Utilizing Pometia Pinnata leaf extract in microwave synthesis of ZnO nanoparticles: Investigation into photocatalytic properties
Main Article Content
Abstract
In this work, ZnO photocatalyst has been synthesized using matoa (Pometia pinnata) leaf extract under various microwave irradiation powers at 360, 540, and 720 Watts for 3 minutes on each. The UV-Vis absorption spectra of ZnO exhibited a peak in the ultraviolet region 300-360 nm. UV-Vis absorption analysis revealed a decrease in the band gap energy from 3.15 eV to 3.10 eV as the irradiation power increased. Field emission scanning electron microscopy (FESEM) images displayed spherical and nanoplatelet morphology with a decrease in particle size observed from 773 to 709 nm with increasing irradiation power. X-ray diffraction (XRD) analysis confirmed the hexagonal wurtzite structure of ZnO with crystallite sizes in the range of ~18-20 nm. The synthesized ZnO nanoparticles was successfully employed as a photocatalyst in 4-nitrophenol degradation, achieving the highest degradation percentage of 82.7% at 540 Watts with a corresponding reaction rate constant of 0.0126/min. In conclusion, the microwave-assisted synthesis of ZnO using on matoa leaf extract demonstrated significant potential for the degradation of organic pollutants, thereby contributing to water purification efforts.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. A. A. Yahya, K. T. Rashid, M. Y. Ghadbhan, N. E. Mousa, H. S. Majdi, I. K. Salih, et al., Removal of 4-nitrophenol from aqueous solution by using polyphenylsulfone-based blend membranes: Characterization and performance, Membrans 11 (2021) 1-20.
3. Y. Qin, H. Zhang, Z. Tong, Z. Song, and N. Chen, A facile synthesis of Fe3O4@SiO2@ZnO with superior photocatalytic performance of 4-nitrophenol, J. Environ. Chem. Eng. 5 (2017) 2207-2213.
4. K. Qi, B. Cheng, J. Yu, and W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd, 727 (2017) 792–820.
5. P. Deka, R. C. Deka, and P. Bharali, In situ generated copper nanoparticle catalyzed reduction of 4-nitrophenol, New J. Chem. 38 (2014) 1789–1793.
6. A. Hameed, M. Aslam, I. M. I. Ismail, S. Chandrasekaran, M. W. Kadi, and M. A. Gondal, Sunlight assisted photocatalytic mineralization of nitrophenol isomers over W6+ impregnated ZnO, Appl. Catal. B Environ. 160–161 (2014) 227–239.
7. D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, et al., Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review, J. Clean. Prod. 268 (2020) 121725.
8. L. C. Chen and Z.L. Tseng, ZnO-Based Electron Transporting Layer for Perovskite Solar Cells, Nanostructured Sol. Cells, 1 (2017) 203–215.
9. Z. Wang, X. Zhu, J. Feng, C. Wang, C. Zhang, X. Ren, et al., Antisolvent- and Annealing-Free Deposition for Highly Stable Efficient Perovskite Solar Cells via Modified ZnO, Adv. Sci. 8 (2021) 1–7.
10. D. Sharma, M. I. Sabela, S. Kanchi, P. S. Mdluli, G. Singh, T. A. Stenstrom, et al., Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: Synergistic antibacterial activity and molecular simulated facet specific adsorption studies, J. Photochem. Photobiol. B Biol. 162 (2016) 199–207.
11. M. Shakibaie, S. Riahi-Madvar, A. Ameri, P. Amiri-Moghadam, M. Adeli-Sardou, and H. Forootanfar, Microwave Assisted Biosynthesis of Cadmium Nanoparticles: Characterization, Antioxidant and Cytotoxicity Studies, J. Clust. Sci. 33 (2021) 1877-1887.
12. L. Ni’Mah, S. R. Juliastuti, and M. Mahfud, One-stage microwave-assisted activated carbon preparation from Langsat peel raw material for adsorption of iron, manganese and copper from acid mining waste, Commun. Sci. Technol. 8 (2023) 143–153.
13. M. N Alharthi, I. Ismail, S. Bellucci, N. H Khdary, and M. Abdel Salam, Biosynthesis microwave-assisted of zinc oxide nanoparticles with ziziphus jujuba leaves extract: Characterization and photocatalytic application, Nanomaterials, 11 (2021) 1682.
14. D. A. Ramdhani, W. Trisunaryanti, and Triyono, Study of green and sustainable heterogeneous catalyst produced from Javanese Moringa oleifera leaf ash for the transesterification of Calophyllum inophyllum seed oil, Commun. Sci. Technol. 8 (2023) 124–133.
15. .N. Kumar, K. Sakthivel, and V. Balasubramanian, Microwave assisted biosynthesis of rice shaped ZnO nanoparticles using Amorphophallus konjac tuber extract and its application in dye sensitized solar cells, Mater. Sci. Pol. 35 (2017) 111–119.
