Klanceng Honey (Tetragonula laeviceps): Its effect on fasting blood glucose, lipid and hematological profiles, and pancreatic histopathology of diabetic rats
Main Article Content
Abstract
This study aims to assess the daily ingestion of Klanceng Honey (KH) on fasting blood glucose (FBG), high-density lipoprotein (HDL), total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and pancreatic histopathology. Thirty rats were involved and divided into six groups: G1 = untreated normal rats, G2 = untreated diabetic rats (DR), G3 = DR treated with 0.9 mg/kg BW glibenclamide, G4, G5, and G6 = DR treated with 1, 2, and 3 g/kg BW KH, respectively for 28 days. The FBG level of G1 was found lower than that of diabetic rat groups (G2–G6) (p<0.01). The TC level of G1 group on 14th and 28th days was lower than that of G2–G6 groups (p<0.01). The TG levels in all rat groups showed no significant difference at 0–28 days. On 14th day, the LDL level of diabetic groups were higher than the one in G1 group (p<0.01). Meanwhile, on 14th and 28th, the HDL levels of G3–G6 groups, were higher than the one in G1 group (p<0.01). The pancreatic histopathology of all rat groups showed no abnormalities of the Langerhans islets. The daily ingestion of KH prevented FBG, TC, TG, and LDL levels from rising, increased the HDL levels, and protected the pancreatic glands against damage. T. laeviceps honey can potentially be used as a functional food for therapy of DM patients.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. O. O. Erejuwa, Honey: Profile and features: Aplications to diabetes. In: R. R. Watson and V. R. Preedy, editors. Bioactive food as dietary intervensions for diabetes. New York: Academic Press, 2019, pp. 461–494.
3. R. A. Aras, T. Lestari, H. A. Nugroho and I. Ardiyanto, Segmentation of retinal blood vessels for detection of diabetic retinopathy: A Review. Commun. Sci. Technol. 1 (2016), 33–41.
4. P. M. Da Silva, C. Gauche, L. V. Gonzaga, A. C. O. Costa and R. Fett, Honey: Chemical composition, stability and authenticity. Food Chem. 196 (2016) 309–323.
5. R. D. Rachmawati, A. Agus, N. Umami, Agussalim and H. Purwanto, Diversity, distribution, and nest characteristics of stingless bees (Hymenoptera: Meliponini) in Baluran National Park, East Java, Indonesia. Biodiversitas 23 (2022) 3890–3901.
6. S. Kahono, P. Chantawannakul and M. S. Engel, Social bees and the current status of beekeeping in Indonesia. In: P. Chantawannakul, G. Williams and P. Neumann, editors. Asian beekeeping in the 21st century. Singapore: Springer, 2018, pp. 287–306.
7. Agussalim, A. Sabir, M. Sahlan and A. Agus, Evaluation of stingless bee honey quality (Tetragonula laeviceps) based on their physicochemical from different origins. Biodiversitas 24 (2023) 2134–2142.
8. Agussalim, N. Umami, Nurliyani and A. Agus, Stingless bee honey (Tetragonula laeviceps): Chemical composition and their potential roles as an immunomodulator in malnourished rats. Saudi J. Biol. Sci. 29 (2022) 103404.
9. Agussalim, A. Agus, Nurliyani, N. Umami and I. G. S. Budisatria, Physicochemical properties of honey produced by the indonesian stingless bee: Tetragonula laeviceps. IOP Conf. Ser. Earth Environ. Sci. 387 (2019) 012084.
10. A. Agus, Agussalim, Nurliyani, N. Umami and I. G. S. Budisatria, Evaluation of antioxidant activity, phenolic, flavonoid and vitamin c content of several honeys produced by the indonesian stingless bee: Tetragonula laeviceps. Livest. Res. Rural Dev. 31 (2019) 152.
11. Agussalim, A. Agus, Nurliyani and N. Umami, The sugar content profile of honey produced by the indonesian stingless bee, Tetragonula laeviceps, from different regions. Livest. Res. Rural Dev. 31 (2019) 91.
12. L. K. Dewi, M. Sahlan, D. K. Pratami, A. Agus, Agussalim and A. Sabir, Identifying propolis compounds potential to be Covid-19 therapies by targeting SARS-CoV-2 Main Protease. Int. J. Appl. Pharm. 13 (2021) 103–110.
