Conductivity and mechanical properties of PEO/PVA/UiO-66 composite polymers for membrane of lithium-ion batteries
Main Article Content
Abstract
Lithium batteries are crucial for energy storage in electronics, transportation, and industrial sectors. However, lithium-ion battery separators such as Celgard require significant improvements, particularly in ionic conductivity (?). Combining Metal-Organic Frameworks (MOFs) with polymers is expected to create a separator membrane that enhances conductivity and mechanical properties in lithium-ion batteries. UiO-66 MOFs were synthesized using the solvothermal method at 120? and then composited with polyethylene oxide (PEO) and polyvinyl alcohol (PVA) polymer membranes using the solution casting method. The UiO-66 MOFs/PEO/PVA polymer composites were made by varying the UiO-66 content from 2% to 8% (w/w) while keeping a constant LiPF6 concentration of 9% (w/w). These composites were characterized using X-ray Diffraction (XRD) and Fourier-Transform Infrared spectroscopy (FTIR). Subsequently, the EIS test and tensile tests assessed the performance of the composite membranes. The resulting membrane with 6% (w/w) UiO-66 MOFs exhibited a conductivity (?) of 5.60 × 10–3 S cm–1 and a tensile strength of 32.5 MPa.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. X. Feng, N. Deng, W. Yu, Z. Peng, D. Su, W. Kang, and B. Cheng, Review: application of bionic-structured materials in solid-state electrolytes for high-performance lithium metal batteries, ACS Nano 18 (2024) 15387–15415.
3. M. A. Mushtaq, M. Ahmad, A. Shaheen, A. Mehmood, G. Yasin, M. Arif, Z. Ali, P. Li, S. N., Hussain, M. Tabish, A. Kumar, S. Ajmal, W. Raza, M. Akhtar, A. Saad, and D. Yan, Advancing the development of hollow micro/nanostructured materials for electrocatalytic water splitting: current state, challenges, and perspectives, ACS Materials Lett. 6 (2024) 3090–3111.
4. Y. Zhang, J. Guo, M. Yu, X. Li, S. Liu, H. Song, W. Wu, C. Zheng, and X. Gao, Selective lithium leaching from spent lithium-ion batteries via a combination of reduction roasting and mechanochemical activation, ACS Sustainable Chem. Eng. 12 (2024) 6629–6639.
5. R. Abdullah, D. Astira, U. Zulfiani, A. R. Widyanto, Z. Rahmawati, T. Gunawan, Y. Kusumawati, M. H. D. Othman, and H. Fansuri, Ultrafiltration membranes for dye wastewater treatment: Utilizing cellulose acetate and microcrystalline cellulose fillers from Ceiba Pentandra, Communications in Science and Technology 9(1) (2024) 7–15.
6. M. Yuan, S. Zhang, L. Lin, Z. Sun, H. Yang, H. Li, G. Sun, C. Nan, and S. Ma, Manganese carbodiimide nanoparticles modified with N-doping carbon: a bifunctional cathode electrocatalyst for aprotic
Li-O2 Battery, ACS Sustainable Chem. Eng. 7 (2019) 17464–17473.
7. A. Kahfi, N. Kusumawati, P. Setiarso, S. Muslim, S. A. Cahyani, and N. Zakiyah, Study in the impact of quaternized graphene oxide (QGO) composition as modifier on the chemical, physical, mechanical, and performance properties of polyvinylidene fluoride (PVDF)-based nanocomposite membrane, Communications in Science and Technology 9(1) (2024) 30–37.
8. S. Bandyopadhyay, N. Gupta, A. Joshi, A. Gupta, R. K. Srivastava, B. K. Kuila, and B. Nandan, Solid polymer electrolyte based on an ionically conducting unique organic polymer framework for all-solid-state lithium batteries, ACS Appl. Energy Mater. 6 (2023) 4390–4403.
9. B. Zhong, C. Liu, D. Xiong, J. Cai, J. Li, D. Li, Z. Cao, B. Song, W. Deng, H. Peng, H. Hou, G. Zou, and X. Ji, Biomass-derived hard carbon for sodium-ion batteries: basic research and industrial application, ACS Nano 18 (2024) 16468–16488.
10. H. Bao, D. Chen, B. Liao, Y. Yi, R. Liu, and Y. Sun, Enhanced ionic conduction in metal-organic-framework-based quasi-solid-state electrolytes: mechanistic insights, Energy and Fuels 38 (2024) 11275–11283.
