Simulation and optimization of fatty acid extraction parameters from Nannochloropsis sp. using supercritical carbon dioxide

Main Article Content

Ivander Jonathan Kim
Aris Romadhon Subkhan
Rakha Putra Prasetya
Yuswan Muharam

Abstract

Microalgae, which are rich in fatty acids, have potential applications in various sectors such as bioenergy, health, food, and biomaterials. The Supercritical Fluid Extraction (SFE) method is commonly used to extract microalgae. This research estimated the process parameters of desorption rate constant (kd) and binary diffusion coefficient (DAB) for SFE fatty acid from Nannochloropsis sp. using a mathematical model called as hot sphere diffusion. Desorption models were used to model the release of fatty acids into the solvent (supercritical carbon dioxide). The parameter estimation process was conducted at temperatures of 313 and 333 K and pressures of 12.5, 20, and 30 MPa. The value of kd increased with increasing pressure and temperature and DAB values were obtained at varying pressures and temperatures.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kim, I. J., Aris Romadhon Subkhan, Rakha Putra Prasetya, & Yuswan Muharam. (2024). Simulation and optimization of fatty acid extraction parameters from Nannochloropsis sp. using supercritical carbon dioxide. Communications in Science and Technology, 9(1), 185-191. https://doi.org/10.21924/cst.9.1.2024.1420
Section
Articles

