Improving the activity of CO2 capturing from flue gas by membrane gas – solvent absorption process
Main Article Content
Abstract
This work is focused on increasing the capturing efficiency of carbon dioxide (CO2) through flue gas purification systems. To maximize the CO2 capture process, many process variables such as temperature, flow rates, absorbent concentrations, and nanoparticles were investigated. This study describes the use of a polypropylene hollow fiber membrane contactor to separate CO2 from nitrogen using different solvents, including Potassium carbonate (K2CO3), N-methyl diethanolamine (MDEA), and monoethanolamine (MEA). Also, the presence of silica nanoparticles and piperazine (PZ) enhances the process performance. On the other hand, the amine and mixed amino absorbents MDEA-PZ and MDEA-MEA were prepared and compared based on the absorption capacity. The optimal order of amine absorbent performance when applied to CO2 membrane absorption is MDEA-MEA followed by MDEA-PZ. At a solute concentration of 9%, MDEA-MEA exhibits the highest CO2 removal efficiency, which is 74.12%. However, at a concentration of 11%, MEA, MDEA-PZ, and MDEA have the highest CO2 removal efficiencies of 80.15%, 75.13%, and 63.12%, respectively.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. G. H. A. Razzaq, M. A. Shihab, J. I. Humadi, K. K. Saxena, C. Prakash, & L. I. Saeed, CO2 capturing from natural gas employing new porous mixed matrix membranes. Materials Today: Proceedings (2023). ?
3. R. F. Setya Budi, S. Sarjiya, & S. P. Hadi, A Review of Potential Method for Optimization of Power Plant Expansion Planning in Jawa-Madura-Bali Electricity System. Commun. Sci. Technol. 2 (2017).
4. Z. Pang, S. Jiang, C. Zhu, Y. Ma, and T. Fu, Mass transfer of chemical absorption of CO2 in a serpentine minichannel, Chem. Eng. J. 414 (2021) 128791.
5. T. Moore, M. Biviano, K. A. Mumford, R. R. Dagastine, G. W. Stevens, and P. A. Webley, Solvent Impregnated Polymers for Carbon Capture, Ind. Eng. Chem. Res. 58 (2019) 6626–6634.
6. U. Kamran and S. J. Park, Chemically modified carbonaceous adsorbents for enhanced CO2 capture: A review, J. Clean. Prod., 290 (2021) 125776.
7. Y. Li, L. Wang, Z. Tan, Z. Zhang, and X. Hu, Experimental studies on carbon dioxide absorption using potassium carbonate solutions with amino acid salts, Sep. Purif. Technol., 219 (2019) 47–54.
8. J. Charoenchaipet, P. Piumsomboon, and B. Chalermsinsuwan, Development of CO2 capture capacity by using impregnation method in base condition for K2CO3/Al2O3, Energy Reports, 6 (2020) 25–31.
9. L. Yue et al., CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell, 511 (2018).
10. I. Yanase, S. Konno, and H. Kobayashi, Reversible CO2 capture by ZnO slurry leading to formation of fine ZnO particles, Adv. Powder Technol. 29 (2018) 1239–1245.
11. S. Seo, B. Lages, and M. Kim, Catalytic CO2 absorption in an amine solvent using nickel nanoparticles for post-combustion carbon capture, J. CO2 Util., 36 (2019) 244–252.
12. A. Sulistyo Rini, A. P. Aji, & Y. Rati, Microwave-assisted biosynthesis of flower-shaped ZnO for photocatalyst in 4-nitrophenol degradation. Commun. Sci. Technol. 7 (2022) 135-139.
13. B. Zhao, T. Fang, W. Qian, J. Liu, and Y. Su, Process simulation, optimization and assessment of post-combustion carbon dioxide capture with piperazine-activated blended absorbents, J. Clean. Prod., 282 (2021) 124502.
14. A. D. Wiheeb, S. W. Shakir, M. A. Ahmed, and E. A. Rajab, Experimental investigation of carbon dioxide capturing into aqueous carbonate solution promoted by alkanolamine in a packed absorber, 1st Int. Sci. Conf. Eng. Sci. - 3rd Sci. Conf. Eng. Sci. ISCES 2018 - Proc., (2018) 152–156.
15. H. Abdolahi-Mansoorkhani and S. Seddighi, CO2 capture by modified hollow fiber membrane contactor: Numerical study on membrane structure and membrane wettability, Fuel Process. Technol. 209 (2020).
16. S. Scheiter, G. R. Moncrieff, M. Pfeiffer, and S. I. Higgins, Interactive comment on ‘African biomes are most sensitive to changes in CO2 under recent and near-future CO2 conditions, Biogeosciences, (2020) 1147–1167.
17. P. Librandi, P. Nielsen, G. Costa, R. Snellings, M. Quaghebeur, and R. Baciocchi, Mechanical and environmental properties of carbonated steel slag compacts as a function of mineralogy and CO2 uptake, J. CO2 Util., 33 (2019) 201–214.
18. J. Liu, Carbon capture using nanoporous adsorbents. INC (2020).
19. P. Luis, T. Van Gerven, B. Van der Bruggen, Recent developments in membranebased technologies for CO2 capture, Prog. Energy Combust. 38 (2012) 419–448.
