Efficient degradation of methyl orange through photo-Fenton processes with MIL-100(Fe) modified Fe\(_3\)O\(_4\) (Fe\(_3\)O\(_4\)@MIL-100(Fe)) catalyst

Main Article Content

Melani Puji Puspitasari
Jeesica Hermayanti Pratama
Roshid Adi Nugroho
Witri Wahyu Lestari
Yusnadia Kemala
Teguh Endah Saraswati
Hamzah Fansuri
Rino Rakhmata Mukti
Rujito S. R. Suharbiansah

Abstract

The research successfully synthesized a composite MIL-100(Fe) modified Fe3O4 (Fe3O4@MIL-100(Fe)) catalyst and examined its efficiency in degrading methyl orange (MO) through the photo-Fenton process compared to Fenton. The different percentages of Fe3O4 were integrated into MIL-100(Fe) and their effects on material characteristics and degradation capabilities were studied. Ex-situ synthesis involved varying Fe3O4 weight ratios (3, 10, and 20% w/w). Characterization techniques confirmed the integration of Fe3O4 and MIL-100(Fe) and revealed changes in surface area, pore size, and thermal stability with Fe3O4 addition. Meanwhile, removal tests showed promising results with the photo-Fenton process exhibiting maximum efficiency (95.51%) using 10% Fe3O4@MIL-100(Fe). This study provides valuable insights into developing efficient photo-Fenton catalysts for environmental remediation, particularly for addressing dye pollution in wastewater by highlighting the potential of Fe3O4@MIL-100(Fe) composites in this context.

Downloads

Download data is not yet available.

Article Details

How to Cite
Puspitasari, M. P., Pratama, J. H., Nugroho, R. A., Lestari, W. W., Kemala, Y., Saraswati, T. E., Fansuri, H., Mukti, R. R., & Suharbiansah, R. S. R. (2024). Efficient degradation of methyl orange through photo-Fenton processes with MIL-100(Fe) modified Fe\(_3\)O\(_4\) (Fe\(_3\)O\(_4\)@MIL-100(Fe)) catalyst . Communications in Science and Technology, 9(2), 252-261. https://doi.org/10.21924/cst.9.2.2024.1493
Section
Articles

References

1. T. Huang, L. Liu, J. Tao, L. Zhou, and S. Zhang, Microbial fuel cells coupling with the three-dimensional electro-Fenton technique enhances the degradation of methyl orange in the wastewater, Environ. Sci. Pollut. Res. 25 (2018) 17989–18000.

2. R. D. Suryavanshi, S. V. Mohite, A. A. Bagade, and K. Y. Rajpure, Photoelectrocatalytic activity of spray deposited Fe2O3/ZnO photoelectrode for degradation of salicylic acid and methyl orange dye under solar radiation, Mater. Sci. Eng. B 248 (2019) 114386.

3. O. A. Saputra, M. Nauqinida, Kurnia, S. Pujiasih, T. Kusumaningsih, and E. Pramono, Improvement of anionic and cationic dyes removal in aqueous solution by Indonesian agro-waste oil palm empty fruit bunches through silylation approach, Groundw. Sustain. Dev. 13 (2021) 100570.

4. W. Qu, D. He, H. Huang, Y. Guo, Y. Tang, and R.-J. Song, Characterization of amino-crosslinked hypromellose and its adsorption characteristics for methyl orange from water, J. Mater. Sci. 55 (2020) 7268–7282.

5. S. Aslam, F. Subhan, Z. Liu, Z. Yan, A. Ahmad, A. Nazir, et al., Magnetic Fe3O4@MIL-100(Fe) core-shells decorated with gold nanoparticles for enhanced catalytic reduction of 4-nitrophenol and degradation of azo dye, Colloids Surfaces A Physicochem. Eng. Asp. 660 (2023) 130904.

6. M. Priyadarshini, I. Das, M. M. Ghangrekar, and L. Blaney, Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies, J. Environ. Manage. 316 (2022) 115295.

7. F. E. Titchou, H. Zazou, H. Afanga, J. El Gaayda, R. Ait Akbour, P. V. Nidheesh, et al., Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes, Chem. Eng. Process. - Process Intensif. 169 (2021) 108631.

