Modification of Chitosan/PEG4000 dispersed with Lithium Triflate (LiCF\(_3\)SO\(_3\)) as a solid polymer electrolyte for the secondary battery
Main Article Content
Abstract
Secondary battery solid electrolytes attract researchers' attention for being one of the components of the anode and cathode separation in batteries. Currently, battery electrolytes on the market are liquid-based, which have weaknesses in their safety and are not environmentally friendly. Solid-based electrolytes can be a good choice since they excel in the safety and stability of mechanical and electrical properties; however, they still have the disadvantage of low conductivity values (~10-4 - 10-6 S/cm), thus requiring modification. The solid electrolytes modification using chitosan can be done by adding other polymers and salts as fillers and Li+ ion-making agents. This scientific paper offers an overview of the development of chitosan-based secondary battery solid electrolytes with the addition of PEG4000 polymer and LiCF3SO3. The study was conducted using the solution casting method producing solid electrolytes in the form of membranes. The addition of PEG4000 and LiCF3SO3 affected the microstructure and electrical permittivity of the polymer solid electrolyte membrane. PEG4000 as a plasticizer had no significant effect on inter- and intra-molecular bonds due to poor membrane homogeneity; meanwhile, LiCF3SO3 could increase the permittivity and ionic conductivity of the chitosan polymer solid electrolyte membrane to 3.199 x 10-7 S/cm. The chitosan polymer solid electrolyte membrane with the addition of PEG4000 and 30% LiCF3SO3 salt has an optimal value compared to other salt concentration variations. The results of this research concluded that LiCF3SO3 is evenly dispersed in the chitosan/PEG4000 solid polymer electrolyte membrane enabling it to be used as a secondary battery solid electrolyte.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. M. S. A. Rani, M. N. F. Norrrahim, V. F. Knight, N. M. Nurazzi, K. Abdan, and S. H. Lee, A Review of Solid-State Proton–Polymer Batteries: Materials and Characterizations, Polymers (Basel). 15 (2023) 1–27.
3. O. S. Burheim, Engineering energy storage. 2017.
4. J. Chattopadhyay, T. S. Pathak, and D. M. F. Santos, Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review, Polymers (Basel). 15 (2023).
5. S. Kaewpirom and S. Boonsang, POLYMER Electrical response characterization of poly ( ethylene glycol ) macromer ( PEGM )/ chitosan hydrogels in NaCl solution, 42 (2006) 1609–1616.
6. K. Sari, K. Abraha, Roto, Mashadi, and E. Suharyadi, Effect of milling time on microstructures of nano-sized chitosan, J. Phys. Conf. Ser., 1170 (2019).
7. K. Sari, S. Sunardi, A. B. S. Utomo, P. L. Toruan, E. Yulianti, and M. Mashadi, Sifat Optik Dan Permitivitas Listrik Membran Polimer Padat Kitosan/Peo, Sainmatika J. Ilm. Mat. Dan Ilmu Pengetah. Alam. 17 (2020) 97.
8. V. Koester, Plasticizers – Benefits, Trends, Health, and Environmental Issues, ChemViews. (2015) 1–9.
9. N. Yazie, D. Worku, N. Gabbiye, A. Alemayehu, Z. Getahun, and M. Dagnew, Development of polymer blend electrolytes for battery systems: recent progress, challenges, and future outlook, Mater. Renew. Sustain. Energy. 12 (2023) 73–94.
10. S. Kartika, S. Edi, Roto, and A. Kamsul, Microstructures and functional group properties of nano-sized chitosan prepared by ball milling. Mater. Sci. Forum. 948 (2019) 192–197.
11. Wicakso, D.R, M, Agus, A. Era, N, Nova Fitria, F, Firdaus, and F, Muhammad, Potential of silica from water treatment sludge modified with chitosan for Pb(II)and color adsorption in sasirangan waste solution, Commun. Sci. Technol. 7 (2022) 188-193.
12. L. Sampath Kumar, P. Christopher Selvin, and S. Selvasekarapandian, Impact of lithium triflate (LiCF3SO3) salt on tamarind seed polysaccharide-based natural solid polymer electrolyte for application in an electrochemical device, Polym. Bull. 78 (2021) 1797–1819.
