Investigation of hexanal removal through adsorption and photocatalysis on ZIF-7 modified with ZnO, TiO\(_2\), and ZnO/TiO\(_2\) using ATR-FTIR

Main Article Content

Widyan Muhammad Naufal
Sayekti Wahyuningsih
Witri Wahyu Lestari

Abstract

Zeolitic imidazolate framework (ZIF) is renowned for its high adsorption capacity and frequently adsorbs organic pollutants. However, its high band gap energy has limited its photocatalytic activity, thus necessitating a modification for enhance performance enhancement. This study focuses on developing a ZIF-7 composite material that integrates adsorption and photocatalysis to remove volatile organic compounds (VOCs), particularly hexanal. Modifications were made by incorporating ZnO, TiO2, and ZnO/TiO2 via a solvothermal method using dimethylformamide (DMF). ATR-FTIR analysis was employed to monitor any changes in peak intensity related to the C=O vibrations of hexanal around 1700 cm-1. The results showed that all samples effectively adsorbed hexanal, reducing peak intensity after UV irradiation, and confirming successful photocatalysis. Notably, TiO2@ZIF-7 exhibited the highest photocatalytic performance with 88.06% degradation efficiency. This study confirms that the ATR-FTIR method can be used to monitor the success of adsorption and photocatalysis and shows the potential for developing composite materials to remove VOCs such as hexanal.

Downloads

Download data is not yet available.

Article Details

How to Cite
Naufal, W. M., Wahyuningsih, S., & Lestari, W. W. (2024). Investigation of hexanal removal through adsorption and photocatalysis on ZIF-7 modified with ZnO, TiO\(_2\), and ZnO/TiO\(_2\) using ATR-FTIR. Communications in Science and Technology, 9(2), 235-242. https://doi.org/10.21924/cst.9.2.2024.1505
Section
Articles
Author Biographies

Sayekti Wahyuningsih, Inorganic Material Research Group, Department of Chemistry, Universitas Sebelas Maret, Surakarta 57126, Indonesia

Department of Chemistry

Witri Wahyu Lestari, Inorganic Material Research Group, Department of Chemistry, Universitas Sebelas Maret, Surakarta 57126, Indonesia

Department of Chemistry

References

1. Y. Xie, S. Lyu, Y. Zhang, and C. Cai, Adsorption and degradation of volatile organic compounds by Metal–Organic Frameworks (MOFs): A Review, Materials. 15 (2022) 7727.

2. R. Yadav, and P. Pandey, A Review on Volatile Organic Compounds (VOCs) as environmental pollutants: Fate and distribution, Int. J. Plant Environ. 4 (2018) 14–26.

3. D. Dhakshinamoorthy, S. Sundaresan, A. Iyadurai, K. S. Subramanian, G. J. Janavi, G. Paliyath et al., Hexanal vapor induced resistance against major postharvest pathogens of banana (Musa acuminata L.), Plant Pathol. J. 36 (2020) 133–147.

4. Y. Cho, M. K. Song, T. S. Kim, and J. C. Ryu, Identification of novel cytokine biomarkers of hexanal exposure associated with pulmonary toxicity, Environ. Pollut. 229 (2017) 810–817.

5. E. David, and V. C. Niculescu, Volatile organic compounds (VOCs) as environmental pollutants: Occurrence and mitigation using nanomaterials, Int. J. Environ. Res. Public Health. 18 (2021) 13147.

6. H. Li, Y. Cheng, J. Li, T. Li, J. Zhu, W. Deng et al., Preparation and adsorption performance study of graphene quantum dots@ZIF-8 composites for highly efficient removal of volatile organic compounds, Nanomaterials. 12 (2022) 4008.

7. W. Zou, B. Gao, Y. S. Ok, and L. Dong, Integrated adsorption and photocatalytic degradation of Volatile Organic Compounds (VOCs) using carbon-based nanocomposites: A critical review, Chemosphere. 218 (2019) 845–859.

8. T. Wang, Y. Wang, M. Sun, A. Hanif, H. Wu, Q. Gu et al., Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde, Chem. Sci. 11 (2020) 6670–6681.

9. H. W. Wu, L. W. Lee, P. Thanasekaran, C. H. Su, Y. H. Liu, T. M. Chin et al., Weak interactions in imidazole-containing zinc(II)-based metal–organic frameworks, J. Chin. Chem. Soc. 67 (2020) 2182–2188.

10. L. Bogdan, A. Pal?i?, M. Duplan?i?, M. Leskovac, and V. Tomaši?, Eco-friendly synthesis of TiO2/ZIF-8 composites: Characterization and application for the removal of imidacloprid from wastewater, Processes. 11 (2023) 963.