8. Y. Deng, and R. Zhao, Advanced Oxidation Processes (AOPs) in Wastewater Treatment, Curr. Pollut. Reports 1 (2015) 167–176.

9. Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, and H. He, Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review, Appl. Catal. B Environ. 255 (2019) 117739.

10. M. Zhang, H. Dong, L. Zhao, D. Wang, and D. Meng, A review on Fenton process for organic wastewater treatment based on optimization perspective, Sci. Total Environ. 670 (2019) 110–121.

11. X. Wang, X. Zhang, Y. Zhang, Y. Wang, S.-P. Sun, W. D. Wu, et al., Nanostructured semiconductor supported iron catalysts for heterogeneous photo-Fenton oxidation: a review, J. Mater. Chem. A 8 (2020) 15513–15546.

12. R. M. Iqbal, S. D. Nurherdiana, M. S. Sahasrikirana, L. Harmelia, W. P. Utomo, E. P. Setyaningsih, et al., The Compatibility of NiO, CeO2 and NiO-CeO2 as a Coating on La0.6Sr0.4Co0.2Fe0.8O3-? , La0.7Sr0.3Co0.2Fe0.8O3-? and La0.7Sr0.3Mn0.3O3-? Ceramic Membranes and Their Mechanical Properties, IOP Conf. Ser. Mater. Sci. Eng. 367 (2018) 012032.

13. X. Guo, K. Wang, and Y. Xu, Tartaric acid enhanced CuFe2O4-catalyzed heterogeneous photo-Fenton-like degradation of methylene blue, Mater. Sci. Eng. B 245 (2019) 75–84.

14. F. Machado, A. C. S. C. Teixeira, and L. A. M. Ruotolo, Critical review of Fenton and photo-Fenton wastewater treatment processes over the last two decades, Int. J. Environ. Sci. Technol. 20 (2023) 13995–14032.

15. X. Wang, W. Liu, J. Qin, and L. Lei, Improvement of H2O2 Utilization by the Persistent Heterogeneous Fenton Reaction with the Fe3O4 -Zeolite-Cyclodextrin Composite, Ind. Eng. Chem. Res. 59 (2020) 2192–2202.

16. F. F. Dias, A. A. S. Oliveira, A. P. Arcanjo, F. C. C. Moura, and J. G. A. Pacheco, Residue-based iron catalyst for the degradation of textile dye via heterogeneous photo-Fenton, Appl. Catal. B Environ. 186 (2016) 136–142.

17. A. Jonidi Jafari, B. Kakavandi, N. Jaafarzadeh, R. Rezaei Kalantary, M. Ahmadi, and A. Akbar Babaei, Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: Adsorption and degradation studies, J. Ind. Eng. Chem. 45 (2017) 323–333.

18. F. Riyanti, H. Hasanudin, A. Rachmat, W. Purwaningrum, and P. L. Hariani, Photocatalytic degradation of methylene blue and Congo red dyes from aqueous solutions by bentonite-Fe3O4 magnetic, Commun. Sci. Technol. 8 (2023) 1–9.

19. N. A. Zubir, C. Yacou, J. Motuzas, X. Zhang, X. S. Zhao, and J. C. Diniz da Costa, The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO–Fe3O4, Chem. Commun. 51 (2015) 9291–9293.

20. W. W. Lestari, M. C. Ningrum, R. A. Nugroho, T. E. Saraswati, and S. Wahyuningsih, Efficient Photo-Fenton Degradation of Eosin Yellow with Solvent-Free Synthesized Fe3O4/MIL-100(Cr), J. Inorg. Organomet. Polym. Mater. (2024) doi: 10.1007/s10904-024-03360-5.

21. Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li, C.-Y. Su, et al., Missing-linker metal-organic frameworks for oxygen evolution reaction, Nat. Commun. 10 (2019) 5048.

22. C. Zhao, J. Wang, X. Chen, Z. Wang, H. Ji, L. Chen, et al., Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(VI) sequestration and activation of persulfate for bisphenol A degradation, Sci. Total Environ. 752 (2021) 141901.

