Synthesis and characterization of hydroxyapatite/SiO2/gelatin composites as bone scaffold candidates
Main Article Content
Abstract
This study aims to determine the characteristics of hydroxyapatite/SiO2/gelatin composites to fulfil the bone scaffold standards. XRF analysis showed that limestone has a high CaO content of 92.89%, allowing it be used for hydroxyapatite synthesis. The wet precipitation method was used to synthesize hydroxyapatite; meanwhile, the freeze-drying method was used to synthesize the hydroxyapatite/SiO2/gelatin scaffold. FTIR analysis confirmed the characteristic peaks, which indicated the presence of compounds of hydroxyapatite (OH- and PO43-), SiO2 (Si-OH and Si-O-Si), and gelatin (N-H, C-H, and C=O). XRD analysis showed 98.1% hydroxyapatite phase and 1.9% SiO2 phase and SEM analysis showed a scaffold pore size of 155-218?m, optimal for cell attachment. Furthermore, mechanical testing resulted in a compressive strength of 1.71 MPa and porosity testing resulted in a porosity of 75%. This characterization showed the potential use of hydroxyapatite/SiO2/gelatin composites as bone scaffolds. This research can enable further development of scaffold materials in the field of tissue engineering.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
S.I Mostafa, N.M. Abdelfattah, S.M. Ghorab, M.F. Osman, and N.A. Elwassefy, Bone Regeneration by Hydroxyapatite-Gelatin nanocomposites, Research Square. (2022) 2-21.
T. Ju, Z. Zhao, L. Ma, W. Li, S. Li, and J. Zhang, Cyclic Adenosine Monophosphate-Enhanced Calvarial Regeneration by Bone Marrow-Derived Mesenchymal Stem Cells on a Hydroxyapatite/Gelatin Scaffold, ACS Omega. 6 (2021) 13684–13694.
B.C.You, C.E Meng, N.F.M. Nasir, E.Z.M. Tarmizi, K.S. Fhan, E.S. Kheng, et al, Dielectric and Biodegradation Properties of Biodegradable Nano-Hydroxyapatite/Starch Bone Scaffold, Journal of Materials Research and Technology. 18 (2022) 3215–3226.
P. Ma, W. Wu, Y. Wei, L. Ren, S. Lin, and J. Wu, Biomimetic Gelatin/Chitosan/Polyvinyl Alcohol/Nano-Hydroxyapatite Scaffolds for Bone Tissue Engineering, Materials and Design. 207 109865 (2021) 1-11.
A. Nihmath and M.T. Ramesan, Fabrication, Characterization, and Dielectric Studies of NBR/Hydroxyapatite Nanocomposites, J. Inorg Organomet Polym. (2016).
K. Sinulingga, M. Sirait, N. Siregar, and H. Abdullah, Synthesis and Characterizations of Natural Limestone-Derived Nano-Hydroxyapatite (Hap): A Comparison Study of Different Metal-Doped Haps on Antibacterial Activity, Royal Society of Chemistry. 11 (2021) 5896–15904.
C.G Kim, K.S. Han, S. Lee, M.C. Kim, S.Y. Kim, and J. Nah, Fabrication of Biocompatible Polycaprolactone-Hydroxyapatite Composite Filaments for the FDM 3D Printing of Bone Scaffolds, Applied Sciences. 11 6351 (2021) 1–9.
R.C.D.O Ponciano, A.C.F.D.M. Costa, R.C. Barbosa, M.V.L. Fook, and J.J. Ponciano, Chitosan and Hydroxyapatite Scaffolds with Amoxicillin for Bone Repair, Research and Development. 10 5 (2021) 1-16.
L. Liu, X. Ni, X. Xiong, J. Ma, and X. Zeng, Low Temperature Preparation of SiO2 Reinforced Hydroxyapatite Coating on Carbon/Carbon Composites, Journal of Alloy and Compounds. 788 (2019) 798-778.
A. Sajjad, W.Z.W. Bakar, D. Mohamad, and T.P. Kannan, Characterization and Enhancement of Physico-Mechanical Properties of Glass Ionomer Cement by Incorporating a Novel Nano Zirconia Silica Hydroxyapatite Composite Synthesized Via Sol-Gel, AIMS Materials Science. 6 5 (2019) 730–747.
M. Monavari, S. Homaeigohar, M.F. Chandia, Q. Nawaz, M. Monavari, A. Venkatraman, et al, 3D Printing of Alginate Dialdehyde-Gelatin (ADA-GEL) Hydrogels Incorporating Phytotherapeutic Icariin Loaded Mesoporous SiO2-CaO Nanoparticles for Bone Tissue Engineering, Material Science and Engineering C. 131 112470 (2021) 1-11.
A. Akhtar, V.F. Rad, A.R. Moradi, M.Yar, and M. Bazzar, Emerging Polymeric Biomaterials and Manufacturing-Based Tissue Engineering Approaches for Neuro Regeneration-A Critical Review on Recent Effective Approaches, Smart Material in Medicine. 4 (2023) 337–355.