References

1. S. Singh, D.K. Verma, M. Thakur, S. Tripathy, A.R. Patel, N. Shah, et al., Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health, Food Res. Int. 150 (2021) 110746.
2. G. Dragone, B. Fernandes, A. A. Vicente and J. A. Teixeira, Third generation biofuels from microalgae in Current Research, Technology and Education Topics, in: A. Mendez-Vilas (Eds.), Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Norristown, PA: Formatex Research Center, 2010.
3. C.J. Diaz, K.J. Douglas, K. Kang, A.L. Kolarik, R. Malinovski, Y. Torres-Tiji, et al., Developing algae as a sustainable food source, Front. Nutr. 9 (2022) 1029841.
4. Y. Chisti, Biodiesel from microalgae, Biotechnol. Adv. 25 (2007) 294–306.
5. Budiman, Penentuan intensitas cahaya optimum pada pertumbuhan dan kadar lipid mikroalga Nannochloropsis oculata, Master Thesis, Institut Teknologi Surabaya, Indonesia, 2010.
6. S.C. Sousa, A.C. Freitas, A.M. Gomes and A.P. Carvalho, Extraction of Nannochloropsis Fatty Acids Using Different Green Technologies: The Current Path, Mar. Drugs 21 (2023) 365.
7. E. W. Becker. Microalgae: Biotechnology and Microbiology. Cambridge, UK: Cambridge University Press, 1994.
8. B.P. Nobre, F. Villalobos, B.E. Barragán, A.C. Oliveira, A.P. Batista, P.A.S.S. Marques, et al., A biorefinery from Nannochloropsis sp. microalga – Extraction of oils and pigments. Production of biohydrogen from the leftover biomass, Bioresour. Technol. 135 (2013) 128-136.
9. A. Mouahid, C. Crampon, S.-A.A. Toudji and E. Badens, Effects of high water content and drying pre-treatment on supercritical CO2 extraction from Dunaliella Salina Microalgae: Experiments and modelling, J. Supercrit. Fluids 116 (2016) 271–280.
10. E. Balboa, A. Moure and H. Domínguez, Valorization of sargassum muticum biomass according to the biorefinery concept, Mar. Drugs 13 (2015) 3745–3760.
11. B. Gilbert-López, J.A. Mendiola, L.A.M. van den Broek, B. Houweling-Tan, L. Sijtsma, A. Cifuentes, et al., Green compressed fluid technologies for downstream processing of Scenedesmus Obliquus in a biorefinery approach, Algal Res. 24 (2017) 111–121.
12. A. del Sánchez?Camargo, N. Pleite, J.A. Mendiola, A. Cifuentes, M. Herrero, B. Gilbert?López, et al., Development of green extraction processes for Nannochloropsis gaditana biomass valorization, Electrophoresis 39 (2018) 1875–1883.
13. A.T. Getachew, C. Jacobsen and A.M. Sørensen, Supercritical CO2 for efficient extraction of high-quality starfish (Asterias rubens) oil, J. Supercrit. Fluids 206 (2024) 106161.
14. E. Uquiche, I. Leal and C. Marillán, Effect of process parameters on the extraction kinetics of Leptocarpha rivularis DC. in a packed bed extractor using supercritical carbon dioxide, J. Supercrit. Fluids 211 (2024) 106314.
15. M.D. Macías-Sánchez, C.M. Serrano, M.R. Rodríguez and E. Martínez de la Ossa, Kinetics of the supercritical fluid extraction of carotenoids from microalgae with CO2 and ethanol as cosolvent, Chem. Eng. J. 150 (2009) 104–113.
16. R. Arbianti, Angelina, B. Suryapranata, L.P. Latifah, N.F. Putri, T.S. Utami, et al., Combined enzymatic and ultrasound-assisted aqueous two-phase extraction of antidiabetic flavonoid compounds from Strobilanthes crispus leaves, Commun. Sci. Technol. 8 (2023) 113-123.
17. S. Tzima, I. Georgiopoulou, V. Louli and K. Magoulas, Recent Advances in Supercritical CO2 Extraction of Pigments, Lipids and Bioactive Compounds from Microalgae, Molecules 28 (2023) 1410.
18. A. Mouahid, K. Seengeon, M. Martino, C. Crampon, A. Kramer and E. Badens, Selective extraction of neutral lipids and pigments from Nannochloropsis salina and Nannochloropsis maritima using supercritical CO2 extraction: Effects of process parameters and pre-treatment, J. Supercrit. Fluids 165 (2020) 104934.
19. Z. Huang, X. Shi and W. Jiang, Theoretical models for supercritical fluid extraction, J. Chromatogr. A 1250 (2012) 2–26.
20. H.S. Kusuma, P.D. Amelia, C. Admiralia and M. Mahfud, Kinetics study of oil extraction from Citrus auranticum L. by solvent-free microwave extraction, Commun. Sci. Technol. 1 (2016) 15-18.
21. H. Taher, S. Al-Zuhari, A.H. Al-Marzouqi and Y. H, M. Farid, Mass transfer modeling of Scenedesmus sp. lipids extracted by supercritical CO2, Biomass Bioenergy 70 (2014) 530-541.
22. L. Wetterwald, A. Leybros, G. Fleury, F. Delrue, A. Dimitriades-Lemaire, et al., Supercritical CO2 extraction of neutral lipids from dry and wet Chlorella vulgaris NIES 227 microalgae for biodiesel production, J. Environ. Chem. Eng. 11 (2023) 110628.
23. M. Mukhopadhyay. Natural Extracts Using Supercritical Carbon Dioxide. Boca Raton, FL: CRC Press, 2000.
24. L.M.A.S. Campos, E.M.Z. Michielin, L. Danielski and S.R.S. Ferreira, Experimental data and modeling the supercritical fluid extraction of Marigold (calendula officinalis) oleoresin, J. Supercrit. Fluids 34 (2005) 163–170.
25. D.C.M.N. Silva, L.F.V. Bresciani, R.L. Dalagnol, L. Danielski, R.A. Yunes and S.R.S. Ferreira, Supercritical fluid extraction of Carqueja (Baccharis Trimera) oil: Process parameters and composition profiles, Food Bioprod. Process. 87 (2009) 317–326.
26. C.S.G. Kitzberger, R.H. Lomonaco, E.M.Z. Michielin, L. Danielski, J. Correia and S.R.S. Ferreira, Supercritical fluid extraction of shiitake oil: Curve modeling and extract composition, J. Food Eng. 90 (2009) 35–43.
27. K.H. Kim and J. Hong, Desorption kinetic model for supercritical fluid extraction of Spearmint Leaf Oil, Sep. Sci. Technol. 36 (2001) 1437–1450.
28. T.C. Confortin, I. Todero, N.I. Canabarro, L. Luft, G.A. Ugalde, J.R. Neto, et al., Supercritical CO2 extraction of compounds from different aerial parts of Senecio brasiliensis: Mathematical modeling and effects of parameters on extract quality, J. Supercrit. Fluids 153 (2019) 104589.
29. E. Uquiche, B. Sánchez, C. Marillán, R. Quevedo, Simultaneous extraction of lipids and minor lipids from microalga (Nannochloropsis gaditana) and rapeseed (Brassica napus) using supercritical carbon dioxide, J. Supercrit. Fluids 190 (2022) 105753.
30. S. Ahmadkelayeh, S. Kaur Cheema, K. Hawboldt, Supercritical CO2 extraction of lipids and astaxanthin from Atlantic shrimp by-products with static co-solvents: Process optimization and mathematical modeling studies, J. CO2 Util. 58 (2022) 101938.