23. M. Ahmad, S. Chen, F. Ye, X. Quan, S. Afzal, H. Yu, et al., Efficient photo-Fenton activity in mesoporous MIL-100(Fe) decorated with ZnO nanosphere for pollutants degradation, Appl. Catal. B Environ. 245 (2019) 428–438.

24. J. Ding, Y.-G. Sun, and Y.-L. Ma, Highly Stable Mn-Doped Metal–Organic Framework Fenton-Like Catalyst for the Removal of Wastewater Organic Pollutants at All Light Levels, ACS Omega 6 (2021) 2949–2955.

25. W. He, Z. Li, S. Lv, M. Niu, W. Zhou, J. Li, et al., Facile synthesis of Fe3O4@MIL-100(Fe) towards enhancing photo-Fenton like degradation of levofloxacin via a synergistic effect between Fe3O4 and MIL-100(Fe), Chem. Eng. J. 409 (2021) 128274.

26. C.-F. Zhang, L.-G. Qiu, F. Ke, Y.-J. Zhu, Y.-P. Yuan, G.-S. Xu, et al., A novel magnetic recyclable photocatalyst based on a core–shell metal–organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye, J. Mater. Chem. A 1 (2013) 14329.

27. S. Aslam, J. Zeng, F. Subhan, M. Li, F. Lyu, Y. Li, et al., In situ one-step synthesis of Fe3O4@MIL-100(Fe) core-shells for adsorption of methylene blue from water, J. Colloid Interface Sci. 505 (2017) 186–195.

28. W. Wang, D. Chen, F. Li, X. Xiao, and Q. Xu, Metal-organic-framework-based materials as platforms for energy applications, Chem 10 (2024) 86–133.

29. Q. Han, Y. Dong, C. Xu, Q. Hu, C. Dong, X. Liang, et al., Immobilization of Metal–Organic Framework MIL-100(Fe) on the Surface of BiVO4?: A New Platform for Enhanced Visible-Light-Driven Water Oxidation, ACS Appl. Mater. Interfaces 12 (2020) 10410–10419.

30. X. Qian Tang, Y. Dan Zhang, Z. Wei Jiang, D. Mei Wang, C. Zhi Huang, and Y. Fang Li, Fe3O4 and metal–organic framework MIL-101(Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen peroxide and glucose, Talanta 179 (2018) 43–50.

31. B. A. Hunter, “Rietica - a visual Rietveld program” in 2nd AINSE Symposium on Neutron Scattering Powder Diffraction and Australian Neutron Beam Users Group Meeting Symposium Handbook, p. 24.

32. A. Amalia, W. W. Lestari, J. H. Pratama, F. R. Wibowo, L. Larasati, and T. E. Saraswati, Modification of dry-gel synthesized MIL-100(Fe) with carboxymethyl cellulose for curcumin slow-release, J. Polym. Res. 29 (2022) 487.

33. N. M. Mahmoodi, J. Abdi, M. Oveisi, M. Alinia Asli, and M. Vossoughi, Metal-organic framework (MIL-100(Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling, Mater. Res. Bull. 100 (2018) 357–366.

34. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069.

35. J. Wang, and X. Guo, Adsorption isotherm models: Classification, physical meaning, application and solving method, Chemosphere 258 (2020) 127279.

36. M. Sturini, C. Puscalau, G. Guerra, F. Maraschi, G. Bruni, F. Monteforte, et al., Combined Layer-by-Layer/Hydrothermal Synthesis of Fe3O4@MIL-100(Fe) for Ofloxacin Adsorption from Environmental Waters, Nanomaterials 11 (2021) 3275.

37. M. Forghani, A. Azizi, M. J. Livani, and L. A. Kafshgari, Adsorption of lead(II) and chromium(VI) from aqueous environment onto metal-organic framework MIL-100(Fe): Synthesis, kinetics, equilibrium and thermodynamics, J. Solid State Chem. 291 (2020) 121636.

