Preparation of Ni/ZSM-5 and Mo/ZSM-5 catalysts for hydrotreating palm oil into biojet fuel

Main Article Content

Wega Trisunaryanti
Karna Wijaya
Aulia Meylida Tazkia

Abstract

With the increasing demand for fuel for global usage and CO2 emissions, greener alternatives are needed, especially in biojet fuel production. Catalyst preparation involves the impregnation of Ni and Mo metals into H-ZSM-5 using a dry impregnation method with spray deposition, resulting in Ni/ZSM-5 and Mo/ZSM-5 catalysts. Catalyst characterization utilizes FT-IR, XRD, SAA, SEM-EDX, XRF, and NH3-TPD instruments. The activity and selectivity tests of the catalysts were conducted in the hydrotreating of palm oil using Ni/ZSM-5 monolayer, Ni/ZSM-5 bilayer, Mo/ZSM-5 monolayer, Mo/ZSM-5 bilayer, as well as Ni/ZSM-5 bottom-layer and Mo/ZSM-5 top-layer arrangements. The result showed double-layer Ni/ZSM-5 as the best catalyst in activity and selectivity in producing biojet fuel fractions with consecutive conversion, selectivity, and yield of 29.71%, 84.76%, and 24.34%, respectively. The layers of catalyst affected the catalytic activity and selectivity, resulting in a higher yield.

Downloads

Download data is not yet available.

Article Details

How to Cite
Trisunaryanti, W., Wijaya, K., & Tazkia, A. M. (2024). Preparation of Ni/ZSM-5 and Mo/ZSM-5 catalysts for hydrotreating palm oil into biojet fuel. Communications in Science and Technology, 9(1), 161-169. https://doi.org/10.21924/cst.9.1.2024.1442
Section
Articles

