Enhancing bioelectricity generation through co-cultivation of bacteria consortium and microalgae in photosynthetic microbial fuel cell
Main Article Content
Abstract
This study investigates the effect of microbial configuration on the electrochemical performance of photosynthetic microbial fuel cells (PMFCs). The PMFC configuration incorporating both bacteria and microalgae exhibited the highest open-circuit voltage (OCV) of 397.95 ± 31.53 mV, significantly higher than that of the OCVs obtained in the sterile control (C1) and the microalgae-only configuration (C2), which were 32.47 ± 22.43 mV and 284.59 ± 12.63 mV, respectively. Furthermore, the PMFC containing only microalgae achieved a current density (CD) of 20.96 ± 0.18 mA/m³ and a power density (PD) of 0.40 ± 0.01 mW/m³ under room temperature conditions. Notably, the combined bacteria and microalgae configuration demonstrated a substantial performance improvement, yielding a significantly higher CD of 49.33 ± 0.36 mA/m³ and PD of 0.78 ± 0.01 mW/m³ at room temperature. This configuration also achieved a maximum decolorization of 93.57 ± 0.10% with a corresponding algal biomass recovery of 134.90 ± 2.69 mg/L. These findings highlighted the critical role of microbial composition in PMFC performance. The combination of bacteria and microalgae yielded superior results compared to other configurations under the investigated conditions.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. B. E. Logan, Exoelectrogenic bacteria that power microbial fuel cells, Nat. Rev. Micro. 7 (2009) 375-381.
3. Y. Sun, J. Wei, P. Liang, and X. Huang, Microbial community analysis in biocathode microbial fuel cells packed with different materials, AMB Exprese. 2 (2012) 21.
4. D. Xing, Y. Zuo, S. Cheng, J. M. Regan, and B. E. Logan, Electricity generation by Rhodopseudomonas palustris DX-1, Environ. Sci. Technol. 42 (2008) 4146-4151.
5. H. Bird, E. S. Heidrich, D. D. Leicester, and P. Theodosiou, Pilot-scale microbial fuel cells (MFCs): A meta-analysis study to inform full-scale design principles for optimum wastewater treatment, J. Clean. Produc. 346 (2022) 131227.
6. S. Mohyudin, R. Farooq, F. Jubeen, T. Rasheed, M. Fatima, and F. Sher, Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation, Environ. Res. 204 (2022) 112387.
7. V. Vinayak, M. J. Khan, S. Varjani, G. D. Saratale, R. G. Saratale and S. K. Bhatia, Microbial fuel cells for remediation of environmental pollutants and value addition: Special focus cells with photocatalytic and photoelectric fuel cells, J. Biotechnol. 338 (2021) 5-19.
8. M. J. Khan, N. Singh, S. Mishra, A. Ahirwar, F. Bast, S. Varjani, B. Schoefs, J. Marchand, R. G. Saratale and V. Vinayak, Impact of light on microalgae photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers:Updates, challenges and innovations, Chemos. 288 (2022) 132589.
9. S. M. Sathe, I. Chakraborty, B.K. Dubey and M. M. Ghangrekar, Microbial fuel ccell coupled Fenton oxidation for the cathodic degradation of emerging contaminant from wastewater: Applications and challenges, Environ. Res. 204 (2022) 112135.
10. S. V. Ambekar and M. M. Ghangrekar, Performance evaluation of microbial fuel cell using novel anode design and with low-cost components, J. Environ. Eng. Sci. 17 (2022) 157-163.
11. L. Mekuto, A. V. A. Olowolafe, R. Huberts, N. Dyantyi, S. Pandit and P. Nomngongo, Microalgae as a biocathode and feedstock in anode chamber for a selfsustainable microbial fuel cell technology: a review, S. Afr. J. Chem. Eng. 31 (2020) 7-16.
12. A. K. Gupta, K. Seth, K. Maheshwari, P. K. Baroliya, M. Meena, A. Kumar, V. Vinayak and H. Harish, Biosynthesis and extraction of high-value carotenoid from algae, Front. Biosci. (Landmark Ed). 26 (2021) 171-190.
13. M. J. Khan, N. Bawra, A. Verma, V. Kumar, A. Pugazhendhi, K. B. Joshi and V. Vinayak, Cultivation of diatom Pinnularia saprophila for lipid production: A comparison of methods for harvesting the lipid from the cells, Bioresour. Technol. 319 (2021) 124129.
14. K. Seth, A. Kumar, R. P. Rastogi, M. Meena, V. Vinayak, Bioprospecting of fucoxanthin from diatoms – Challenges and perspectives, Algal Res. 60 (2021) 102475.
15. S. B. Velasquez-Orta, T. P. Curtis and B. E. Logan, Energy from algae using microbial fuel cells, Biotechnol. Bioeng. 103 (2009) 1068-1076.
16. S. V. Mohan, G. N. Nikhil, P. Chiranjeevi, C. N. Reddy, M. V. Rohit, A. N. Kumar and O. Sarkar, Waste biorefinery models towirds sustainable circular bioeconomy: Critical review and future perspectives, Bioresour. Technol. 215 (2016) 2-12.