11. N. Amareh, Y. Yamini, M. Saeidi, Z. Dinmohammadpour, and M. Nazraz, Synthesis, characterization and application of ZIF-7@ZIF-67/PES for dispersive solid phase extraction of bisphenol A and 2-phenyl phenol, Talanta Open. 8 (2023) 100269.

12. A. Arami-Niya, G. Birkett, Z. Zhu, and T. E. Rufford, Gate opening effect of zeolitic imidazolate framework ZIF-7 for adsorption of CH4 and CO2 from N2, J. Mater. Chem. A. 5 (2017) 21389–21399.

13. Y. T. Zhao, L. Q. Yu, X. Xia, X. Y. Yang, W. Hu, and Y. K. Lv, Evaluation of the adsorption and desorption properties of Zeolitic Imidazolate Framework-7 for volatile organic compounds through thermal desorption-gas chromatography, Anal. Methods. 10 (2018) 4894-4901.

14. A. Semwal, D. Sajwa, J. Rawat, L. Gambhir, H. Sharma, and C. Dwivedi, Carbon-doped TiO2/ZIF-8 Composite for solar light harvested degradation of Methylene Blue, Res Square. 21 (2022) 1-16.

15. M. A. Habib, M. T. Shahadat, N. M. Bahadur, I. M. I. Ismail, and A. J. Mahmood, Synthesis and characterization of ZnO-TiO2 nanocomposites and their application as photocatalysts, Int. Nano Lett. 3 (2013) 5.

16. F. Hossain, M. A. Rahman, and M. M. Hossain, ZnO-TiO2 Composite mediated photocatalytic degradation of Orange G from aqueous solution, Dhaka Univ. J. Sci. 69 (2022) 218–224.

17. A. S. Rini, Y. Rati, G. Maheta, A. P. Aji, and Saktioto, Utilizing Pometia pinnata leaf extract in microwave synthesis of ZnO nanoparticles: Investigation into photocatalytic properties, Commun. Sci. Technol. 9 (2024) 94-99.

18. M. M. Ali, M. J. Haque, M. H. Kabir, M. A. Kaiyum, and M. S. Rahman, Nano synthesis of ZnO-TiO2 composites by sol-gel method and evaluation of their antibacterial, optical and photocatalytic activities, Results Mater. 11 (2021) 100199.

19. D. Ramírez-Ortega, A. M. Meléndez, P. Acevedo-Peña, I. González, R. Arroyo, Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity, Electrochim. Acta. 140 (2014) 541–549.

20. Y. Wang, X. Liu, L. Guo, L. Shang, S. Ge, G. Song et al., Metal organic framework-derived C-doped ZnO/TiO2 nanocomposite catalysts for enhanced photodegradation of Rhodamine B, J. Colloid Interface Sci. 599 (2021) 566–576.

21. J. Yang, Y. B. Zhang, Q. Liu, C. A. Trickett, E. Gutiérrez-Puebla, M. Á. Monge et al., Principles of designing extra-large pore openings and cages in Zeolitic Imidazolate Frameworks, J. Am. Chem. Soc. 139 (2017) 6448–6455.

22. M. R. Arefi, and S. Rezaei-Zarchi, Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites, Int. J. Mol. Sci. 13 (2012) 4340–4350.

23. K. A. Kumar, K. Subalakshmi, and J. Senthilselvan, Effect of mixed valence state of titanium on reduced recombination for natural dye-sensitized solar cell applications, J. Solid State Electrochem. 20 (2016) 1921–1932.

24. Deposition numbers 602541 (for ZIF-7) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

25. W. Yu, C. H. Lan, S. J. Wang, P. F. Fang, and Y. M. Sun, Influence of zinc oxide nanoparticles on the crystallization behavior of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibers, Polymer. 51 (2010) 2403–2409.

26. H. Hu, S. Liu, C. Chen, J. Wang, Y. Zou, L. Lin et al., Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples, Analyst. 139 (2014) 5818–5826.

27. D. Zhao, X. Wan, H. Song, L. Hao, Y. Su, and Y. Lv, Metal-Organic Frameworks (MOFs) combined with ZnO quantum dots as a fluorescent sensing platform for phosphate, Sens. Actuators, B. 197 (2014) 50–57.

28. E. Zanchetta, L. Malfatti, R. Ricco, M. J. Styles, F. Lisi, C. J. Coghlan et al., ZnO as an efficient nucleating agent for rapid, room temperature synthesis and patterning of Zn-based Metal-Organic Frameworks, Chem. Mater. 27 (2015) 690–699.

29. V. A. Polyakov, V. V. Butova, E. A. Erofeeva, A. A. Tereshchenko, and A. V. Soldatov, MW synthesis of ZIF-7: The effect of solvent on particle size and hydrogen sorption properties, Energies. 13 (2020) 6306.