13. Hossain, MD Sahadat, Ahmed, Samina, Easy and green synthesis of TiO2 (Anatase and Rutile): Estimation of crystallite size using Scherrer equation, Williamson-Hall plot, Monshi-Scherrer Model, size-strain plot, Halder- Wagner Model, Results in Materials. (2023) 100492.
14. S. Fatimah, R. Ragadhita, D. F. Al Husaeni, and A. B. D. Nandiyanto, How to Calculate Crystallite Size from X-Ray Diffraction (XRD) using Scherrer Method, ASEAN J. Sci. Eng., 2 (2022) 65–76.
15. M. Venkateswarlu, K. Narasimha Reddy, B. Rambabu, and N. Satyanarayana, A.C. conductivity and dielectric studies of silver-based fast ion conducting glass system, Solid State Ionics, 127 (2000) 177–184.
16. Sudaryanto, E. Yulianti, and H. Jodi, Studies of Dielectric Properties and Conductivity of Chitosan-Lithium Triflate Electrolyte, Polym. - Plast. Technol. Eng. 54 (2015) 290–295.
17. M. Schneider, P. Demoulin, R. Sussmann, and J. Notholt, Fourier transform infrared spectrometry, 10 (2013).
18. Q. Wang, N. Zhang, X. Hu, J. Yang, and Y. Du, Chitosan/polyethylene glycol blend fibers and their properties for drug controlled release, J. Biomed. Mater. Res. - Part A. 85 (2008) 881–887.
19. A. B. D. Nandiyanto, R. Ragadhita, and M. Fiandini, Interpretation of Fourier Transform Infrared Spectra (FTIR): A Practical Approach in the Polymer/Plastic Thermal Decomposition, Indones. J. Sci. Technol. 8 (2023) 113–126.
20. S. B. Aziz, T. J. Woo, M. F. Z. Kadir, and H. M. Ahmed, A conceptual review on polymer electrolytes and ion transport models, J. Sci. Adv. Mater. Devices, 3 (2018) 1–17.
21. S. B. Aziz et al., Characteristics of Methyl Cellulose Based Solid Polymer Electrolyte Inserted with Potassium Thiocyanate as K+ Cation Provider: Structural and Electrical Studies, Materials (Basel). 15 (2022).
22. N. N. A. Amran, N. S. A. Manan, and M. F. Z. Kadir, The effect of LiCF3SO3 on the complexation with potato starch-chitosan blend polymer electrolytes, Ionics (Kiel). 22 (2016) 1647–1658.
23. S. Navaratnam, K. Ramesh, S. Ramesh, A. Sanusi, W. J. Basirun, and A. K. Arof, Transport Mechanism Studies of Chitosan Electrolyte Systems, Electrochim. Acta, 175 (2015) 68–73.
24. Costa, L.A.T, Goncalves, P.M, Cestarolli, D.T, Guerra, E.M, Synthesis, intercalation reactions, and electrochemical studies for VO2/PEO/Chitosan. 325 (2024) 129759.
25. S. Rajendran, R. Kannan, and O. Mahendran, Ionic conductivity studies in poly(methyl methacrylate)-polyethylene oxide hybrid polymer electrolytes with lithium salts, J. Power Sources, 96 (2001) 406–410.
26. S. Ramesh, T. F. Yuen, and C. J. Shen, Conductivity and FTIR studies on PEO – LiX [ X?: CF 3 SO 3 ?, SO 42 ? ] polymer electrolytes, 69 (2008) 670–675.
27. K. Kumutha and Y. Alias, FTIR spectra of plasticized grafted natural rubber-LiCF3SO3 electrolytes, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 64 (2006) 442–447.
28. Yang, Hui, Wu, Niangiang, Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review, Energy Sci. Eng. 10 (2022) 1643-1671.
29. A. A. Al-Tabbakh, N. Karatepe, A. B. Al-Zubaidi, A. Benchaabane, and N. B. Mahmood, Crystallite size and lattice strain of lithiated spinel material for rechargeable battery by X-ray diffraction peak-broadening analysis, Int. J. Energy Res. 43 (2019) 1903–1911.