11. B. M. Wiers, M. L. Foo, N. P. Balsara, and J. R. Long, A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites, J. Am. Chem. Soc. 133 (2011) 14522–14525.
12. T. Zhou, W. Wang, H. Luo, Y. Wu, R. Xia, Y. Zhang, Z. Li, G. Jia, T. Zhang, H. Peng, and Z. Guo, Asymmetrical Ru-O-Mn bridge active sites fully decouple bifunctional oxygen electrocatalysis for rechargeable zinc-air batteries, ACS Catal. 14 (2024) 9313–9322.
13. Y. Xia, N. Xu, L. Du, Y. Cheng, S. Lei, S. Li, X. Liao, W. Shi, L. Xu, and L. Mai, Rational design of ion transport paths at the interface of metal-organic framework modified solid electrolyte, ACS Appl. Mater. Interfaces 12 (2020) 22930–22938.
14. J. Liu, Q. Sun, Q. Ye, J. Chen, Y. Wu, Y. Ge, L. Zhang, Z. Yang, and J. Qian, MOF-derived cobalt nanoparticles with dispersed iron phthalocyanines as bifunctional oxygen electrocatalysts, ACS Sustainable Chem. Eng. 12 (2024) 4779–4788.
15. R. Lin, Y. Jin, X. Zhang, Y. Li, Y. Zhang, and Y. Xiong, Hierarchical bulk-interface design of MOFs framework for polymer electrolyte towards ultra-stable quasi-solid-state Li metal batteries, Chem. Eng. J. 479 (2024) 147558-147570.
16. K. Zhang, X. Qian, L. Jin, Q. Hao, S. Zhao, B. Li, S. Pang, and X. Shen, Application of Sn-MOF-derived SnO2 and SnO2/CNTs composites in separator modification for lithium-sulfur batteries, J. Electroanal. Chem. 947 (2023) 117782-117790.
17. H. Zhu, S. Li, L. Peng, W. Zhong, Q. Wu, S. Cheng, and J. Xie, Review of MOF-guided ion transport for lithium metal battery electrolytes, Nano Energy. 125 (2024) 109571-109595.
18. S. H. Kang, H. Y. Jeong, T. H. Kim, J. Y. Lee, S. K. Hong, J. Choi, S. So, S. J. Yoon, and D. M. Yu, Aluminum diethylphosphinate-incorporated flame-retardant polyacrylonitrile separators for safety of lithium-ion batteries, Polymers. 14 (2022) 1649-1661.
19. B. Jinisha, A. F. Femy, M. S. Ashima, and S. Jayalekshmi, Polyethylene oxide (PEO) / polyvinyl alcohol (PVA) complexed with lithium perchlorate (LiClO4) as a prospective material for making solid polymer electrolyte films, Mater. Today: Proceedings. 5 (2018) 21189–21194.
20. A. R. Polu, P. K. Singh, P. S. Kumar, G. M. Joshi, T. Ramesh, I. M. Noor, A. Y. Madkhli, and S. Kakroo, Development of solid polymer electrolytes based on poly (ethylene oxide) complexed with 2-trifluoromethyl-4, 5-dicyanoimidazole lithium salt and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid for Li-ion batteries, High Performance Polymer. 35 (2023) 4–9.
21. M. Dmitrenko, A. Chapeleva, V. Liamin, A. Mazur, K. Samenov, N. Solovyev, and A. Penkova., Novel mixed matrix membranes based on polyphenylene oxide modified with graphene oxide for enhanced pervaporation dehydration of ethylene glycol, Polymers. 14 (2022) 691-714.
22. L. Gao, J. Li, J. Ju, L. Wang, J. Yan, B. Cheng, W. Kang, N. Deng, and Y. Li., Designing of root-soil-like polyethylene oxide-based composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries, Chem. Eng. J. 389 (2020) 124478-124490.
23. J. Zhang, C. Zheng, J. Lou, Y. Xia, C. Liang, H. Huang, Y. Gan, X. Tao, and W. Zhang., Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: Enhanced electrochemical performance, mechanical property and interfacial stability, J. Power Source. 412 (2019) 78–85.
24. C. Bai, Z. Wu, W. Xiang, G. Wang, Y. Liu, Y. Zhong, B. Chen, R. Liu, F. He, and X. Guo., Poly(ethylene oxide)/poly(vinylidene ?uoride)/Li6.4La3Zr1.4Ta0.6O12 composite electrolyte with a stable interface for high performance solid state lithium metal batteries, J. Power Source. 472 (2020) 228461-228469.