38. X.-Z. Guo, S.-S. Han, J.-M. Yang, X.-M. Wang, S.-S. Chen, and S. Quan, Effect of Synergistic Interplay between Surface Charge, Crystalline Defects, and Pore Volume of MIL-100(Fe) on Adsorption of Aqueous Organic Dyes, Ind. Eng. Chem. Res. 59 (2020) 2113–2122.

39. M. A. Mannaa, K. F. Qasim, F. T. Alshorifi, S. M. El-Bahy, and R. S. Salama, Role of NiO Nanoparticles in Enhancing Structure Properties of TiO2 and Its Applications in Photodegradation and Hydrogen Evolution, ACS Omega 6 (2021) 30386–30400.

40. S. Lim, J. L. Shi, U. von Gunten, and D. L. McCurry, Ozonation of organic compounds in water and wastewater: A critical review, Water Res. 213 (2022) 118053.

41. F.-C. Tsai, Y. Xia, N. Ma, J.-J. Shi, T. Jiang, T.-C. Chiang, et al., Adsorptive removal of acid orange 7 from aqueous solution with metal–organic framework material, iron (III) trimesate, Desalin. Water Treat. 57 (2016) 3218–3226.

42. X. Jia, X. Chen, Y. Liu, B. Zhang, H. Zhang, and Q. Zhang, Hydrophilic Fe3O4 nanoparticles prepared by ferrocene as high?efficiency heterogeneous Fenton catalyst for the degradation of methyl orange, Appl. Organomet. Chem. 33 (2019).

43. H. Molavi, A. Hakimian, A. Shojaei, and M. Raeiszadeh, Selective dye adsorption by highly water stable metal-organic framework: Long term stability analysis in aqueous media, Appl. Surf. Sci. 445 (2018) 424–436.

44. Y. Fu, S. Shan, F. Chen, and J. Hu, Constructing an efficient p–n heterojunction photocatalyst CaFe2O4/Fe2O3 nanocomposite for degradation of methyl orange, J. Mater. Sci. Mater. Electron. 31 (2020) 17967–17979.

45. F. Mahmoudi, M. M. Amini, and M. Sillanpää, Hydrothermal synthesis of novel MIL-100(Fe)@SBA-15 composite material with high adsorption efficiency towards dye pollutants for wastewater remediation, J. Taiwan Inst. Chem. Eng. 116 (2020) 303–313.

46. D. Mirzaei, A. Zabardasti, Y. Mansourpanah, M. Sadeghi, and S. Farhadi, Efficacy of Novel NaX/MgO–TiO2 Zeolite Nanocomposite for the Adsorption of Methyl Orange (MO) Dye: Isotherm, Kinetic and Thermodynamic Studies, J. Inorg. Organomet. Polym. Mater. 30 (2020) 2067–2080.

47. T. Ling, B. Huang, M. Zhao, Q. Yan, and W. Shen, Repeated oxidative degradation of methyl orange through bio-electro-Fenton in bioelectrochemical system (BES), Bioresour. Technol. 203 (2016) 89–95.

48. M. Arshadi, M. K. Abdolmaleki, F. Mousavinia, A. Khalafi-Nezhad, H. Firouzabadi, and A. Gil, Degradation of methyl orange by heterogeneous Fenton-like oxidation on a nano-organometallic compound in the presence of multi-walled carbon nanotubes, Chem. Eng. Res. Des. 112 (2016) 113–121.

49. A. M. G. Domacena, C. L. E. Aquino, and M. D. L. Balela, Photo-Fenton Degradation of Methyl Orange Using Hematite (?-Fe2O3) of Various Morphologies, Mater. Today Proc. 22 (2020) 248–254.

50. L. Wang, W. Qiao, H. Liu, S. Li, J. Wu, and H. Hou, Synergistic Effects of Lewis Acid–Base Pair Sites?Hf-MOFs with Functional Groups as Distinguished Catalysts for the Cycloaddition of Epoxides with CO2, Inorg. Chem. 62 (2023) 3817–3826.

51. A. C. Affam, M. Chaudhuri, and S. R. M. Kutty, Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution, Bull. Chem. React. Eng. Catal. 13 (2018) 179–186.