30. F. Kingslin Mary Genova, S. Selvasekarapandian, N. Vijaya, S. Sivadevi, M. Premalatha, and S. Karthikeyan, Lithium ion-conducting polymer electrolytes based on PVA–PAN doped with lithium triflate, Ionics (Kiel)., 23 (2017) 2727–2734.
31. S. Islam, A. Siddika, N. Khatun, M. S. Hossain, M. H. A. Begum, and N. A. Ahmed, Structural, dielectric and electric properties of manganese-doped barium titanate. Int. J. Nanoelectron. Mater. 11 (2018) 419–426.
32. M. Toft, The Effect of Crystalline Morphology on The Glass Transition and Enthalpic Relaxation in Poly (Ether-Ether-Ketone). Int. J. Nanoelectron. Mater. 2 (2011) 1–8.
33. A. Moradabadi and P. Kaghazchi, Effect of lattice and dopant–induced strain on the conductivity of solid electrolytes: application of the elastic dipole method, Materialia, 9 (2020) 100607.
34. K. Maryani, N. S. Anwari, W. N. Safitri, A. Hardian, E. D. Inggarwati, and A. Prasetyo, The effect of synthesis temperature on structural, morphological, and band gap energy of plate-like Bi4Ti2.95V0.05O12 prepared by molten NaCl/KCl salt method, Commun. Sci. Technol. 9 (2024) 1–6.
35. L. Schweiger, K. Hogrefe, B. Gadermaier, J. L. M. Rupp, and H. M. R. Wilkening, Ionic Conductivity of Nanocrystalline and Amorphous Li10GeP2S12: The Detrimental Impact of Local Disorder on Ion Transport, J. Am. Chem. Soc., 144 (2022) 9597–9609.
36. N. Wagner, Electrochemical impedance spectroscopy,” PEM Fuel Cell Diagnostic Tools. 1 (2011) 37–70.
37. S. Chandra Dey et al, Preparation, Characterization and Performance Evaluation of Chitosan As an Adsorbent for Remazol Red, Int. J. Latest Res. Eng. Technol. (2016) 52–62.
38. O. G. Abdullah, R. R. Hanna, H. T. Ahmed, A. H. Mohamad, S. A. Saleem, and M. A. M. Saeed, Conductivity and dielectric properties of lithium-ion biopolymer blend electrolyte based film, Results Phys., 24 (2021) 104135.
39. K. Ashabul, K. Nita, S. Pirim, M. Supari, C. Sinta Anjas, and Z. Nafisatus. Study in the impact of quaternized graphene oxide (QGO) composition as modifier on the chemical, physical, mechanical, and performance properties of polyvinylidene fluoride (PVDF)-based nanocomposite membrane. Commun. Sci. Technol. 9 (2024) 30-37.
40. S. B. Aziz et al., Impedance, FTIR and transport properties of plasticized proton conducting biopolymer electrolyte based on chitosan for electrochemical device application, Results Phys. 29 (2021).
41. A. S. Shaplov, R. Marcilla, and D. Mecerreyes, Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s, Electrochim. Acta. 175 (2015) 18–34.
42. L. Long, S. Wang, M. Xiao, and Y. Meng, Polymer electrolytes for lithium polymer batteries, J. Mater. Chem. A. 4 (2016) 10038–10039.
43. S. Navaratnam, A. Sanusi, A. H. Ahmad, S. Ramesh, K. Ramesh, and N. Othman, Conductivity studies of biopolymer electrolyte based on potato starch/chitosan blend doped with LICF3SO3, J. Teknol. 75 (2015) 1–5.
44. K. Sari et al., Effect of milling time on the microstructure and dielectric properties of chitosan nanopowder, Int. J. Nanoelectron. Mater. 13 (2020) 1–8.
45. P. Parnasari, M. Nurhanisa, and B. S. Nugroho, Studi Kapasitansi dan Konstanta Dielektrik Pada Karbon Aktif Tandan Kosong Kelapa Sawit, Prism. Fis. 10 (2022) 98.
46. M. M. El-Nahass, A. F. El-Deeb, H. E. A. El-Sayed, and A. M. Hassanien, Electrical conductivity and dielectric properties of bulk glass Se55Ge30As15 chalcogenide, Phys. B Condens. Matter. 388 (2007) 26–33.