49.
A. Jamil et al., Development and Performance Evaluation of Cellulose Acetate-Bentonite Mixed Matrix Membranes for CO2 Separation, Adv. Polym. Technol. 2020 (2020) 8855577.
K. Xu et al., Green sustainable, facile nitrogen self-doped porous carbon derived from chitosan/cellulose nanocrystal biocomposites as a potential anode material for lithium-ion batteries, J. Taiwan Inst. Chem. Eng. 109 (2020) 79–89.
O. A. Koriem, A. M. Kamel, W. Shaaban, and M. F. Elkady, Enhancement of Dye Separation Performance of Eco-Friendly Cellulose Acetate-Based Membranes, Sustain. 14 (2022) 14665.
D. Marlina, M. Novita, M. T. Anwar, H. Kusumo, and H. Sato, Raman spectra of polyethylene glycol/cellulose acetate butyrate biopolymer blend, J. Phys. Conf. Ser. 1869 (2021) 012006.
H. Yousefian and D. Rodrigue, Hybrid Composite Foams Based on Nanoclays and Natural Fibres, in Nanoclay Reinforced Polymer Composites, Springer 2016 (2016) 51–79.
H. Bai, X. Wang, Y. Zhou, and L. Zhang, Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose, Prog. Nat. Sci. Mater. Int. 22 (2012) 250–257.
H. Bai, Y. Zhou, and L. Zhang, Morphology and Mechanical Properties of a New Nanocrystalline Cellulose/Polysulfone Composite Membrane, Adv. Polym. Technol. 34 (2015).
D. R. Amiyati, D. Indarti, and Y. M. Muflihah, Pengaruh Variasi Waktu Penguapan Terhadap Kinerja Membran Selulosa Asetat pada Proses Ultrafiltrasi, Berk. Sainstek 5 (2017) 7.
H. Barzegar, M. A. Zahed, and V. Vatanpour, Antibacterial and antifouling properties of Ag3PO4/GO nanocomposite blended polyethersulfone membrane applied in dye separation, J. Water Process Eng. 38 (2020) 101638.
H. Tu, X. Li, Y. Liu, L. Luo, B. Duan, and R. Zhang, Recent progress in regenerated cellulose-based fibers from alkali/urea system via spinning process, Carbohydr. Polym. 296 (2022) 119942.
S. Wang, A. Lu, and L. Zhang, Recent advances in regenerated cellulose materials, Prog. Polym. Sci. 53 (2016) 169–206.
R. Abdullah et al., Fabrication of composite membrane with microcrystalline cellulose from lignocellulosic biomass as filler on cellulose acetate based membrane for water containing methylene blue treatment, Bioresour. Technol. Reports 25 (2024) 101728.
T. van den Berg and M. Ulbricht, Polymer Nanocomposite Ultrafiltration Membranes: The Influence of Polymeric Additive, Dispersion Quality and Particle Modification on the Integration of Zinc Oxide Nanoparticles into Polyvinylidene Difluoride Membranes, Membranes 10 (2020) 197.
M. A. Silva, L. Hilliou, and M. T. P. de Amorim, Fabrication of pristine-multiwalled carbon nanotubes/cellulose acetate composites for removal of methylene blue. Springer Berlin Heidelberg 77 (2020) 623-653.
S. Tahazadeh, T. Mohammadi, M. A. Tofighy, S. Khanlari, H. Karimi, and H. B. Motejadded Emrooz, Development of cellulose acetate/metal-organic framework derived porous carbon adsorptive membrane for dye removal applications, J. Memb. Sci. 638 (2021) 119692.
F. Costantino, A. Armirotti, R. Carzino, L. Gavioli, A. Athanassiou, and D. Fragouli, In situ formation of SnO2 nanoparticles on cellulose acetate fibrous membranes for the photocatalytic degradation of organic dyes, J. Photochem. Photobiol. A Chem. 398 (2020) 112599.