A.R. Noviyanti, Haryono, R. Pandu, dan D.R. Eddy, Cangkang Telur Ayam sebagai Sumber Kalsium dalam Pembuatan Hidroksiapatit untuk Aplikasi Graft Tulang, Chemica at Natura Acta. 5 3 (2017) 107–111.
M. Mozartha, M. Praziandithe, dan Sulistiawati. Pengaruh Penambahan Hidroksiapatit dari Cangkang Telur terhadap Kekuatan Tekan Glass Ionomer Cement, Jurnal B-Dent. 2 1 (2015) 75–81.
M. Khalid, S.S.B. Jikan, S. Adzila, Z. Murni, N.A. Badarulzaman, R. Rosley, et al, Synthesis and Characterizations of Hydroxyapatite using Precursor Extracted from Chicken Egg Shell Waste, Biointerface Research in Applied Chemistry. 4 (2022) 5663–5671.
S.M. Mangkuasih dan L. Rohmawati, Sintesis Hidroksiapatit dari Tulang Ikan Sapu-Sapu (Hypostomus plecostomus) dengan Metode Presipitasi, Jurnal Teori dan Aplikasi Fisika. 9 2 (2021) 229–236.
Y.D.S Yudyanto and Hartatiek, Pengaruh Nanosilika terhadap Kekerasan dan Porositas Nanokomposit HA-SiO2 Berbasis Batuan Onyx Bojonegoro, Journal of Physical Science and Engineering. 1 1 (2016) 13-18.
F. Afriani, Y. Tiandho, Evi J, A. Indriawati, and R.A. Rafsanjani, Synthesis and Characterization of Hydroxyapatite/Silica Composites Based on Cockle Shells Waste and Tin Tailings, IOP Conf. Series: Earth and Environmental Science. 353 012032 (2019) 1–5.
K. Maji and S. Dasgupta, Hydroxyapatite-Chitosan and Gelatin Based Scaffold for Bone Tissue Engineering, The Indian Ceramic Society. 73 2 (2014) 110–114.
Q. Sun, L. Yu, Z. Zhang, C. Qian, H. Fang, J.Wang, et al, A Novel Gelatin/Carboxymethyl Chitosan/Nano-Hydroxyapatite/?-Tricalcium Phosphate Biomimetic Nanocomposite Scaffold for Bone Tissue Engineering Applications, Frontiers in Chemistry. (2022) 1–12.
N.A.S.M. Pu'ad, P. Koshy, H.Z. Abdullah, M.I. Idris, and T.C. Lee, Synthesis of Hydroxyapatite from Natural Sources, Heliyon. 5 (2019) 1–14.
M. Sari, P. Hening, I.D. Ana, and Y. Yusuf, Bioceramic Hydroxyapatite-Based Scaffold With a Porous Structure using Honeycomb As A Natural Polymeric Porogen for Bone Tissue Engineering, Biomaterials Research. 25 2 (2021) 1–13.
J. Klinkaewnarong and S.Utarab, Ultrasonic-Assisted Conversion of Limestone into Needle-Like Hydroxyapatite Nanoparticles, Ultrasonics Sonochemistry. (2018) 1-38.
C.S. Kumar, K. Dhanaraj, R.M. Vimalathithan, P. Ilaiyaraja, and G. Suresh, Hydroxyapatite for Bone Related Applications Derived from Sea Shell Waste by Simpleprecipitation Method, Journal of Asian Ceramic Societies. 8 2 (2020) 416–429.
Z. Emami, M. Ehsani, M. Zandi, H. Daemi, M.H. Ghanianc, and R. Foudazi, Modified Hydroxyapatite Nanoparticles Reinforced Nanocomposite Hydrogels Based on Gelatin/Oxidized Alginate Via Schiff Base Reaction, Carbohydrate Polimer Technologies Applications. 2 100056 (2021) 1–10.
M. Sirait, K. Sinulingga, N. Siregar, and R.S.D Siregar, Synthesis of Hydroxyapatite from Limestone by using Precipitation Method, Journal of Physics: Conference Series. 1462 (2020) 1–8.
K.A. Pridanti, F. Cahyaraeni, E. Harijanto, Soebagijo, D. Rianti, W. Kristanto, et al, Characteristics and Cytotoxicity of Hydroxyapatite from Padalarang-Cirebon Limestone as Bone Grafting Candidate, Biochem Cell Arch. 20 2 (2020) 4727–4731.
I. Raya, E. Mayasari, A. Yahya, M. Syahrul, and A.I. Latunra, Synthesis and Characterizations of Calcium Hydroxyapatite Derived from Crabs Shells (Portunus pelagicus) and Its Potency in Safeguard against to Dental Demineralizations, International Journal of Biomaterials. (2015) 1–8.