References

1. Dhabi: International Renewable Energy Agency, 2023.
2. International Energy Agency (IEA). Tracking Transport 2020. France, Paris, 2020.
3. M.D. Staples, R. Malina, P. Suresh, J. I. Hileman and S. R. H. Barrett, Aviation CO2 emissions reductions from the use of alternative jet fuels, Energy Policy 114 (2018) 342-354.
4. B. P. Resosudarmo, J. F. Rezki, and Y. Effendi, Y., Prospects of Energy Transition in Indonesia, Bull. Indones. Econ. Stud. 59 (2023) 149-177.
5. Oil World, Oil World Database, 2018.
6. S.J. Priatna, Y.M. Hakim, M.A. Alfarizi, S. Sailah, and R. Mohadi, Palm oil mill effluent (POME) precipitation using ammonium-intercalated clay coagulant, Commun. Sci. Technol. 8 (2023) 10-15.
7. A.Y. Allam, Z.S. Khan, M.S. Bhat, B. Naik, S.A. Wani, S. Rustagi, T. Aijaz, M.F. Elsadek, and T.W. Chen, Chemical, Physical, and Technological Characteristics of Palm Olein and Canola Oil Blends, J. Food Qual. 2023 (2023) 1-17.
8. M. Makcharoen, A. Kaewchada, N. Akkarawatkhoosith, and A. Jaree, Biojet fuel production via deoxygenation of crude palm kernel oil using Pt/C as catalyst in a continuous fixed bed reactor, Energy Convers. Manag. X. 12 (2021) 100125.
9. A. Kostyniuk, D. Bajec, A. Prašnikar and B. Likozar, Catalytic hydrocracking, hydrogenation, and isomerization reactions of model biomass tar over (W/Ni)-zeolites, J. Ind. Eng. Chem. 101 (2021) 293-306.
10. R. Saab, K. Polychronopoulou, L. Zheng, S. Kumar and A. Schiffer, Synthesis and performance evaluation of hydrocracking catalysts: A review, J. Ind. Eng. Chem. 89 (2020) 83-103.
11. N. Panarmasar, N. Hinchiranan and P. Kuchonthara, Catalytic hydrotreating of palm oil for bio-jet fuel production over Ni supported on mesoporous zeolite, Materials Today: Proceedings 57 (2022) 1082-1087.
12. M. F., B. H . Carli, Susanto and T. K. Habibie, Synthesis of bioavture through hydrodeoxygenation and catalytic cracking from oleic acid using NiMo/Zeolit catalyst, E3S Web of Conferences EDP Sciences 67 (2018) 02023.
13. W. Trisunaryanti, Triyono, K. Wijaya, I. Kartini, S. Purwono, Rodiansono, A. Mara, and A. Budiansyah, Preparation of Mo-impregnated mordenite catalysts for the conversion of refined kernel palm oil into bioavtur, Commun. sci. technol., 8 (2023) 226-234.
14. E. Zikhonjwa, Hydrogenation of coconut oil into Biofuel (bio-jet fuel and high-value low molecule hydrocarbons, Doctoral dissertation, Chemical Engineering, Durban University of Technology, Durban, South Africa, 2021.
15. M. Braun-Unkhoff, T. Kathrotia, B. Rauch and U. Riedel, About the interaction between composition and performance of alternative jet fuels, J. CEAS Aeronaut. 7 (2016) 83-94.
16. D. U. Ruixue, L. I. U. Zelong, W. A. N. G. Naixin and L. I. U. Mingxing, Analysis of Carbon Number Distribution of Hydrocarbons in Jet Fuel by Gas Chromatography-Mass Spectrometry, Acta Petrolei Sinica (Petroleum Processing Section), 38. 4 (2022) 917-928.
17. A. Aneu, K. Wijaya and A. Syoufian, Porous Silica Modification with Sulfuric Acids and Potassium Fluorides as Catalysts for Biodiesel Conversion from Waste Cooking Oils, J. Porous Mater., 29 (2022) 1321–1335.
18. K. Wijaya, W.D. Saputri, I.T.A. Aziz, Wangsa, E. Heraldy, L. Hakim, A. Suseno, and M. Utami, Mesoporous Silica Preparation Using Sodium Bicarbonate as Template and Application of the Silica for Hydrocracking of Used Cooking Oil into Biofuel, Silicon 14 (2022) 1583–1591.
19. G.G. Oseke, A. Y. Atta, B. Mukhtar, B. J. El-Yakubu and B. O. Aderemi, Synergistic effect of Zn with Ni on ZSM-5 as propane aromatization catalyst: effect of temperature and feed flowrate, J. Porous Mater. 29. 6 (2022) 1839-1852.
20. W. N. A. A. W. Ranizang, S. M. M. Shukri, Z. Y. Zakaria, M. Jusoh and M. A. M. Yussuf, Catalytic Pyrolysis of Fuel Oil Blended Stock to Methane and Hydrogen Gases Products Using Ni/ZSM-5 catalyst, Chem. Eng. Trans. 106 (2023) 43-48.
21. K. Wijaya, A. Nadia, A. Dinana, A. F. Pratiwi, A. D. Tikoalu and A. C. Wibowo, Catalytic Hydrocracking of Fresh and Waste Frying Oil over Ni-and Mo-based Catalysts Supported on Sulfated Silica for Biogasoline Production, Catalysts 11 (2021) 1150–1164.
22. Y. K. Krisnandi, B.A. Samodro, R. Sihombing and R. F. Howe, Direct synthesis of methanol BY partial oxidation of methane with oxygen over cobalt modified Mesoporous H-ZSM-5 catalyst, Indones. J. Chem. (2015) 263-268.
23. Pan, M., Zheng, J., Liu, Y., Ning, W., Tian, H., and Li, R., Construction and practical application of a novel zeolite catalyst for hierarchically cracking of heavy oil, J. Catal., 369 (2019) 72–85.