30. E. G. Masibi, T. A. Makhetha, and R. M. Moutloali, Effect of the incorporation of ZIF?8@GO into the thin?film membrane on salt rejection and BSA fouling, Membranes. 12 (2022) 436.

31. K. Tan, S. Zuluaga, Q. Gong, P. Canepa, H. Wang, J. Li et al., Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74, Chem. Mater. 26 (2014) 6886–6895.

32. L. Frentzel-Beyme, P. Kolodzeiski, J. B. Weiß, A. Schneemann, and S. Henke, Quantification of gas-accessible microporosity in metal-organic framework glasses, Nat. Commun. 13 (2022) 7750.

33. P. Zhu, Y. Ma, Y. Wang, Y. Yang, and G. Qian, Separation and recovery of materials from the waste Light Emitting Diode (LED) modules by solvent method, J. Mater. Cycles Waste Manage. 22 (2020) 1184–1195.

34. E. Rusman, H. Heryanto, A. N. Fahri, I. Mutmainna, and D. Tahir, Green synthesis ZnO/TiO2 for high recyclability rapid sunlight photodegradation textile dyes applications, MRS Adv. 7 (2021) 444–449.

35. T. Y. Fonkui, M. I. Ikhile, P. B. Njobeh, and D. T. Ndinteh, Benzimidazole schiff base derivatives: Synthesis, characterization and antimicrobial activity, BMC Chem. 13 (2019) 127.

36. N. T. T. Tu, L. H. Khang, N. N. P. Thao, N. T. T. Hien, T, T. Chau, L. T. H. Diep et al., Zinc/Cobalt-based zeolite imidazolate frameworks for simultaneously degrading dye and inhibiting bacteria, J. Nanomater. 2022 (2022) 8630685.

37. C. Cuadrado-Collados, J. Fernández-Català, F. Fauth, Y. Q. Cheng, L. L. Daemen, A. J. Ramirez-Cuesta et al., Understanding the breathing phenomena in nano-ZIF-7 upon gas adsorption, J. Mater. Chem. A. 5 (2017) 20938–20946.

38. S. Zhong, Q. Wang, and D. Cao, ZIF-Derived nitrogen-doped porous carbons for Xe adsorption and separation, Sci. Rep. 6 (2016) 21295.

39. H. Zheng, B. Zhong, Q. Wang, X. Li, J. Chen, L. Liu et al., ZnO-Doped Metal-Organic Frameworks nanoparticles: Antibacterial activity and Mechanism, Int. J. Mol. Sci. 24 (2023) 12238.

40. A. Gopanna, R. N. Mandapati, S. P. Thomas, K. Rajan, and M. Chavali, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and wide-angle X-ray scattering (WAXS) of polypropylene (PP)/cyclic olefin copolymer (COC) blends for qualitative and quantitative analysis, Polym. Bull. 76 (2019) 4259–4274.

41. M. Jin, X. Qian, J. Gao, J. Chen, D. K. Hensley, H. C. Ho, R. J. Percoco, C. M. Ritzi, and Y. Yue, Solvent-free synthesis of CuO/HKUST-1 composite and its photocatalytic applications, Inorg. Chem. 58 (2019) 8332-8338.

42. Q. Li, Y. Wu, X. Ye, Y. Zeng, and M. Ding, ZnO-based heterostructure constructed using HKUST-1 for enhanced visible-light photocatalytic hydrogen evolution, Appl. Catal., A. 633 (2022) 118533.

43. M. Xiaobo, L. Xinyu, Z. Jie, H. Xiaoxian, and Y. Weichun, Heterostructured TiO2@HKUST-1 for the enhanced removal of methylene blue by integrated adsorption and photocatalytic degradation, Environ. Technol. 42 (2021) 4134-4144.

44. S. Roy, J. Darabdhara, and M. Ahmaruzzaman, ZnO-based Cu Metal-organic framework (MOF) nanocomposite for boosting and tuning the photocatalytic degradation performance, Environ. Sci. Pollut Res, 30 (2023) 95673-95691.

45. C. Purnawan, S. Wahyuningsih, O. N. Aniza, and O. P. Sari, Photocatalytic degradation of Remazol Brilliant Blue R and Remazol Yellow FG using TiO2 doped Cd, Co, Mn, Bull. Chem. React. Eng. Catal. 16 (2021) 804–815.

46. L. Miao, X. Tang, S. Zhao, X. Xie, C. Du, T. Tang et al., Study on mechanism of low-temperature oxidation of n-hexanal catalysed by 2D ultrathin Co3O4 nanosheets, Nano Res. 15 (2022) 1660–1671.