K. Sinulingga, M. Sirait, N. Siregar, and H. Abdullah, Synthesis and Characterizations of Natural Limestone-Derived Nano-Hydroxyapatite (HAp): A Comparison Study of Different Metals Doped Haps on Antibacterial Activity, Royal Society of Chemistry. 11 (2021) 5896–15904.
P.P. Nayak and A.K. Datta, Synthesis of SiO2-Nanoparticles from Rice Husk Ash and its Comparison with Commercial Amorphous Silica through Material Characterization, Silicon. (2020).
P.H. Nazopatul, Irmansyah, and Irzaman, Extraction and Characterization of Silicon Dioxide from Rice Straw, IOP Conf. Series: Earth and Environmental Science. 209 012013 (2018) 1–5.
N. Ismail, M.I. Idris, and H.Z. Abdullah, Effects of Ultraviolet (UV) Treatment on the Properties of Black Tilapia Fish Skins Gelatin, Materials Science Forum. 1010 (2020) 465–470.
M. Wahyuningtyas, N. Jadid, P. Burhan, and L. Atmaja, Physical and Chemical Properties of Gelatin from Red Snapper Scales: Temperature Effects, Jurnal Teknik ITS. 8 2 (2019) 95–101.
Seyedmajidi, Seyedali, and M. Seyedmajidi, Fluoroapatite: A Review of Synthesis, Properties and Medical Applications vs Hydroxyapatite, Iranian Journal of Material Science and Engineering. 19 2 (2022) 1-20.
C.R.D. Ferreira, A.G. Santiago, R.C. Vasconcelos, D.F.F. Paiva, F.Q. Pirih, A.A. Araujo, et al, Study of Microstructural, Mechanical, and Biomedical Properties of Zirconia/Hydroxyapatite Ceramic Composites, Ceramic International. 48 (2022) 12376–12386.
C. Iga, S. Pawe?, L. Marcin, and K.L. Justyna, Polyurethane Composite Scaffolds Modified with the Mixture of Gelatin and Hydroxyapatite Characterized by Improved Calcium Depositio,. Polymers. 12 410 (2020) 1-18.
S.K. Mohonta, K.H. Maria., S. Rahman, H. Das, and S.M. Hoque, Synthesis of Hydroxyapatite Nanoparticle and Role of its Size in Hydroxyapatite/Chitosan-Gelatin Biocomposite for Bone Grafting, International Nano Letters. (2021).
M. Ahmadipour, H. Mohammadi, A.L. Pang, M. Arjmand, T.A. Otitoju, P.U. Okoye, and B. Rajitha, A Review: Silicate Ceramic-Polymer Composite Scaffold for Bone Tissue Engineering, International Journal of Polymeric Materials And Polymeric Biomaterials. (2020) 1–14.
J. Zheng, Z. Zhao, Y. Yang, S. Wang, Y. Zhao, Y. Xiong, et al, Biphasic Mineralized Collagen-Based Composite Scaffold for Cranial Bone Regeneration In Developing Sheep, Regenerative Biomaterials. 9 (2020) 1–14.
D.R. Wicakso, A. Mirwan, E. Agustin, N.F. Nopembriani, I. Firdaus, and M. Fadilla, Potential of silica from water treatment sludge modified with chitosan for Pb(II) and color adsorption in sasirangan waste solution, Commun. Sci. Technol. 7 2 (2022) 188-193.
M.A. Taha, R.A. Youness, and M. Ibrahim, Biocompatibility, Physico-Chemical and Mechanical Properties of Hydroxyapatite-Based Silicon Dioxide Nanocomposites for Biomedical Applications, Ceramic International. (2020) 1–12.
J. Czechowska, E. Cicho, A. Belcarz, A. Siosarczyk, and A. Zima, Effect of Gold Nanoparticles and Silicon on the Bioactivity and Antibacterial Properties of Hydroxyapatite/Chitosan/Tricalcium Phosphate-Based Biomicroconcretes, Materials. 14 3854 (2021) 1–15.
S.A. Reina, B.J.E. Tito, M.H. Malini, F.G. Iqrimatien, Esa’diyah, and Aminatun, Porosity and Compressive Strength of PLA-Based Scaffold Coated With Hydroxyapatite-Gelatin to Reconstruct Mandibula: A Literature Review, Journal of Physics: Conference Series. 1816 012085 (2021) 1-6.
S.L. Tomic, J.N. Runic, M. Vukomanovic, M.M. Babic, and J.S. Vukovic, Novel Hydrogel Scaffolds Based on Alginate, Gelatin, 2-hydroxyethyl Methacrylate, and Hydroxyapatite, Polymers. 13 932 (2021) 1-16.
D, Atila, A. Karatas, A. Evcin, D. Keskin, and A. Tezcaner, Bacterial Cellulose-Reinforced Boron-Doped Hydroxyapatite/Gelatin Scaffolds for Bone Tissue Engineering, Cellulose. (2019).