13. Erwan, Habiburrohman, I. K. G. Wiryawan, M. Muhsinin, B. Supeno and Agussalim, Comparison of productivity from three stingless bees: Tetragonula sapiens, T. Clypearis and T. biroi managed under same feed sources for meliponiculture. Biodiversitas 24 (2023) 2988–2994.
14. M. N. Pratama, A. Agus, N. Umami, Agussalim and H. Purwanto, Morphometric and molecular identification, domestication, and potentials of stingless bees (Apidae: Meliponini) in Mount Halimun Salak National Park, West Java, Indonesia. Biodiversitas 24 (2023) 6107–6118.
15. D. K. Pratami, T. Indrawati, I. Istikomah, S. Farida, P. Pujianto and M. Sahlan, Antifungal activity of microcapsule propolis from Tetragonula spp. to Candida Albicans. Commun. Sci. Technol. (2020) 16–21.
16. B. Supeno, Erwan and Agussalim, The production of honey and pot-pollen from stingless bee Tetragonula clypearis and their contribution to increase the farmers income in West Lombok, Indonesia. Livest. Res. Rural Dev. 34 (2022) 42.
17. Erwan, M. Astuti, Syamsuhaidi, M. Muhsinin and Agussalim, The effect of different beehives on the activity of foragers, honey pots number and honey production from stingless bee Tetragonula sp. Livest. Res. Rural Dev. 32 (2020) 158.
18. Agussalim, N. Umami, Nurliyani and A. Agus, The physicochemical composition of honey from indonesian stingless bee (Tetragonula laeviceps). Biodiversitas 22 (2021) 3257–3263.
19. Erwan, Suhardin, Syamsuhaidi, D. K. Purnamasari, M. Muhsinin and Agussalim, Propolis mixture production and foragers daily activity of stingless bee Tetragonula sp. in bamboo and box hives. Livest. Res. Rural Dev. 33 (2021) 82.
20. A. Sabir, A. Agus, M. Sahlan and Agussalim, The minerals content of honey from stingless bee Tetragonula laeviceps from different regions in Indonesia. Livest. Res. Rural Dev. 33 (2021) 22.
21. A. Agus, Agussalim, M. Sahlan and A. Sabir, A. Honey sugars profile of stingless bee Tetragonula laeviceps (Hymenoptera: Meliponinae). Biodiversitas 22 (2021) 5205–5210.
22. B. Supeno, Erwan and Agussalim, Enhances production of coffee (Coffea robusta): The role of pollinator, forages potency, and honey production from Tetragonula sp. (Meliponinae) in Central Lombok, Indonesia. Biodiversitas 22 (2021) 4687–4693.
23. Agussalim, Nurliyani, N. Umami and A. Agus, The Honey and propolis production from indonesian stingless bee: Tetragonula laeviceps. Livest. Res. Rural Dev. 32 (2020) 121.
24. J. Thipraksa, P. Michu, A. Kongthong and P. Chaijak, Exploring the impact of co-fermentation Saccharomyces cerevisiae and Lactobacillus Sp. on stingless bee-honey cider fermentation. Commun. Sci. Technol. 8 (2023) 93–99.
25. Agussalim and A. Agus, Production of honey, pot-pollen and propolis production from indonesian stingless bee Tetragonula laeviceps and the physicochemical properties of honey: A review. Livest. Res. Rural Dev. 34 (2022) 66.
26. M. A. I. Al-Hatamleh, J. C. Boer, K. L. Wilson, M. Plebanski, R. Mohamud and M. Z. Mustafa, Antioxidant-based medicinal properties of stingless bee products: Recent progress and future directions. Biomolecules 10 (2020) 923.
27. S. Ávila, P. S. Hornung, G. L. Teixeira, L. N. Malunga, F. B. Apea-Bah, M. R. Beux, et al., Bioactive compounds and biological properties of Brazilian stingless bee honey have a strong relationship with the pollen floral origin. Food Res. Int. 123 (2019) 1–10.
28. H. O. Mokaya, K. Nkoba, R. M. Ndunda and N. J. Vereecken, Characterization of honeys produced by sympatric species of Afrotropical stingless bees (Hymenoptera, Meliponini). Food Chem. 366 (2022) 130597.