17. R. Chandra, G. V. Subhash and S. V. Mohan, Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity, Bioresour. Technol. 109 (2012) 46-56.
18. Z. Du, H. Li and T. Gu, A state of the art review on microbial fuel cells: A promiising technology for wastewater treatment and bioenergy, Biotechnol. Adv. 25 (2007) 464-482.
19. A. Rhoads, H. Beyenal and Z. Lewandowski, Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant, Environ. Sci. Technol. 39 (2005) 4666-4671.
20. M. Zhou, H. Wang, D. J. Hassett and T. Gu, Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts, J. Chem. Technol. Biotechnol. 88 (2013) 508-518.
21. S. Mohammad, S. Baidurah, T. Kobayashi, N. Ismail and C. P. Leh, Palm oil mill effluent treatment processes – A review, Processes. 9 (2021) 739.
22. H. Kamyab, S. Chelliapan, C. T. Lee, T. Khademi, A. Kumar, K. K. Yadav, S. Rezania, S. Kumar and S. S. Ebrahimi, Improved production of lipid contents by cultivating Chlorella pyrenoidosa in heterogeneous organic substrates, Clean Technol. Environ. Policy. 21 (2019) 1969-1978.
23. A. Y. Zahrim, A. Nasimah and N. Hilal, Pollutants analysis during conventional palm oil mill effluent (POME) ponding system and decolourisation of anaerobically treated POME via calcium lactate-polyacrylamide, J. Water Process. Eng. 4 (2014) 159-165.
24. M. A. Islam, M. Rahman, A. Yousuf, C. K. Cheng, W. C. Wei, Performance of Klebsiella oxytoca to generate electricity from POME in microbial fuel cell, MATEC Web of Conferences. 38 (2016) 03004.
25. H. Saidu, H. Jamaludin, K. Iwamoto, M. M. Salleh, A. Yahya and S. E. Mohamad, Low-cost biodiesel production, Asian J. Appl. Sci. 10 (2017) 57-65.
26. N. S. M. Aris, S. Ibrahim, B. Arifin and Y. Hawari, Effect of operating parameters on decolourisation of palm oil mill effluent (POME) using electrocoagulation process, Pertan. J. Sci. Technol. 25 (2017) 197-206.
27. F. Gormez, O. Gormez, E. Yabalak and B. Gozmen, Application of the central composite design to mineralization of olive mill wastewater by the electro/Fell/persulfate oxidation method, SN Appl. Sci. 2 (2020) 1-11.
28. Z. H. Mussa, M. R. Othman and M. P. Abdullah, Electrochemical oxidation of landfill leachate: investigation of operational parameters and kinetics using graphite-PVC composite electrode as anode, J. Braz. Chem. Soc. 26 (2015) 939-948.
29. J. Thipraksa, P. Chaijak, P. Michu and M. Lertworapreecha, Biodegradation and bioelectricity generation of melanoidin in palm oil mill effluent (POME) by laccase-producing bacterial consortium integrated with microbial fuel cell, Biocatal. Agricul. Biotechnol. 43 (2022) 102444.
30. J. Thipraksa and P. Chaijak, Using of oxidoreductase producing consortium with high manganese peroxidase activity for melanoidin degradation and generation from palm oil mill effluent, Bioint. Res. Appl. Chem. 13 (2023) 268.
31. W. Y. Cheah, P. L. Show, J. C. Juan, J. S. Chang and T. C. Ling, Microalgae cultivation in palm oil mill effluent (POME) for lipid production and pollutants removal, Ener. Cover. Manag. 174 (2018) 430-438.
32. A. Khandelwal, M. Chhabra and P. Yadav, Performance evaluation of algae assisted microbial fuel cell under outdoor conditions, Bioresour. Technol. 310 (2020) 123418.
33. R. Lakshmidevi, N. N. Gandhi and K. Muthukumar, Carbon neutral electricity production from municipal solid waste landfill leachate using algae-assisted microbial fuel cell, Appl Biochem. Biotechnol. 191 (2020) 852-866.
34. B. Kokabian and V. G. Gude, Sustainable photosynthetic biocathode in microbial desalination cells, Chem. Eng. J. 262 (2015) 958-965.
35. B. Neethu and M. Ghangrekar, Electricity generation through a photo sediment microbial fuel cell using algae at the cathode, Water Sci. Technol. 76 (2017) 3269-3277.
36. R. Rakmania, H. Kamyab, M. A. Yuzir, F. F. Al-Qaim, L. D. A. Purba and F. A. Riyadi, Application of Box-Behnken design to mineralization and color removal of palm oil mill effluent by electrocoagulation process, Environ. Sci. Pollut. Res. 30 (2023) 71741-71753.
37. M. M. A. Nur, G. M. Garcia, P. Boelen and A. G. J. Buma, Influence of photodegradation on the removal of color and phenolic compounds from palm oil mill effluent by Arthrospira platensis, J. Appl. Phyco. 33 (2021) 901-915.
38. H. Saidu, M. Shaza Eva, J. Haryati and Y. Adibah, Phycoremediatioon of palm oil mill effluent (POME) by freshwater micrroalgae, Adv. Sci. Lett. 24 (2018) 3652-3657.