Preparation, synthesis and characterizations of La0.7Sr0.3Mn(1-y)Ni(y)O3 alloy
Main Article Content
Abstract
Nickel (Ni) doped in the perovskite manganite could result in superior properties. The effect of the Ni on the morphology, crystallographic orientation, and magnetic properties of La0.7Sr0.3Mn(1-y)Ni(y)O3 alloy (y = 0.1, 0.3, 0.5, and 0.7), therefore, was undertaken. La0.7Sr0.3Mn(1-y)Ni(y)O3 alloy was firstly processed using a ball milling process, and again processed through heat treatment and crushing at the end of the synthesis process. Powder alloy was then investigated using a scanning electron microscope equipped with scanning electron microscope and energy dispersive spectroscopy (SEM-EDS), x-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The particle size became smaller and agglomerated as the amount of Ni doping increased. The polycrystal structure phase formed would become more complex when the Ni doping was 0.5 and 0.7, where the dominant phase formed was La2NiO4 even though the La0.7Sr0.3Mn(1-y)Ni(y)O3 phase was still formed. The magnetic characteristics showed that the Ni doping of 0.1 had a higher magnetization value around 4.2 emu/g at room temperature.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. N. S. Fedorova, Y. W. Windsor, C. Findler, M. Ramakrishnan, A. Bortis, L. Rettig et al., Relationship between crystal structure and multiferroic orders in orthorhombic perovskite manganites, Phys. Rev. Mater. 2 (2018) 1–16.
3. R. Rao, Y. Y. Han, X. C. Kan, X. Zhang, M. Wang, N. X. Qian et al., Magnetic property under the pressure and electrical transport behavior under the magnetic field for the perovskite manganite La0.7Ca0.3MnO3, J. Alloys Compd. 837 (2020) .
4. R. Hamdi, S. Boulfrad, S. S. Hayek, A. Samara, S. A. Mansour and Y. Haik, Comparative analysis of the structural, magnetic, and magnetocaloric properties of Gd0.5Dy0.5Mn0.5X0.5O3 (X = Ni, Fe, and Co) nanoparticles, Inorg. Chem. Commun. 158 (2023) 111589.
5. G. Kandasamy, Recent advancements in manganite perovskites and spinel ferrite-based magnetic nanoparticles for biomedical theranostic applications, Nanotechnology 30 (2019) 502001.
6. S. Yang, Q. Chen, Y. Yang, Y. Gao, R. Xu, H. Zhang et al., Silver addition in polycrystalline La0.7Ca0.3MnO3: Large magnetoresistance and anisotropic magnetoresistance for manganite sensors, J. Alloys Compd. 882 (2021) .
7. C. H. Lai and T. Y. Tseng, Preparation and properties of perovskite thin films for resistive nonvolatile memory applications, Ferroelectrics 357 (2007) 17–27.
8. P. Thamilmaran, M. Arunachalam, S. Sankarrajan and K. Sakthipandi, Impact of Ni doping on La0.7Sr0.3NixMn1-xO3 perovskite manganite materials, J. Magn. Magn. Mater. 396 (2015) 181–189.
9. A. Gómez, E. Chavarriaga, I. Supelano, C. A. Parra and O. Morán, Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping, Phys. Lett. Sect. A Gen. At. Solid State Phys. 382 (2018) 911–919.
10. A. D. Souza, S. Rayaprol, M. S. Murari and M. Daivajna, Effect of milling on structure and magnetism of nanocrystalline La0.7-xBixSr0.3MnO3 (x = 0.35, 0.40) manganites, Phys. B Phys. Condens. Matter 606 (2021) 412792.
11. G. C. Figueroa, Ó. A. Olmos, A. G. Garcés, J. A. O. Vélez, J. J. Beltrán, E. B. Miranda et al., Influence of Ball Milling Process on Structural and Magnetic Properties of OF La0.7Sr0.3MnO3 Manganite, Rev. EIA 11 (2014) 31–38.
12. D. H. Manh, P. T. Phong, P. H. Nam, D. K. Tung, N. X. Phuc and I. J. Lee, Structural and magnetic study of La0.7Sr0.3MnO 3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications, Phys. B Condens. Matter 444 (2014) 94–102.
13. N. Hamdaoui, D. Tlili, Y. Azizian-Kalandaragh, B. Zaidi, S. Zemni, A. A. Akl et al., Effect of Ni-doping on the structural, magnetic, and electronic properties of La0.2Sr0.8MnO3 perovskite, J. Mater. Sci. Mater. Electron. 32 (2021) 26984–26997.
14. D. Ginting, D. Nanto, Y. D. Zhang, S. C. Yu and T. L. Phan, Influences of Ni-doping on critical behaviors of La0.7Sr 0.3Mn1-xNixO3, Phys. B Condens. Matter 412 (2013) 17–21.
15. M. Gupta, R. K. Kotnala, W. Khan, A. Azam and A. H. Naqvi, Magnetic, transport and magnetoresistance behavior of Ni doped La 0.67Sr0.33Mn1-xNixO3 (0.00?x?0.09) system, J. Solid State Chem. 204 (2013) 205–212.