29. F. I. N. Moreira, L. L. de Medeiros, L. M. de Carvalho, L. S. Olegario, M. de Sousa Galvão, S. A. M. da Franca, et al., Quality of Brazilian stingless bee honeys: Cephalotrigona capitata/Mombucão and Melipona scutellaris Latrelle/Uruçu. Food Chem. 404 (2023) 134306.
30. L. C. Ng, S. B. A. Razak, Rudiyanto, S. P. Tan and F. T. Ahmad, Low heating effects on the total microbial activity and physico-chemical properties of stingless bee (Heterotrigona itama) honey. Malaysian Appl. Biol. 52 (2023) 43-52.
31. Z. Ngaini, H. Hussain, E. S. Kelabo, R. Wahi and S. Farooq, Chemical profiling, biological properties and environmental contaminants of stingless bee honey and propolis. J. Apic. Res. 62 (2023) 131–147.
32. M. Popova, D. Gerginova, B. Trusheva, S. Simova, A. N. Tamfu, O. Ceylan, et al., A preliminary study of chemical profiles of honey, cerumen, and propolis of the African stingless bee Meliponula ferruginea. Foods 10 (2021) 997.
33. S. Shamsudin, J. Selamat, M. Sanny, S. B. Abd. Razak, N. N. Jambari, Z. Mian, et al., Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. Int. J. Food Prop. 22 (2019) 238–263.
34. S. N. Sharin, M. S. A. Sani, M. A. Jaafar, M. H. Yuswan, N. K. Kassim, Y. N. Manaf, et al., Discrimination of Malaysian stingless bee honey from different entomological origins based on physicochemical properties and volatile compound profiles using chemometrics and machine learning. Food Chem. 346 (2021) 128654.
35. E. C. A. Souza, C. Menezes and A. Flach, Stingless bee honey (Hymenoptera, Apidae, Meliponini): A review of quality control, chemical profile, and biological potential. Apidologie 52 (2021) 113–132.
36. E. Umaña, G. Zamora, I. Aguilar, M. L. Arias, R. Pérez, L. A. Sánchez, et al., Physicochemical differentiation of stingless bee honeys from Costa Rica. J. Apic. Res. 62 (2023) 873–882.
37. I. Villacrés-Granda, D. Coello, A. Proaño, I. Ballesteros, D. W. Roubik, G. Jijón, et al., Honey Quality parameters, chemical composition and antimicrobial activity in twelve Ecuadorian stingless bees (Apidae: Apinae: Meliponini) tested against multiresistant human pathogens. LWT - Food Sci. Technol. 140 (2021) 110737.
38. F. C. Biluca, F. Braghini, L. V. Gonzaga, A. C. O. Costa and R. Fett, Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). J. Food Compos. Anal. 50 (2016) 61–69.
39. N. Zawawi, J. Zhang, N. L. Hungerford, H. S. A. Yates, D. C. Webber, M. Farrell, et al., Unique physicochemical properties and rare reducing sugar trehalulose mandate new international regulation for stingless bee honey. Food Chem. 373 (2022) 131566.
40. F. Braghini, F. C. Biluca, M. Schulz, L. V. Gonzaga, A. C. O. Costa and R. Fett, Stingless bee honey: A precious but unregulated product - reality and expectations. Food Rev. Int. 38 (2022) 683–712.
41. B. Chuttong, Y. Chanbang, K. Sringarm and M. Burgett, Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem. 192 (2016) 149–155.
42. A. C. dos Santos, F. C. Biluca, F. Braghini, L. V. Gonzaga, A. C. O. Costa and R. Fett, Phenolic composition and biological activities of stingless bee honey: An overview based on its aglycone and glycoside compounds. Food Res. Int. 147 (2021) 110553.
43. M. T. Fletcher, N. L. Hungerford, D. Webber, M. Carpinelli de Jesus, J. Zhang, I. S. J. Stone, et al., Stingless bee honey, a novel source of trehalulose: A biologically active disaccharide with health benefits. Sci. Rep. 10 (2020) 1–8.
44. A. Gela, Z. A. Hora, D. Kebebe and A. Gebresilassie, Physico-chemical characteristics of honey produced by stingless bees (Meliponula Beccarii) from West Showa Zone of Oromia Region, Ethiopia. Heliyon 7 (2021) e05875.