16. A. Lagashetty, S. K. Ganiger, P. R. K., S. Reddy, and M. Pari, Microwave-assisted green synthesis, characterization and adsorption studies on metal oxide nanoparticles synthesized using: Ficus Benghalensis plant leaf extracts, New J. Chem., 44 (2020) 14095–14102.
17. A. S. Rini, Y. Rati, R. Fadillah, R. Farma, L. Umar, and Y. Soerbakti, Improved Photocatalytic Activity of ZnO Film Prepared via Green Synthesis Method Using Red Watermelon Rind Extract, Evergreeen. 9 (2022) 1046–1055.
18. N. Yudasari, P. A. Wiguna, W. Handayani, M. M. Suliyanti, and C. Imawan, The formation and antibacterial activity of Zn/ZnO nanoparticle produced in Pometia pinnata leaf extract solution using a laser ablation technique, Appl. Phys. A Mater. Sci. Process. 127 (2021) 1–11.
19. A. S. Rini, Y. Rati, R. Dewi, and S. Putri, Investigating the Influence of Precursor Concentration on the Photodegradation of Methylene Blue using Biosynthesized ZnO from Pometia pinnata Leaf Extracts, Baghdad Sci. J. 20 (2023) 2532–2539.
20. A. A. Elrefaey, A. D. El-Gamal, S. M. Hamed, and E. F. El-Belely, Algae-mediated biosynthesis of zinc oxide nanoparticles from Cystoseira crinite (Fucales; Sargassaceae) and it’s antimicrobial and antioxidant activities, Egypt. J. Chem. 65 (2022) 231–240.
21. J. Wojnarowicz, T. Chudoba, S. Gierlotka, and W. Lojkowski, Effect of microwave radiation power on the size of aggregates of ZnO NPs prepared using microwave solvothermal synthesis, Nanomaterials, 8 (2022) 343.
22. H. Mohd Yusof, N. A. Abdul Rahman, R. Mohamad, U. H. Zaidan, and A. A. Samsudin, Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties, Sci. Rep. 10 (2020) 1–13.
23. G. M. Abdelghani, A. Ben Ahmed, and A. B. Al-Zubaidi, Synthesis, characterization, and the influence of energy of irradiation on optical properties of ZnO nanostructures, Sci. Rep. 12 (2022) 1–17.
24. M. Zare, K. Namratha, K. Byrappa, D. M. Surendra, S. Yallappa, and B. Hungund, Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties, J. Mater. Sci. Technol. 34 (2018) 1035–1043.
25. N. Pauzi, N. M. Zain, and N. A. A. Yusof, Microwave-assisted Synthesis of ZnO Nanoparticles Stabilized with Gum Arabic: Effect of microwave irradiation time on ZnO nanoparticles size and morphology, Bull. Chem. React. Eng. & Catal., 14 (2019) 182–188.
26. G. B. Dudley, A. E. Stiegman, and M. R. Rosana, Correspondence on microwave effects in organic synthesis, Angewandte Chemie, 31 (2013) 8074-8079.
27. K. Kandpal, J. Singh, N. Gupta, and C. Shekhar, Effect of thickness on the properties of ZnO thin films prepared by reactive RF sputtering, J. Mater. Sci. Mater. Electron. 29 (2018) 14501–14507.
28. P. Ramesh, K. Saravanan, P. Manogar, J. Johnson, E. Vinoth, and M. Mayakannan, Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential, Sens. Bio-Sensing Res. 31 (2021) 100399.
29. E. Menumerov, R. A. Hughes, and S. Neretina, Catalytic Reduction of 4-Nitrophenol: A Quantitative Assessment of the Role of Dissolved Oxygen in Determining the Induction Time, Nano Lett. 16 (2016) 7791–7797.
30. J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu, and R. S. Varma, Selectivity Enhancement in Heterogeneous Photocatalytic Transformations, Chem. Rev. 117 (2017) 1445–1514.
31. V. V. Kadam, S. D. Shanmugam, and J. P. Ettiyappan, Photocatalytic degradation of p-nitrophenol using biologically synthesized ZnO nanoparticles, Environmental Science and Pollution Research. 28 (2021) 12119-12130.
32. A. S. Rini, A. P. Aji, and Y. Rati, Microwave-assisted biosynthesis of flower-shaped ZnO for photocatalyst in 4-nitrophenol degradation, Commun. Sci. Technol. 7 (2022) 135–139.
33. X. Bai, L. Li, H. Liu, L. Tan, T. Liu, and X. Meng, Solvothermal Synthesis of ZnO Nanoparticles for and p-Nitrophenol, ACS applied materials & interfaces, 7 (2015) 1308-1317.