16. S. K?l?ç Çetin, G. Akça, M. S. Aslan and A. Ekicibil, Role of nickel doping on magnetocaloric properties of La0.7Sr0.3Mn1?xNixO3 manganites, J. Mater. Sci. Mater. Electron. 32 (2021) 10458–10472.
17. E. Oumezzine, S. Hcini, E. K. Hlil, E. Dhahri and M. Oumezzine, Effect of Ni-doping on structural, magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3Mn1-xNixO3 nanocrystalline manganites synthesized by Pechini sol-gel method, J. Alloys Compd. 615 (2014) 553–560.
18. R. Ran, X. Wu, D. Weng and J. Fan, Oxygen storage capacity and structural properties of Ni-doped LaMnO 3 perovskites, J. Alloys Compd. 577 (2013) 288–294.
19. H. T. Handal, H. A. Mousa, S. Mabrouk Yakout, W. Sharmoukh and V. Thangadurai, Effect of Mn and Ni-doping on structure, photoluminescence and magnetic properties of perovskite-type BaSn0.99Gd0.01O3, J. Magn. Magn. Mater. 498 (2020) 165946.
20. M. Jafari Eskandari and I. Hasanzadeh, Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation, Mater. Sci. Eng. B 266 (2021) 115050.
21. F. Riyanti, H. Hasanudin, A. Rachmat, W. Purwaningrum and P. L. Hariani, Photocatalytic degradation of methylene blue and Congo red dyes from aqueous solutions by bentonite-Fe3O4 magnetic, Commun. Sci. Technol. 8 (2023) 1–9.
22. S. Schroeder, S. Braun, U. Mueller, R. Sonntag, S. Jaeger and J. P. Kretzer, Particle analysis of shape factors according to American Society for Testing and Materials, J. Biomed. Mater. Res. Part B Appl. Biomater. 108 (2020) 225–233.
23. S. Y. Lee, J. Yun and W. P. Tai, Synthesis of Ni-doped LaSrMnO3 nanopowders by hydrothermal method for SOFC interconnect applications, Adv. Powder Technol. 29 (2018) 2423–2428.
24. R. Peña-Garcia, Y. Guerra, S. Castro-Lopes, Y. M. Camejo, J. M. Soares, A. Franco et al., Morphological, magnetic and EPR studies of ZnO nanostructures doped and co-doped with Ni and Sr, Ceram. Int. 47 (2021) 28714–28722.
25. T. F. Creel, J. Yang, M. Kahveci, S. K. Malik, S. Quezado, O. A. Pringle et al., Structural and magnetic properties of La0.7Sr0.3Mn1?xNixO3 (x ? 0.4), J. Appl. Phys. 114 (2013) 013911.
26. I. W. Risdianto, A. Ahmad and R. A. Ermawar, Synthesis of cellulose acetate (CA) from algae Gracilaria sp. composited with nickel oxide (NiO) as a supercapacitor base material, Commun. Sci. Technol. 8 (2023) 87–92.
27. R. Peña-Garcia, Y. Guerra, R. Milani, D. M. Oliveira, F. R. de Souza and E. Padrón-Hernández, Influence of Ni and Sr on the structural, morphological and optical properties of ZnO synthesized by sol gel, Opt. Mater. (Amst). 98 (2019) .
28. M. Gupta, W. Khan, P. Yadav, R. K. Kotnala, A. Azam and A. H. Naqvi, Synthesis and evolution of magnetic properties of Ni doped La 2/3Sr 1/3Mn 1-xNi xO 3 nanoparticles, J. Appl. Phys. 111 (2012) .
29. M. Eshraghi, H. Salamati and P. Kameli, The effect of NiO doping on the structure, magnetic and magnetotransport properties of La0.8Sr0.2MnO3 composite, J. Alloys Compd. 437 (2007) 22–26.
30. M. Oumezzine, O. Peña, T. Guizouarn, R. Lebullenger and M. Oumezzine, Impact of the sintering temperature on the structural, magnetic and electrical transport properties of doped La 0,67Ba 0,33Mn 0,9Cr 0,1O 3 manganite, J. Magn. Magn. Mater. 324 (2012) 2821–2828.
31. A. El Abed, E. Gaudin, S. Lemaux and J. Darriet, Crystal structure and magnetic properties of Sr4Mn2NiO9, Solid State Sci. 3 (2001) 887–897.
32. P. Stremoukhov, D. Carl S, A. Safin, S. Nikitov and A. Kirilyuk, Phononic manipulation of antiferromagnetic domains in NiO, New J. Phys. 24 (2022) 023009.
33. X. Batlle, X. Obradors, M. J. Sayagues, M. Vallet and J. Gonzalez-Calbet, Weak ferromagnetism and magnetic interactions in La 2 NiO 4, J. Phys. Condens. Matter 4 (1992) 487–496.
34. J. W. Feng, C. Ye and L. P. Hwang, Magnetic and magnetotransport properties in the Ni-doped system, Phys. Rev. B - Condens. Matter Mater. Phys. 61 (2000) 12271–12276.
35. A. E. M. A. Mohamed, B. Hernando and A. M. Ahmed, Magnetic, magnetocaloric and thermoelectric properties of nickel doped manganites, J. Alloys Compd. 692 (2017) 381–387.