45. V. A. Isidorov, J. Maslowiecka, N. Pellizzer, D. Miranda and S. Bakier, Chemical composition of volatile components in the honey of some species of stingless bees. Food Control 146 (2023) 109545.
46. N. F. Ismail, M. Maulidiani, S. Omar, M. F. Zulkifli, M. N. F. Mohd Radzi, N. Ismail, et al., Classification of stingless bee honey based on species, dehumidification process and geographical origins using physicochemical and ATR-FTIR chemometric approach. J. Food Compos. Anal. 104 (2021) 104126.
47. A. Nordin, N. Q. A. V Sainik, S. R. Chowdhury, A. Saim and R. B. H. Idrus. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J. Food Compos. Anal. 73 (2018) 91–102.
48. A. K. Hassan, D. A. El-kotby, M. M. Tawfik, R. E. Badr and I. M. Bahgat, Antidiabetic effect of the egyptian honey bee (Apis mellifera) venom in alloxan-induced diabetic rats. J. Basic Appl. Zool. 80 (2019) 58.
49. D. Cianciosi, T. Y. Forbes-Hernández, S. Afrin, M. Gasparrini, P. Reboredo-Rodriguez, P. P. Manna, et al., Phenolic compounds in honey and their associated health benefits: A review. Molecules 23 (2018) 2322.
50. O. O. Erejuwa, S. A. Sulaiman and M. S. Ab Wahab, Oligosaccharides might contribute to the antidiabetic effect of honey: A review of the literature. Molecules 17 (2012) 248–266.
51. M. Zamanian and F. Azizi-Soleiman, Honey and glycemic control: A systematic review. PharmaNutrition 11 (2020) 100180.
52. R. Sharma, N. Martins, A. Chaudhary, N. Garg, V. Sharma, K. Kuca, et al., Adjunct use of honey in diabetes mellitus: A consensus or conundrum? Trends Food Sci. Technol. 106 (2020) 254–274.
53. V. R. Pasupuleti, C. S. Arigela, S. H. Gan, S. K. N. Salam, K. T. Krishnan, N. A. Rahman, et al., A review on oxidative stress, diabetic complications, and the roles of honey polyphenols. Oxid. Med. Cell. Longev. (2020) 8878172.
54. M. A. Abdulrhman. Honey as a sole treatment of type 2 diabetes mellitus. Endocrinol. Metab. Syndr. 5 (2016) 232.
55. S. B. Khedekar, B. Ravishankar and P. K. Prajapati, Anti-diabetic activity of dried extract of Tionspora cordifolia (Guduchi ghana) and honey in streptozotacin induced diabetic rats. Int. J. Green Pharm. 9 (2015) S31–S38.
56. M. Moein, S. Moein, F. Farmani, S. Rozbehan and Z. Sabahi, Examination the antioxidant potentials and antidiabetic properties of phenolic extracts of some Iranian honeys. J. Nephropharmacology 11 (2022) e06.
57. O. O. Erejuwa, S. A. Sulaiman and M. S. Ab Wahab, Honey: A novel antioxidant. Molecules 17 (2012) 4400–4423.
58. D. A. M. Kamal, S. F. Ibrahim, H. Kamal, M. I. A. M. Kashim and M. H. Mokhtar, Physicochemical and medicinal properties of tualang, gelam and kelulut honeys: A comprehensive review. Nutrients 13 (2021) 197.
59. S. Rana, M. Mishra, D. Yadav, S. K. Subramani, C. Katare and G. B. K. S. Prasad, Medicinal uses of honey: A review on its benefits to human health. Prog. Nutr. 20 (2018) 5–14.
60. S. A. Meo, M. J. Ansari, K. Sattar, H. U. Chaudhary, W. Hajjar and S. Alasiri, Honey and diabetes mellitus: Obstacles and challenges–road to be repaired. Saudi J. Biol. Sci. 24 (2017) 1030–1033.
61. S. A. Meo, S. A. Al-Asiri, A. L. Mahesar and M. J. Ansari, Role of honey in modern medicine. Saudi J. Biol. Sci. 24 (2017) 975–978.
62. M. S. A. Aziz, N. Giribabu, P. V. Rao and N. Salleh, Pancreatoprotective effects of Geniotrigona thoracica stingless bee honey in streptozotocin-nicotinamide-induced male diabetic rats. Biomed. Pharmacother. 89 (2017) 135–145.