25. F.H. Abd El-Kader, N.A. Hakeem, I.S. Elashmawi, and A.M. Ismail. Enhancement of structural and thermal properties of PEO/PVA blend embedded with TiO2 nanoparticles, Indian J. Phys. 87 (2013) 983–990.
26. H.M. Ragab. The influence of graphene oxide on the optical, thermal, electrical, and dielectric properties of PVA/PEO composite, J. Mater. Sci: Mater Electron. 33 (2022) 19793–19804.
27. M. Brza, S. B. Aziz, S. R. Saeed, M. H. Hamsan, S. R. Majid, M. F. Z. Kadir, and R. M. Abdullah., Energy storage behavior of lithium-ion conducting poly(Vinyl alcohol) (PVA): Chitosan(CS)-based polymer blend electrolyte membranes: Preparation, equivalent circuit modeling, ion transport parameters, and dielectric properties, Membranes 10 (2020) 381-401.
28. Q. Yang, J. Guo, S. Zhang, F. Guan, Y. Yu, S. Feng, X. Song, D. Bao, and X. Zhang, Development of cell adhesive and inherently antibacterial polyvinyl alcohol/polyethylene oxide nanofiber scaffolds via incorporating chitosan for tissue engineering, Int. J. Biol. Macromol. 236 (2023) 124004-124013.
29. Y. Yang, and J. Zhang., Highly stable lithium–sulfur batteries based on laponite nanosheet-coated Celgard separators, Adv. Energy Mater. 180778 (2018) 1801778.
30. S. Hasanpoor, I. Ghasemi, and S. Gomari., Ionic conductivity and mechanical properties of semi-interpenetrating networks based on poly(ethylene oxide)/polyvinyl alcohol/graphene oxide: a response surface methodology study, Iran. Polym. J. (English Edition). 33 (2024) 567–579.
31. B. Eslami, I. Ghasemi, and M. Esfandeh., Using pegylated graphene oxide to achieve high performance solid polymer electrolyte based on poly(ethylene oxide)/polyvinyl alcohol blend (PEO/PVA), Polymers 15 (2023) 3063-3078.
32. L. Xu, K. Wei, Y. Cao, S. Ma, J. Li, Y. Zhao, Y. Cui, and Y.Cui., The synergistic effect of the PEO-PVA-PESf composite polymer electrolyte for all-solid-state lithium-ion batteries, RSC Adv. 10 (2020) 5462–5467.
33. E. Purwanti, D. Wahyuningrum, A. Rochliadi, and I. M. Arcana, Polymer electrolyte membrane based on PVA/LiClO4 nanocomposite reinforced cellulose nanocrystalline from corncob for lithium-ion battery, J. Polym. Sci. 62 (2024) 1424–1436.
34. R. Rusli, I. Abrahams, A. Patah, B. Prijamboedi, and Ismunandar, Ionic conductivity of Bi2NixV1-xO5.5-3x/2 (0.1 ? x ? 0.2) oxides prepared by a low temperature sol-gel route, AIP Conf. Proc. 1589 (2014) 178–181.
35. M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. Alessandra, F. Bonino, and K. P. Lillerud., Synthesis and stability of tagged UiO-66 Zr-MOFs, Chem. Mater. 22 (2010) 6632–6640.
36. S. Xu, Q. Gao, C. Zhou, J. Li, L. Shen, and H. Lin, Improved thermal stability and heat-aging resistance of silicone rubber via incorporation of UiO-66-NH2, Mater. Chem. Phys. 274 (2021) 125182-125189.
37. G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, and K.P. Lillerud, Defect Engineering: Tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis, Chem. Mater. 28 (2016) 3749–3761.
38. D. Ma, S.B. Peh, G. Han, and S.B. Chen. Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: Toward enhancement of water flux and salt rejection, ACS Appl. Mater. Interfaces 9 (2017) 7523–7534.
39. C. Cao, F. Liu, F. Li, O.R. Uzochukwu, and Chen L. A novel strategy for retarding membrane wetting under electrical field: Embedding silver nanowires into UiO-66-NH2/graphene oxide composite thin membrane, Desalination 574 (2024) 117263-117276.
40. S.H. Wang, S.S. Hou, P.L. Kuo, and H. Teng, Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries, ACS Appl. Mater. Interfaces 11 (2013) 8477–8485.
41. A. Patah, Y. Rachmawati, R. Utari, and A. Rochliadi. Penentuan resistivitas tak-terkompensasi cairan ion berbasis imidazol dengan metode EIS: pengaruh panjang alkil dan perbedaan anion, J. Ris. Kim. 11 (2020) 106–112.