24. T. Riyanto I. Istadi, B. Jongsomjit,D.D. Anggoro, A.A. Pratama and M.A.A. Faris, Improved Brønsted to Lewis (B/L) Ratio of Co- and Mo-Impregnated ZSM-5 Catalysts for Palm Oil Conversion to Hydrocarbon-Rich Biofuels, Catalysts 11 (2021) 1286.
25. J. Zhou, J. Zhang, T. Zhang, M. Ye, and Z. Liu, Regeneration of catalysts deactivated by coke deposition: A review, Chinese J. Catal., 41. 7 (2020) 1048-1061.
26. S. Chavez B. Werghi, K.M.S. Gutierrez, R. Chen, S. Lall, and M. Cargnello, Studying, promoting, exploiting, and predicting catalyst dynamics: the next frontier in heterogeneous catalysis, J. Phys. Chem. C 127. 5 (2023) 2127-2146.
27. P. Kumar, S. K. Maity and D. Shee, Role of NiMo Alloy and Ni Species in the Performance of NiMo/Alumina Catalysts for Hydrodeoxygenation of Stearic Acid: A Kinetic Study, ACS Omega 4 (2019) 2833–2843.
28. S.A. Ali, F. M. Almulla, B. R. Jermy, A. M. Aitani , R.H. Abudawoud, M.A. Amer , Z. S. Qureshi, T. Mohammad, and H.S. Alasiri, Hierarchical composite catalysts of MCM-41 on zeolite Beta for conversion of heavy reformate to xylenes, J Ind Eng Chem. 98 (2021) 189-199.
29. Z. Hu, P. Hu , X. Wang , T. Wu , S. Ge , H. Xie , B. Liu , S. Chen , and Z. Wu, Selective hydrocracking of 1-methylnaphthalene to benzene/toluene/xylenes (BTX) over NiW/Beta bifunctional catalyst: Effects of metal–acid balance, Fuel 363 (2024) 130947.
30. W. Trisunaryanti, K. Wijaya, I. Kartini, S. Purwono, Rodiansono, A. Mara, A. S. Rahma, Hydrodeoxygenation of refined palm kernel oil (RPKO) into bio-jet fuel using Mo/H-ZSM-5 catalysts, React. Kinet. Mech. Catal. 137 (2024) 843-878.
31. Q. L. Li, R. Shan, J. Zhang, M. Lei, H. R. Yuan and Y. Chen, Enhancement of hydrogen and carbon nanotubes production from hierarchical Ni/ZSM-5 catalyzed polyethylene pyrolysis. J. Anal. Appl. Pyrolysis 169 (2023) 105829.
32. E. S. S. Why, H. C. Ong, H. V. Lee, W. H. Chen, N. A. Mijan and M. Varman, Conversion of bio-jet fuel from palm kernel oil and its blending effect with jet A-1 fuel, Energy Convers. Manag., 243 (2021) 114311.
33. F. S. AlHumaidan, R. Bouresli, H. AlSheeha, M. Marafi and M. S. Rana, Synthesis of Mild Hydrocracking Catalysts for Residue Conversion, Ind. Eng. Chem. Res. 63.1 (2023) 100-110.
34. E. Fumoto, S. Sato and T. Toshimasa, Determination of carbonyl functional groups in heavy oil using infrared spectroscopy, Energy Fuels 34. 5 (2020) 5231-5235.
35. L. D. R. Novaes, A. R. Secchi, V. M. M. Salim and N. S. de Resende, Enhancement of hydrotreating process evaluation: correlation between feedstock properties, in-line monitoring and catalyst deactivation, Catal. Today 394 (2022) 390-402.
36. H. Hafshah, D. H. Prajitno and A. Roesyadi, Hydrotalcite Catalyst for Hydrocracking Calophyllum inophyllum Oil to Biofuel: A Comparative Study with and without Nickel Impregnation, Bull. Chem. React. Eng. Catal. 12. 2 (2017) 273-280.
37. M. Anand, S. A. Farooqui, J. Singh, H. Singh and A. K Sinha, Mechanistic in-operando FT-IR studies for hydroprocessing of triglycerides, Catal. Today 309 (2018) 11-17.
38. D. Banerjee, I.S. Yunus, X. Wang, J. Kim, A. Srinivasan, R. Menchavez, Y. Chen, J.W. Gin, C.J. Petzold, H.G. Martin, J.K. Magnuson, P.D. Adams, B.A. Simmons, A. Mukhopadhyay, J. Kim, and T.S. Lee, Genome-scale and pathway engineering for the sustainable aviation fuel precursor isoprenol production in Pseudomonas putida, Metab. Eng. 82 (2024) 157-170.
39. N. Hunsiri, N. Chaihad, C. Ngamcharussrivichai, D.N. Tungasmita, P. Reubroycharoen, and N. Hinchiranan, Branched-chain biofuels derived from hydroisomerization of palm olein using Ni/modified beta zeolite catalysts for biojet fuel production, Fuel Process. Technol. 248 (2023) 107825.
40. A. Tepelus, R.E Dragomir and P. Rosca, Biojet from Sugar Derivatives, Rev. Roum. Chim. 66. 4 (2021) 313-320.
41. P. Chintakanan, T. Vitidsant, P. Reubroycharoen , P. Kuchonthara, T. Kida, N. Hinchiranan, Bio-jet fuel range in biofuels derived from hydroconversion of palm olein over Ni/zeolite catalysts and freezing point of biofuels/Jet A-1 blends, Fuel 293 (2021) 120472.
42. S. P. Adhikari, J. Zhang, Q. Guo, K.A. Unocic, L. Tao and Z. Li, A hybrid pathway to biojet fuel via 2, 3-butanediol, Sustain. Energy Fuels, 4. 8 (2020) 3904-3914.
43. C.H. Lin, Y.K. Chen and W.C Wang, The production of bio-jet fuel from palm oil derived alkanes, Fuel 260 (2020) 116345.