20. R. Faiz, M.H. El-Naas, M. Al-Marzouqi, Significance of gas velocity change during the transport of CO2 through hollow fiber membrane contactors, Chem. Eng. J. 168 (2011) 593–603.
21. S. Khaisri, D. deMontigny, P. Tontiwachwuthikul, R. Jiraratananon, Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor, Sep. Purif. Technol. 65 (2009) 290–297.
22. M. Rahbari-Sisakht, A.F. Ismail, D. Rana, T. Matsuura, A novel surface modified polyvinylidene fluoride hollow fiber membrane contactor for CO2 absorption, J. Membr. Sci. (2012).
23. P. Luis, B. Van der Bruggen, T. Van Gerven, Non-dispersive absorption for CO2 capture: from the laboratory to industry, J. Chem. Technol. Biotechnol. 86 (2011) 769–775.
24. R. L. Kars, R. J. B. 1, and A. A. H. Drinkenburg, The Sorption of Propane in Slurries of Active Carbon?;.n Water, 17 (1979) 201–210.
25. X. Fang, Y. Xuan, Q. Li, X. Fang, Y. Xuan, and Q. Li, Experimental investigation on enhanced mass transfer in nanofluids Experimental investigation on enhanced mass transfer in nanofluids, 203108 (2009) 7–10.
26. A. Golkhar, P. Keshavarz, and D. Mowla, Investigation of CO2 removal by silica and CNT nanofluids in microporous hollow fiber membrane contactors, J. Memb. Sci., 433 (2013) 17–24.
27. H. Mohammaddoost, A. Azari, M. Ansarpour, and S. Osfouri, Experimental investigation of CO 2 removal from N 2 by metal oxide nano fl uids in a hollow fi ber membrane contactor, International Journal of Greenhouse Gas Control, 69 (2017) 2018.
28. G. H. A. Razzaq, K. I. Hamad, & J. I. Humadi, Silver Nanoparticles for Ultrasonic Assisted Synthesis of Oxidant Agents in Micro-Reactor: Kinetic Analysis and Process Intensification. In Materials Science Forum, Trans Tech Publications Ltd.?, 1083 (2023) 23-32.
29. A.Peyravi, P. Keshavarz, and D. Mowla, Experimental investigation on the absorption enhancement of CO2 by various nanofluids in hollow fiber membrane contactors Experimental investigation on the absorption enhancement of CO 2 by various nanofluids in hollow fiber membrane contactors, (2015).
30. W. Kim, H. U. Kang, and K. Jung, Separation Science and Technology Synthesis of Silica Nanofluid and Application to CO 2 Absorption, Seperation scince Technol., (2013) 37–41.
31. B. Zhao, T. Fang, W. Qian, J. Liu, and Y. Su, Process simulation, optimization and assessment of post-combustion carbon dioxide capture with piperazine-activated blended absorbents, J. Clean. Prod., 282 (2021) 124502.
32. H. Mohammaddoost, A. Azari, M. Ansarpour, and S. Osfouri, Experimental investigation of CO 2 removal from N 2 by metal oxide nano fl uids in a hollow fi ber membrane contactor, International Journal of Greenhouse Gas Control, 69 (2017) 60–71.
33. J. I. Humadi, A. T. Nawaf, L. A. Khamees, Y. A. Abd-Alhussain, H. F. Muhsin, M. A. Ahmed, & M. M. Ahmed, Development of new effective activated carbon supported alkaline adsorbent used for removal phenolic compounds. Commun. Sci. Technol. 8 (2023) 164-170.
34. M. D. G. de Luna, A. S. Sioson, A. E. S. Choi, R. R. M. Abarca, Y. H. Huang, and M. C. Lu, Operating pH influences homogeneous calcium carbonate granulation in the frame of CO2 capture, J. Clean. Prod. 272 (2020) 122325.
35. X. Fang, Y. Xuan, Q. Li, X. Fang, Y. Xuan, and Q. Li, Experimental investigation on enhanced mass transfer in nanofluids Experimental investigation on enhanced mass transfer in nanofluids, 203108 (2013).
36. Rahimpour MR, Kashkooli AZ. Enhanced carbon dioxide removal by promoted hot potassium carbonate in a split-flow absorber. Chemical Engineering and Processing: Process Intensification. (2004) 857-65.
37. Hu G, Nicholas NJ, Smith KH, Mumford KA, Kentish SE, Stevens GW. Carbon dioxide absorption into promoted potassium carbonate solutions: A review. International Journal of Greenhouse Gas Control. (2016) 28-40.
38. U. Kamran and S. J. Park, Chemically modified carbonaceous adsorbents for enhanced CO2 capture: A review, J. Clean. Prod., 290 (2021) 2021.
39. Li Q, Wang Y, An S, Wang L. Kinetics of CO2 absorption in concentrated K2CO3/PZ mixture using a wetted-wall column. Energy & Fuels. 2016 Aug 12;30(9):7496-502.
40. T. Moore, M. Biviano, K. A. Mumford, R. R. Dagastine, G. W. Stevens, and P. A. Webley, Solvent Impregnated Polymers for Carbon Capture, Ind. Eng. Chem. Res., 58 (2019) 6626–6634
41. M. Arishi, T. E. Akinola, and M. Wang, Technical analysis of post-combustion carbon capture using K2CO3 for large-scale power plants through simulation, SSRN Electron. J. (2022).