63. M. Sahlan, O. Rahmawati, D. K. Pratami, R. Raffiudin, R. R. Mukti and H. Hermasyah, The effects of stingless bee (Tetragonula biroi) honey on streptozotocin-induced diabetes mellitus in rats. Saudi J. Biol. Sci. 27 (2020) 2025–2030.
64. M. R. Rashid, K. N. Nor Aripin, F. B. Syed Mohideen, N. Baharom, K. Omar, N. M. S. Md Taujuddin, et al., The effect of kelulut honey on fasting blood glucose and metabolic parameters in patients with impaired fasting glucose. J. Nutr. Metab. (2019) 3176018.
65. P. G. Reeves, F. H. Nielsen and G. C. Fahey, AIN-93 Purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123 (1993) 1939–1951.
66. M. Abdulrhman, M. El Hefnawy, R. Ali, I. Abdel Hamid, A. Abou El-Goud and D. Refai, Effects of honey, sucrose and glucose on blood glucose and c-peptide in patients with type 1 diabetes mellitus. Complement. Ther. Clin. Pract. 19 (2013) 15–19.
67. M. Gholami, M. Hemmati, A. Taheri-Ghahfarokhi, R. Hoshyar and M. Moossavi, Expression of glucokinase, glucose 6-Phosphatase, and stress protein in streptozotocin-induced diabetic rats treated with natural honey. Int. J. Diabetes Dev. Ctries. 36 (2016) 125–131.
68. M. F. Zulkifli, M. Sivakumar, M. Maulidiani and W. I. Wan Ismail, Bibliometric Approach to trehalulose research trends for its potential health benefits. Food Biosci. 53 (2023) 102677.
69. O. O. Erejuwa, N. N. Nwobodo, J. L. Akpan, U. A. Okorie, C. T. Ezeonu, B. C. Ezeokpo, et al., Nigerian honey ameliorates hyperglycemia and dyslipidemia in alloxan-induced diabetic rats. Nutrients 8 (2016) 1–14.
70. A. H. Alghamdi, I. M. Shatla, S. Shreed, A. H. Khirelsied and M. F. El-Refaei, Bee honey extract attenuates hyperglycemia in Induced type 1 diabetes: Impact of antioxidant and angiogenesis activities on diabetic severity in vivo. Appl. Sci. 13 (2023) 8045.
71. M. Asaduzzaman, R. Sohanur, S. Munira, R. Muedu, M. Hasan, M. Siddique, et al., Effects of honey supplementation on hepatic and cardiovascular disease (CVD) marker in streptozotocin-induced diabetic rats. J. Diabetes Metab. 6 (2015) 1000592.
72. O. Rahmawati, D. K. Pratami, R. Raffiudin and M. Sahlan, Alpha-glucosidase inhibitory activity of stingless see honey from Tetragonula biroi and Tetragonula laeviceps. AIP Conf. Proc. 2092 (2019) 030001.
73. B. Fuhrman and M. Aviram, Flavonoids protect LDL from oxidation and attenuate atherosclerosis. Curr. Opin. Lipidol. 12 (2001) 41–48.
74. M. I. Khalil, S. A. Sulaiman and L. Boukraa, Antioxidant Properties of Honey and Its Role in Preventing Health Disorder. Open Nutraceuticals J. 3 (2010) 6–16.
75. R. M?rg?oan, E. Topal, R. Balkanska, B. Yücel, T. Oravecz, M. Cornea-Cipcigan, et al., Monofloral honeys as a potential source of natural antioxidants, minerals and medicine. Antioxidants 10 (2021) 1023.
76. H. Scepankova, J. A. Saraiva and L. M. Estevinho, Honey health benefits and uses in medicine. In: J. M. Alvarez-Suarez, editor. Bee products - chemical and biological properties. Switzerland: Springer. (2017) pp. 83–96.
77. C. C. Ofor, O. O. Erejuwa, G. C. Akuodor, D. O. Aja, A. U. Mba and E. N. Shu, The role of honey in the treatment of type 2 diabetes mellitus: A Review of literature. Int. J. Basic Clin. Pharmacol. 12 (2022) 120–124.